agena »>

a programming language

primer and reference
for version 2.9.7

by alexander walz

february 01, 2016

agena Copyright 2006 to 2016 by alexander walz, rhineland.
All rights reserved. Portions Copyright 2006 Lua.org, PUC-Rio. All rights reserved.

None of the Agena project members or anyone else connected with this
documentation, in any way whatsoever, can be responsible for your use of the
information contained in or linked from it.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as frademarks. Where those designations appear in this
manual, and the author was aware of a trademark claim, the designations have
been printed in initial caps or all caps.

The latest release of Agena can be found at http://sourceforge.net/projects/agena.
This manual has been created with Lotus Word Pro 98 running on Sun Microsystems

VirtualBox and Microsoft Windows 2000, yWorks yEd Graph Editor 3.14.0, and PDF
Creator 1.2.3.

agena >> 3

Credits

The Sources
Agena has been developed on the ANSI C sources of Lua 5.1, written by
Roberto lerusalimschy, Luiz Henrigue de Figueiredo, and Waldemar Celes. Used
by their kind permission back in 2006.

Chapter 7: Standard Library documentation
Many portions of Chapter 7 have been taken from the Lua 5.1 Reference
Manual written by Roberto lerusalimschy, Luiz Henrique de Figueiredo, and
Waldemar Celes. Used by kind permission.

environ.anames
environ.anames has been invented by Joe Riel, put to the Maple community
back in the early nineties.

case of statement
The original code has been written by Andreas Falkenhahn and posted to the
Lua mailing list on September 01, 2004. In Agena, the functionality has been
extended to check multiple values in the of branches.

skip statement
The skip functionality for loops has been written by Wolfgang Oertl and posted to
the Lua Mailing List on Septemloer 12, 2005.

environ. globals base library function
The original Lua and C code for environ.globals has been wiitten by David
Manura for Lua 5.1 in 2008 and published on www.lua.org. The C source has
been changed so that in Agena, C functions are no longer checked.

mkdir, chdir, and rmdir functions in the os library
These functions are based on code taken from the "lposix.c” file of the POSIX

library written by Luiz Henrique de Figueiredo for Lua 5.0. These functions are
themselves based on the original ones written by Claudio Terra for Lua 3.X.

No automatic auto-conversion of strings to numbers
was inspired by Thomas Reuben's no auto conversion.patch available at
lua.org.

Kilobyte/Megabyte Number Suffix ('k', 'm)

taken from Eric Tetz's k-m-number-suffix.patch available at lua.org.

Binary and octal numbers ('0b', '00)

taken from John Hind's Lua 5.1.4 patch available at lua.org.

Integer division

taken from Thierry Grellier's newluaoperators.patch available at lua.org.

math.fraction

was originally written in ANSI C by Robert J. Craig, AT&T Bell Laboratories.

math.nextafter, ++ and -- operators

use a modified version of the C function nextafter that has originally been
published by Sun Microsystems with the fdliom IEEE 754 floating-point C library.
The author of the modifications is unknown, but the modified code can be
found at http://www.koders.com (file s nextafter.c). See Appendix B3 for the
licence.

calc.diff

based on Conte and de Boor's *Coefficients of Newton form of polynomial of
degree 3.

Advanced precision algorithm used in for/to loops, sadd, calc.fsum, linalg.trace,
nseq, stafs.amean, skycrane.counter, stats.cumsum, and stafs.sumdata.

The method to prevent round-off errors in iterations with non-integral step sizes
has been developed by Wiliom Kahan and published in his paper " Further
remarks on reducing fruncation errors® as of January 1965. Agena in some
cases uses a modified version of the Kahan algorithm developed by Kazufumi
Ozawa, published in his paper “Analysis and Improvement of Kahan's

agena >> 5

Summation Algorithm™. Especially the statistics function use the Kahan-Babuska
variant described by Andreas Klein in his study A generdlized
Kahan-Babuska-Summation-Algorithm ™.

calc.minimum, calc.maximum
use the subroutine calc.fminbr originally written by Dr. Oleg Keselyov in ANSI C
which implements an algorithm published by G. Forsythe, M. Malcolm, and C.
Moler, "Computer methods for mathematical computations™, M., Mir, 1980,
page 202 of the Russian edition.

besselj, bessely
The complex versions of the functions use procedures originally written in
FORTRAN by Shanjie Zhang and Jianming Jin, Computation of Special Functions,
Copyright 1996 by John Wiey & Sons, Inc. Used by Jianming Jin's kind
permission.

Graphics
The graphical capabilities of Agena in the Solaris, Linux, Mac, and Windows
versions have been made possible through a Lua binding of Alexandre Erwin
lttner to the g2 graphical library which has been written by Ljulbomir Milanovic
and Horst Wagner.

ADS package
The core ANSI C functions to create, insert, delete and close the database have
been written by Dr. F. H. Toor.

MAPM binding

Mike's Arbitrary Precision Math Library has been written by Michael C. Ring. See
Appendix B6 for the licence.

The MAPM Agena binding is an adaptation of the Lua binding written by Luiz
Henrigue de Figueiredo, put fo the public domain.
Year 2038 fix for 32-bit machines

was written by Michael G. Schwern, and has been published under the MIT
licence at http://github.com/schwerm/y2038.

6 Contents

Qzip package

and its description of the binding has originally been written and published
under the MIT licence by Tiago Dionizio for Lua 5.0.

Internal string concatenation

Some intemnal initialisation routines use a C function written by Solar Designer
placed in the public domain.

Functions arctan, expx2, gamma, Ingamma, calc.Ai, calc.Bi, calc.dawson,
calc.dilog. calc.Ci, calc.Chi, calc.En, calc.fresnelc, calc.fresnels, calc.ibetq,
calc.igamma, calc.igammc, calc.invibeta, calc.polylog, calc.Psi, calc.Si,
calc.Shi, calc.Ssi, cailc.zetq, stats.gammad, stats.gammadc, and
stats.invhormald

use algorithms written in ANSI C by Stephen L. Moshier for the Cephes Math
Library Release 2.8 as of June, 2000. Copyright by Stephen L. Moshier.

erf, erfc, calc.intde, calc.intdei, calc.intdeo
These functions use procedures originally written in C by Takuya Ooura, Kyoto,
Copyright(C) 1996 Takuya OOURA: "You may use, copy, modify this code for any
purpose and without fee."

math.random
The algorithm used to compute random numibers has been written by George
Marsaglia and published on en.wikipedia.org.

io.anykey
The Linux version uses code written by Johnathon in 2008 which was published
under the MIT licence.

XBASE file support
The xbase package is a binding to xBASE functions written by Frank Warmerdam

in ANSI C for the Shapelib 1.2.10 library. The Shapelib library has been published
under the MIT licence.

agena >> 7

Agenakdit GUI
The GUl is based on an editor published under the GPL licence and written by Bill
Spitzak and others for FLTK 1.3 http://www.fitk.org. Thanks to Albrecht Schlosser for
making the editor work with Agena.

The net package

Most of the functions are based on Jurgen Wolf's C examples published in his
ook "C von A bis Z*, 3rd Edition, Galileo Computing, Bonn, 2009.

"Beej's Guide to Network Programming, Using Intemet Sockets ", written by Brian
"Beej Jorgensen” Hall, was of great help. Some of the net functions use part of
Mr. Hall's public domain code published in his tutorial. Copyright © 2009 Brian
"Beej Jorgensen” Hall.
Studying the code of the LuaSocket 2.0.2 package, Copyright © 2004-2007 by
Diego Nehab, and published under the MIT licence, was very worthwnhile.

strings.dleven
The implementation of Damerau-Levenshtein Distance is a blend of C code
written by Lorenzo Seidenari and Anders Sewerin Johansen.

utils.readxml
The original version of the core XML parser has been wriffen in Lua 5.1 by
Roberto lerusalimschy, published on LuaWiki.

utils.decodebé4 and utils.encodebb4
The Baseb4 functions have been originally written in pure ANSI C by Bob Trower,
Copyright (c) 2001, published under the MIT licence.

printf

was taken from the compat.lua file shipped with the Lua 5.1 sources published
under the MIT licence.

8 Contents

.. operator

has been written by Sven Olsen and published in Lua Wiki/Power Patches.

copy

The deep copying mechanism has originally been written by Kurt Jung and by
Aaron Brown for Lua, and published in their book 'Beginning Lua Programming',
Wiley Publishing, Indianapolis, Indiana, 2007, page 151.

0s.getenv, os.setenv, os.environ
have been writften by Mark Edgar, Copyright 2007, published under the MIT
licence, and were taken from http://lua-ex-api.googlecode.com/svn.

bags package
The idea and its core implementation - ported to C - has been taken from the
ook “Programming in Lua® by Roberto lerusalimschy, 2nd Edition, Lua.org, p.
102.

xml package
The xml package actually is the LuaExpat binding to the expat library with some
few Agena-specific non-OOP modifications. LuaExpat 1.0 was designed by
Roberto lerusalimschy, André Carregal and Tomds Guisasola as part of the
Kepler Project which holds ifs copyright. The implementation was coded by

Roberto lerusalimschy, based on a previous design by Jay Carlson.

LuaExpat development was sponsored by Fabrica Digital and FINEP.

bintersect, bminus, bisequal, stats.obcount

The algorithm for binary comparison has been taken from Niklaus Wirth's book,
*Algorithmen und Datenstrukturen mit Modula-2°, 4th ed., 1986, p. 58.

calc.symdiff, linalg.mulrow, linalg.mulrowadd, stats.deltalist, stats.cumsum,
stats.colnorm, stats.rownorm, stafs.sumdata

These functions have been inspired by the deltalist, cumulativeSum, centralDiff,
colNorm, rowNorm, mrow, and mrowdd functions available on the TI-Nspire™
CX CAS.

agena >> 9

linalg.scale, stats.scale

is a port of function REASCL, included in the ALGOL 60 NUMAL package
published by The Stichting Centrum Wiskunde & Informatica (Stichting CWI) (legall
successor of Stichting Mathematisch Centrum) at Amsterdam. Original authors:
T. J. Dekker, W. Hoffmann; contributors: W. Hoffrnann, S. P. N. van Kampen.

0Os.Now

uses C routines of the IAU Standards of Fundamental Astronomy (SOFA) Libraries,
See Appendix B5 for the licence.

Functions calc.clampedspline , calc.clampedsplinecoeffs , calc.interp,
calc.neville, calc.newtoncoeffs, calc.nokspline, calc.noksplinecoeffs

use C++ routines (ported to C) provided or written by Professor Brian Bradie,
Department of Mathematics, Christopher Newport University, VA, to the course
"An Infroduction to Numerical Analysis with Applications to the Physical, Natural
and Social Sciences’. There have been no copyright remarks, so at least
Agena's MIT licence is not applicable to the source files ‘interp.c™ and
‘interp.h .

stats.smallest
is based on N. Devillard's C implementation of an algorithm published in various
books written by Niklaus Wirth, published for example in "Algorithmen und
Datenstrukturen mit Modula-2 . Mr. Devillard put his code in the public domain.
strings.isiso* and strings.iso* functions
use ISO 8859/1 Latin-1 bit vector tables taken from the entropy utility ENT written
by John Walker, January 28th, 2008, Fourmilab, put in the public domain.
astro.moonriseset
Uses C functions Copyright © 2010 Guido Trentalancia IZ6RDB. This program is
freeware - however, it is provided as is, without any warranty.
astro.phase

Uses C functions taken from: http://www.voidware.com/moon_phase.htm. There
have not been any copyright remarks.

10 Contents

astro.sunriseset
Uses C functions written as DAYLEN.C, 1989-08-16. Modified to SUNRISET.C,
1992-12-01, (c) Paul Schiyter, 1989, 1992. Released to the public domain by
Paul Schliyter, December 1992,

astro.cdate & astro.jdate
uses C routines of the IAU Standards of Fundamental Astronomy (SOFA) Libraries,
See Appendix B5 for the licence.

strings. utf8size
of the core C code procedure has been written by mpez0O, published at
StackOverflow.

strings. isutf8
of the core C code procedure has been written by written by Christoph,
published on StackOverflow.

strings.isotolatin & strings.isotoutf8
of the core C code procedures have been written by Nominal Animal published
on StackOverflow.

strings.glob

uses C code wiritten by Arjan Kenter, Copyright 1995, Arjan Kenter.

stats.sorted

uses an iterative Quicksort algorithm written by Nicolas Devillard in 1998, put to
the public domain.

1%, *%, +%, -% operators, math.dd, math.dms, math.splitdms, polar, stats.cdf,
stats.numbcomb, stats.numbperm, and stats.pdf

have been inspired by the TI™-30 ECO RS, TI™-30X Pro, and Sharp™ EL-W531XG
pocket calculators.

agena >> 11

E. Exp
as a constant, defines the former Maple V Release 3 implementation of E =
exp(1) = 2.71828182845904523536.

Complex arithmetic
for various mathematical functions and operators has been implemented by
primarily using Maple V Release 3, Maple V Release 4, and Maple 7.

io.getclip and io.putclip

are based on C code written by banders7, published on Daniweb.

fry/catch statement
has been invented and written by Hu Qiwei for Lua 5.1 back in 2008, and has
been extended for Agena.

debug.getinfo

the 'a'/arity extension has been written by Rob Hoelz in 2012.

calc.polyfit & calc.linterp

uses C code published by Harika in 2013 at http://programbank4u.blogspot.de.

Review of the Agena interpreter at the Web

Many thanks to softpedia.com for the very kind critique and fine ranking.

linalg.det & linalg.inverse
are based on C functions written by Edward Popko published on Paul Bourke's
website at hitp://paulbourke.net/miscellaneous.

redo & relaunch

have been inspired by the Ruby programming language.

12 Contents

linalg.gsolve
is based on C functions written by Edward Popko and Alexander Evans; for the
former see the link above, and for the latter the following address:
http://www.dailyfreecode.com/code/basic-gauss-elimination-method-gauss-29
49.aspx.

calc.simaptive and linalg.ludecomp
ae based on C functions written by RLH, available at
http://www.mymathlib.com, Copyright © 2004 RLH. All rights reserved.

~=, ~<>, Approx, gmndev

use methods developed by Donald Knuth.

calc.Ei

uses a combination of C algorithms written by Stephen L. Moshier and RLH.

linalg. ref

is based on a C# function published at http://rosettacode.org.

linalg.forsub
is based on an algorithm explained by Timothy Vismor found on his site
http://vismor.com.

cordic package
is based on a C package wiitten by John Burkardf, taken from
http://people.sc.fsu.edu/~jourkardt/c_src/cordic/cordic.c, with modifications
using Maple V Release 4 and TI-Nspire CX CAS. Sources provided separately.

libusb binding

is based on lualibusb1 - Lua binding for libusb 1.0, written by Tom N Harris. See:
http://lualibusb 1.googlecode.com.

agena >> 13

stats.extrema

is the Agena port of the “peakdet” function written by Eli Billauer for MATLAB.

mdf, xdf

have been inspired by the Sharp PC-1403H pocket computer,

os.cpuload, os.drivestat, os.getenv, os.redlpath & os.setenv
are based mainly on procedures taken from Nodir Temirkhodjoev's LuaSys
package.

utils.readini
uses modified C sources writften by Nicolas Devillard for his iniparser 3.1
package.

Various eComéStation - OS/2 systemnahe functions

have been made possible by the website hitp://www.edm2.com/o0s2api.

list package

The C implementation has been accomplished by reading Michal Kottman's tip
at nabble.com on how to code new data sfructures using Lua's userdata.

stats.dbscan & stats.neighbours

The dbscan algorithm has been invented by Martin Ester, Hans-Peter Kriegel,
Jorg Sander, and Xiaowei Xu, published at University of Munich. The Agena port
is based on a Matlab implementation written by Peter Kovesi, Centre for
Exploration Targeting, The University of Western Australia, with stats.neighbbours a
C-based split-off,

hashes package

uses code published by RSA Data Security, Inc. Copyright (C) 1990. All rights
reserved. For further credits, please see the hashes.c file in the Agena sources.

14 Contents

math.ceilpow2 and math.ilog10
use code presented by Sean Eron Anderson at his “Bit Twiddling Hacks®
webpage http://graphics.stanford.edu/~seander/bithacks.html.

0s.cdrom, os.ismounted, os.isremovable, os.isvaliddrive
The Windows versions are based on code published at MSDN, page
http://support.microsoft.com/kio/165721#. The Linux version of os.cdrom is
based on Jurgen Wolf's C book “C von A bis Z*, 3rd Edition, Galileo Computing,
Bonn, 2009. The eCS version of os.cdrom is based on code found on the OS/2
Hobbes FTP server at NMSU, left without any copyright remarks.

os.terminate

The eCS version is largely based on Mark Kimes' public domain implementation.

o0s.monitor
The Linux version is based on Dave Drager+'s recommendation published at his
blog.

hypot2 and antilog, operators

have been inspired by the Sinclair Scientific Programmaible pocket calculator.

math.eps, stats.isall, stats.isany, and linalg.reshape functions

have been inspired by Matlab.

stats.gmean

uses an algorithm taken from the COLT sources published by CERN, Geneva.

gdi.plotfn

has been improved by Slobodan from Serbia.

agena >> 15

oftype metamethod
to check structures at function invocation has been proposed by Slobodan from
Serbia.

stats.durbinwatson, stats.standardise, and stats.sumdatailn

have been inspired by the COLT package published by CERN, Geneva.

<<<< and >>>> operators

have been implemented using Lua 5.2.3 code.

Chapter 6.24

is based on examples published at http://www.lua.org/pil/16.html.

Chapter 2.2
has been updated due to a kind hint posted at the Agena Sourceforge forum
from an unknown user on how to run Agenakdit in current Slackware distributions.
Exit and restart handlin g

via environ.onexit has been inspired by MuPAD 2.5.

with and related statements
are based on a Lua 5.1 power patch written by Peter Shook (*Unpack Tables by
Name).

math.dms

uses an algorithms proposed by user807566 on StackOverflow.,

case of boolean condition variant

has been inspired by the Go programming language.

16 Contents

Numeric ranges in case/of clauses

have been inspired by Fortran 0.

math.fma
for those platforms that do not provide a built-in fma C function, is based on a
method proposed by Z boson on StackOverflow.

math.signbit
for those platforms that do not provide a built-in signbit C function, is based on a
Sun Microsystems implementation.

math.signbit
Its original version has been written by Jacob Rus for Lua, taken from:
https://gist.github.com/jrus/3197011

math.wrap

Is based on Tim Cas' answer #4633177 on StackOverflow.

Sinclair ZX Spectrum package
clones Spectrum ROM Z80 assembler routines disassembled by Dr. lan Logan
and Dr. Frank O’Hara.

math.eps

optionally uses a formula suggested by trashgod on StackOverflow to compute
a small epsilon value that is suited for mathematical C double operations.

Finally, due to very kind help and feedback, and in chronological order

Many thanks to the Lua team at PUC-Rio, Brazil, and to Agena users in Israel, Italy,
Australia, Palestine, Poland, Serbia, the eComStation - OS/2 community, and to
many other users of various nations.

agena >> 17

Table of Contents

1IN OAUCTION . 25
LIPS I Y @ 3 (@ [25
T2 FEOTUIES ot 25
1. 3 N D Al 26
T HIS OMY it 28
1.0 OGNS ottt 28
2 Installing and RUNNING AGENA ... 33
2.1 SUN SOIANS T ottt 33
2 1| P 33
2. 3 WO S ottt 34
2.4 eComStation aNA OS/2 WA 4 ...t 36
2.0 DS L 36
2.6 Mac OS X 10.5 and higher ... 37
2.7 AQeNa INIHAISAHON .t 37
2.8 Installing Library UpAates ... 38
S SUMIMNIOIY e 43
3.1 Input Conventions in the Console Edition ... 43
3.2 Input Conventions in AQENAEdITo 43
3.3 Geting FAMIlIAr .. o 44
3.4 UsefUl STATEMIENTS ..o 45
3.5 Assignment and UNasSigNMIENt ..ot 46
3.6 ANTNMIE C o 46
R 1111 46
3.8 BOOIEANS it 47
3. Tl it 47
.10 SIS L 48
. T T SEOUENCES vttt 49
3.l P IS it 49
3. 18 CONAIONS ottt 49
3T OO S vttt ittt 50
3.1 PIOCEAUIES . ittt 52
3. 16 COMMIENTS Lttt 52
3.17 Writing, Saving, and RUNNING ProgramMEsovvvvvi i 53
3.18 USING PACKAGES .ottt 54
4 DAtA & OPEIAtIONS ..o, 57
4.1 Names, Keywords, anNd TOKENS . vttt 58
(@]] 1= o 59
4, 3 ENUMIEION ON i 60
4.4 Deletion and the null Constant ... i e 61
A, PIECEAENCE ittt 62
4,6 ANNMNEI C L 62

4.6, 1 NUMDBIS ot e 62

18 Contents

4.6.2 AthmetiC OPEIatONS vt 64
4.6.3 Increment, Decrement, Multiplication, Division 66
4.6.4 Mathematical CoNSIANTS ...ttt e 67
4.6.5 CompPleXx MOt o 67
4.6.6 CompPannNg VAIUES ... v 68
A 1 (]8T T 69
4.7, 1 REPIESENTION ON ittt i i 69
4.7 2 SUDSIIINGS vttt 70
4.7.3 ESCOPE SEAUENCES 1\ttt ittt i 71
4, 7.4 CONCAIENAHON Lttt 71
4.7.5 MOIE ON SINGS vttt et 72
4.7.6 String Operators and FUNCHONS ... 72
4.7.7 ComMPANNG SHNGS ottt 75
4.7.8 Pafterns AN COptUIES .ttt 75
4.8 BOOIEAN EXIESSIONS '+ vttt ettt ittt ettt e 81
A, T S i 83
R I 1 (@ 1Y P 83
4,9, 2 DI ONAIES .+ttt 88
4.9.3 Table, Set and Sequence OPEIatOrS ... v vt e 89
4.9.4 TADIE FUNCHONS 1.t e 92
4.9.5 TADIE REIEIENCES .. i 94
4.9.6 Unpacking Tables by NOME @5
4.9.7 Defining Multiple Constants EQSily ... @5
O T £ 96
AT] SEBOUENCES oottt ittt ettt @8
4,12 STACK PrOGIOmMIMING .« vttt 104
4,13 More on the create Statemento i 1056
I @ 1 P 106
.1 REQIST OIS ittt 109
4.16 Exploring the Infernals of Structures ... 113
O A 1 TS G 1Y/ = 113
O CON Ol 117
.l CONAI I ONS ottt 117
T I B] (@ 1= 1) | P 117
L T P22 1 1 (] (] 119
B.1.3 CASE STAtEMIENT L 120
D2 L0 S ot ittt 122
5.2, 1 WhIlE OO vttt i 122
O T (0] 721 T 0 1) 124
5.2.3 fOr/AOWNTIO LOOIS .\ttt ittt ittt 126
5.2.4 for/in LOOPS OVEI TADIES ..\ttt e 126
5.2.5 fOr/in LOOPS OVEI SEQUENCES .\ vt vt it ittt ittt 127
5.2.6 fOr/in LOOPS OVl SHINGS v\ttt ettt 127
5.2.7 fOr/iN LOOPS OVEI SEIS L\ttt 128
5.2.8 for/in LOOPS OVEI PTOCEAUIES ...\ttt ittt e 128
5.2.9 0N/ WhIIE LOOIS vttt 129

5.2.10 for/as & for/Until LOODS .+ ..t viit i e 130

agena >> 19

5.2.17T LOOP JUMP CONIIOl Lt 131
5.2.12 with Statement for DICTIONANESo e 133
O PrOgIOMIMING Lo 137
.1 PrOCEAUIES ottt 137
6.2 LOCAl VANODIES ..\t 139
6.3 Global VaNADIES ..\ 140
6.4 Changing Parameter VAIUES v e 141
6.5 OPtioONAl ATQUMIENTS Lttt 141
6.6 Passing Options in ANy Order ... 143
6.7 TYPE CNECKING vt 143
6.8 EMOr HANAING oo 145
6.8.T The eIrOr FUNCHON o\ i e e 145
6.8.2 Type Checks in Procedure Parameter Lists ... 145
6.8.3 Checking the Type of Return of Procedurescocvviviiiiiiinnn, 146
6.8.4 The ASSUME FUNCHON .. i s 147
6.8.5 Trapping Errors with protect/lastenor ... 147
6.8.6 Trapping Errors with the try/catch Statement ..., 148
6.9 MURIDIE RETUINS Lttt e e 149
6.10 Procedures that Return ProCeaUres o.vviiir e 151
6.11 Shortcut Procedure Definition ... e 151
6.12 User-Defined ProCeaUIE TYPES v vttt ittt ittt 152
6.13 SCOPING RUIES ..\t 153
6.14 Access to Loop Control Variables within Procedures ... 165
6. 18 SANADOXES ittt 155
6.16 Alfering the Environment at RUN-TIMe ... e 157
.17 POCKOGES vttt 158
6.17.1 WrHing A NewW PACKAQEo e 158
6.17.2 The initialise FUNCHON . . i e e 159
6. 18 ReMEMEr TADIES ...\ i 161
6.18.1 Standard Remember TAbIESo 161
6.18.2 Read-Only Remember TabIESot e 163
6.18.3 Functions for Administering Remember Tables ..., 165
6.19 Overloading Operators with Metamethods ..., 165
6.20 Memory Management, Garbage Collection, and Weak Structures 173
6.21 Extending Built-in FUNCHONSot 175
6.22 Closures: Procedures that Remember their Stateoccov i 176
6.23 Self-defined Binary OperaiOrs ... uvu vt 178
6.24 OOP-style Methods ON TADIES ... vt e 178
6.25 SUMIMAIY ON PrOCEAUIES ..\ttt e 180
6,20 1 180
6.26.1 Reading Text Fileso 181
6.26.2 WHHNG TeXt FileS ... o 181
6.26.3 Keyboard INteraCtioN . v 183
6.26.4 Default Input, Output, and Error Streams ..o 183
6.26.5 LOCKING FIlES .. i 183
6.26.6 Interaction with ApPIICATONS ... i e 184

6.26.7 CSV HIlES i 184

20 Contents

6.26.8 XML FIlES ittt 184
6.26.9 ABASE Il FIlES ..ttt 184
6. 26, 10 NI FIlES it 185
6. 27 LINKEA LISt o\ttt 185
6.28 NUMIEIHC € ATy S ottt ittt ettt e e 187
6.29 Userdata and Ligthuserdata ... 187
6.30 TNE REQISITY ottt 188
7 StaNdard LIranies ... 191
7.1 BASIC FUNCHONS i 191
72 SIS oot 226
7.2.1 Kernel Operators and Basic Library Functions ..., 227
7.2.2The strings LIorarny ... 230
7. 2.3 PO INS L 246
7 3 TADIES o 248
F T B = (1=) @7 (] (] £ 248
7.3, 2 tADIES LIOrarY i 253
0 =) £ 255
7D S OUENCES ottt ittt 258
76 P IS L 263
7.7 it - LINKEA LISt ottt 265
7.7.1 Infroduction and an EXOMPIE ... 265
77 2 FUNCHONS Lttt e 265
7.8 DAQGS - MUITSETS . 267
7.8.1 Infroduction and EXAmMPIES ... it e 268
7.8, 2 FUNCHIONS Lttt 269
7.9 Mathematical FUNCHIONS ... i e 271
7.9.1 Operators and BasiC FUNCHONS ... o 273
7.9, 2 MO LTy o 292
7.10 mapm - Arbitrary Precision Lirany ... 303
7.11 calc - CaAlCUIUS PACKAQE ..\ttt e 305
7.12linalg - Linear Algebra POCKAQEo 319
7. 13 STATS - STATISHCS oo 332
7.14 10 - Input and Output FACIlIIES ... v e 363
7.15binio - Binary File POCKAQEo 376
7.16 xoase - Library to Read and Write xBase Files ..., 384
7. 07 XN = XML PO it 393
7.0 7. I OAUCTHON i 394
7.1 7. 2 PAISEr O TS ottt 394
7. 07,8 SO CULS ot 394
71 7.4 CONSITUC O it 395
7 07 D FUNCHONS it 395
7. 07.6 CallOCKS i 396
7.18 gzip - Library to Read and Write UNIX gzip Compressed Files 400
7.19 net - NetWOrK Liorany ..o 401
7.19.7 Infroduction ANA EXOMIPIES ..ttt e e 402
710, 2 FUNCHONS ottt e 407

7.20 0s - Access to the Operating System ... 416

agena >> 21

7.21environ - Access 1o the Agena Environment ... i 436
7.22 PACKAGE - MOAUIES ..ottt 443
7.23 rtable - Remember TADIESo 444
724 COIOUTINES ottt 447
7.25 debug - DEbUGOING .« .ttt 448
7.26 ULils - UTIHES oo 452
7.27 skycrane - Auxiliary FUNCHONS .. i e e 462
7.28 ClOCK - CIOCK PACKAGE ..\t e 468
7.29 astro - ASTTONOMY FUNCHONS ..\t e s 471
7.30 ads - Agena Database System ... 475
7.31 gdi - Graphic Device Interface package ... 485
7.31.1 Opening a File or WINAOW ... 485
7.31.2 PlotHiNg FUNCHONS ..t 485
7.31.3 COlOUS, PA T o 486
7.31.4 Closing A File Or WINAOW ... v i e 486
7.31.5 SUPPROMEA File TV S .ttt e s 486
7.31.6 Plotting Graphs of Univariate Functions ... 487
7.31.7 Plotting Geometric Objects EQsily ... 487
7.31.8 COlOUS, PO 2 i 488
7.31.9 GOl FUNCHONS ot 488
7.32 fractals - Library to Create Fractals ... 501
7.32.1 Escape-time Iteration FUNCHONS ... oo 501
7.32.2 Auxiliary Mathematical FUNCHONS ... 503
7.32.3 The Drawing Function fractals.draw ...t 503
7.3 2.4 EXOMIIES vttt ittt 505
7.33 divs - Library 1o Process Fractionso 507
7.34 cordic - Numerical CORDIC Librany ... 511
7.35 USD - IOUSD BINAING vt 513
7.35. 1 CTX FUNCHONS it e 513
7.35.2 DEV FUNCHONS .t 513
7. 30, 3 HONAIES .ttt 514
7.35.4 TraNSfer FUNCHONS .ttt e 514
7.35.5 Miscellaneous FUNCHONS ... v e 514
7 30 RIS OIS o\t 515
7.36. 71 KeNEl OEIaT0IS vttt ittt ittt e s 515
7.36.2 1€QISTerS LIy .t 520
7.37 NASNES - HOSNES .\ i 521
7. 37 1IN OAUCTON i 521
7. 37 2 FUNCHONS ottt 521
7. 38 1A - UNDX QA o 525
7.38. 1IN OAUCTON i 525
7038, 2 FUNCHONS o\ttt 525
7.39 NUMAIAY - NUMENC C AITOYS vttt ettt ittt ittt e 527
7.39. 1IN OAUCTON i 527
7039, 2 FUNCHONS o\ttt 528
7.40 registry - Accessto the Reqistry ... 534
7.41 stack - Built-In Numerical STack ... 535
7.42 zx - SInclair ZX Spectrum FUNCHONS .. o 539

742,] INTTOAUCTON i 539

22 Contents

7.42.2 Original ZX Spectrum FUNCHONS ..o 539
7.42.3 AUXIlIArY FUNCHONS L.t e s 542
8 C APLFUNCHIONS .. i 547
AN A o 581
FN B 7= (6 1 (] - 581
A2 MetamMIEINOAS .t 581
A3 SYSTEM VAN S L.t 583
A4 CommaNd LINE USOQE .. viit it 585
A4 T UsINg The -8 OptiON L. i e 585
A4.2 Using the intermal args Table and Exit Status ... 586
A4.3 Running a Script and then Entering Interactive Mode 587
A4.4 Running Scripts iN UNIXand Mac OS X ... 587
A4.5 Command LINE SWITCNESt 588
A5 Define Your Own Printing RUles fOr Types ... 588
A6 The Agena Initialisation File ... 589
A7 ESCAPE SEAUENCES ..ttt ittt 591
A8 Backward Compatibilityo 591
A9 MathematiCAl CoNSIANTS ... i e 592
A10 Some Few TechniCaAl NOtES ... i e 592
ARRENAIX B oo 593
BT AQENA LICENCE .. i 593
B2 GNU GPL V2 LiCENCE ittt 593
B3 Sun Microsystems Licence for the fdliom IEEE 754 Style Arithmetic Library 600
B4 GNU Lesser General Public LiCenCe ... 600
BS SOFA SOftWAre LICENCE e 609
B6 MAPM Copyright Remark (Mike's Arbitrary Precision Math Library) 611
B7 RSA Security/MD58 LICENCE 612
B8 Other Copyright REMAIKS ... e 612
ARENAIX C o 614
ClRURNEr REAAING .t e 614

agena >>

23

Chapter One

Introduction

24

1 Agena

agena >> 25

1 Infroduction

1.1 Abstract

Agena is a procedural programming language designed to be used in scientific,
educational, network, linguistic, and many other applications, including scripting.

Agena provides fast real and complex arithmetic, graphics, efficient text
processing, flexible data structures, infelligent procedures, package management,
plus various mulfi-user configuration facilities.

Its syntax looks like very simplified Algol 68 with elements taken primarily from Maple,
Lua and SQL. It has been implemented on the ANSI C sources of Lua 5.1 created
by Roberto lerusalimschy, Luiz Henrigue de Figueiredo, and Waldemar Celes.

Agena binaries are available for Solaris, Linux, Windows, eComStation & OS/2, Mac
OS X, Haiku, and DOS.

You may download Agena, its sources, and its manual from

http://sourceforge.net/projects/agena.

1.2 Features

Agena combines features of Lua 5, Maple, Algol 60, Algol 68, ABC, SQL, ANSI C,
Sinclair ZX Spectrum BASIC, and SuperBASIC for Sinclair QL.

Agena supports all of the common functionality found in imperative languages:

e Qassignments,
* |oops,

e conditions,

e procedures.

Besides providing these basic operations, it has extended programming features
described later in this manual, such as

* high-speed processing of extended data structures,

» fast string and mathematical operators,

* extended conditionals,

* abridged and extended syntax for loops,

* special variable increment, decrement and deletion statements,
e efficient recursion techniques,

e an arbitrary precision mathematical library,

* a network package to exchange data over the Internet and LANS,
* eaqsy-to-use package handling,

* and much more.

26 1 Agena

Like Lua, Agena is untyped and includes the following basic data structures:
numbers, strings, booleans, tables, and procedures. In addition o these types, it
also supports Cantor sets, sequences, registers, pairs, complex numbers, linked lists,
and multisets. With all of these types, you can build fast applications easily.

1.3 In Detail

Agena offers various flow control facilities such as

if/elif/else conditions,

case of/else conditions similar to C's switch/case statements,

if operator to return alternative values,

numerical for/from/to/downto/by loops with optional start and step values, and
automatic round-off error correction of iteration variables,

combined for/while loops,

for/in loops over strings and complex data structures,

while and do/as loops similar fo Modula's while and repeat/until not() iterators,
do/od loops equal to the ones in Maple,

a skip statement to prematurely trigger the next iteration of a loop,

a break statement to prematurely leave a loop,

fast and easy data type validation with the optional double colon facility in
parameter lists.

Data types provided are:

e rational and complex numbers with extensions such as infinity and undefined,

e sfrings,

* booleans such as true, false, and fail,

* the null value meaning the albsence of a value,

* multipurpose tables implemented as associative arrays to hold any kind of data,
taken from Luq,

e Cantor sets as collections of unique items,

* sequences, i.e. vectors, to internally store items in strict sequential order,

* pairs o hold two values or pass arguments in any order to procedures,

]

threads, userdata, and lightuserdata inherited from Lua.

For performance, most basic operations on these types were built info the Agena
kernel.

Procedures with full lexical scoping are supported, as well, and provide the following
extensions:

* the << (args) -> expression >> syntax to easily define simple functions,

* user-defined types for procedures to allow individual handling (the same feature
is available to the above mentioned tables, sets, sequences, and pairs),

* q facility to return predefined results,

* remember tables for conducting recursion at high speed and at low memory
consumption,

* closures, a features to let functions remember their state, taken from Lua,

agena >> 27

* the nargs system variable which holds the number of arguments actually
passed to a procedure,

e metamethods to define operations for tables, sets, sequences, and pairs,
inherited from Luq,

e OOP-style methods for tables,

* self-defined binary operators.

Some other features are:

* graphical capabilities in the Solaris, Mac, Linux, and Windows editions, provided
by the gdi package,

* networking with the Internet and LANS,

* functions to support fast text processing (see in, atendof, replace, lower, and
upper operators, as well as the functions in the strings and utils packages),

* easy configuration of your personal environment via the Agena initialisation file,

* an easy-fo-use package system also providing a means to both load a library
and define short names for all package procedures at a stroke (with function),

» the binio package to easily write and read files in binary mode,

* facility to store any data to a file and read it back later (save and read

functions),

undergraduate Calculus, Linear Algebra, and Statistics packages,

enumeration and multiple assignment,

transfer of the last iteration value of a numeric for loop to its surrounding block,

scope conftrol via the scope/epocs keywords,

efficient stack programming faciliies with the insert/into and pop/from

statements,

bitwise operators,

direct access 1o the file system,

an arbitrary precision mathematical library,

XML, CSV, INI, GZIP and TAR file support,

a simple editor called Agenakdit for Solaris, Linux, and Windows.

Agena is shipped with the packages mentioned above and all Lua C packages
that are part of Lua 5.1. Some of the very basic Lua library functions have been
fransformed to Agena operators 1o speed up execution of programmes and thus
have been removed from the Lua packages. The Lua mathematical and stfring
handling packages have been tuned and extended with new functions.

Agena code is not compatible to Lua. Its C API, however, has been left unchanged
and many new API functions have been added. As such, you can integrate any C
package you have already written for Lua by just replacing the Lua- specific header
files, see Chapter 8.

28 1 Agena

1.4 History

| have been dreaming of creating my own programming language for the last 25
years, my first rather unsuccessful attempt tried on a Sinclair ZX Spectrum in the
early 1980s.

Plans became more serious in 2005 when | learned Lua to write procedures for
phonetic analysis and also learned ANSI C to transfer them into a C package. In
autumn 2006 the first modifications of the Lua parser began with extensive
modifications and extensions of the lexer, parser and the Lua Virtual Machine in
summer 2007. Most of Agena's functionality had been completed in March 2008,
followed by the first new data structure, Cantor sets, one month later, some more
data structures, and a lot of fine-tuning and testing thereafter. Finally, in January
2009, the first release of Agena was published at Sourceforge.

Study of many books and websites on various programming languages such as
Algol 68, Maple, Algol 60, and ABC, and my various ideas on the “perfect’
language helped to conceive a completely new Algol 68-syntax based
language with high-speed functionality for arithmetic and text processing.

You may find that at least the goal of designing a perfect language has not yet
been met. For example, the syntax is not always consistent: you will find
Algol 68-style elements in most cases, but also ABC/SQL-like syntax for basic
operations with structures. The primary reason for this is that sometimes natural
language statements are better to reminisce. | have stopped bothering on this
inconsistency issue.

Agena has been designed on Windows 2000, NT 4.0, Vista, and Windows 7 using
the MInGW GCC 3.4.6 and 4.4.0 compilers. Further programming has been done
on a Sun Sparc Ultra 5, a Sun Blade 150, and a Sun Blade 1500 running Solaris 10,
and on openSUSE 10.3 for x86 and on Xubuntu 10.04 for Mac Mini PowerPC to
make the interpreter work in UNIX environments. The original x86 Mac Version has
been developed on an x86 Mac Mini. A lot of testing has been done on an Acer
Aspire ONE netbook running Linpus Linux/Fedora 8. The current eCS editions are
compiled on GCC 4.4.6.

After almost four years of development, Agena 1.0 has been released in August
2010.

1.5 Origins
Most of all functionality stems from Lua, Maple and C. Some of my favourite
additions to the Lua C sources include:

Maple V Release 3 and later

» if/elif/else/fi, for/while, map, remove, select, selectremove, subs, with, readlib,
package management, library.agn, agena.ini, read, save, substrings, Cantor
sets and its operators, sequences, remember tables, in, nargs, op(s). restart,

agena >>

29

tables.indices, the linalg package, maybe all the prefty printers, argument type

checks, :: type check, and multiple

v type parameter checks surely all
mathematical functions and complex arithmetic, and much, much more.

The Maple V Release 3 language has been designed by Michael B. Monagan,
Keith O. Geddes, K. M. Heal, George Labahn, and S. M. Vorkoetter for Waterloo
Maple Inc./Maplesoft, Waterloo, Ontario. Very kind thanks to WMI's support back

in the 1990s.

This is also why Agena looks a lot like Maple, and thus somewhat like:

Algol 68

has many times been called the queen of all programming languages,

e case/of/esac.

has been infroduced with Algol 68.

Algol 60
e entier.

Algol 60 is the parent of Algol 68.

Modula-2

* jnc and dec.

C

e printf, and most of Lua's system functions.

C actually is a descendent of Algol 68.

Sinclair ZX Spectrum BASIC

e clear, cls, int.

SQL and ABC

* insert/info and thus indirectly create, delete/from, and pop/from.

30 1 Agena

PL/l and REXX

 Some of the strings library functions have been taken from the symbiosis of
BASIC and Algol 60, expressed with PL/I and REXX.

Eiffel

* Checking the type of return of procedures by the proc(-+) :: <typename> is
statement sequence has been taken from this language.

Ada

* inspired the skip when and break when statements.

agena >>

31

Chapter Two

Installing & Running Agena

32

2 Installing and Running Agena

agena >> 33

2 Installing and Running Agena

2.1 Sun Solaris 10

In Sun Solaris, and some of its forks, e.g. OpenSolaris, put the gzipped Agena
package info any directory. Assuming you want to install the Sparc version,
uncompress the package by entering:

> gzip -d agena-x.y.z-sol10-sparc-local.gz
Then install it with the Solaris package manager:
> pkgadd -d agena-x.y.z-sol10-sparc-local

This installs the executable into the /usr/local/bin folder and the rest of dll files intfo
lusr/agena . The /usr/agenallib directory is called the “main Agena library folder .

Make sure you have the expat, fonfconfig, freetype, joegq., libgcce, libgd, libiconv,
libintl, libncurses, libpng, readline, xom, and zlib libraries installed. From the
command line, type agena and press RETURN.

= Terminal

Window Edit Options ﬂelp|

AGEMA »: 2,0, 020 2008-2013 http: ffagena. sourceforge, net,

e |

Image 1: Start-up message in Solaris

The procedure for OpenSolaris and Solaris for x86 CPUs is the same. The package
always installs as SMCagena

2.2 Linux
On Debian based distributions, install the deb installer by typing:

> sudo dpkg -i --force-depends agena-x.y.z-linux-i3 86.deb
On Red Hat systems, install the rom distribution by typing as rooft:
> rpm -ihv --nodeps agena-x.y.z-linux-i386.rpm

This installs the executable into the /usr/local/bin folder and the rest of dll files intfo
lusr/agena . The /usr/agenallib directory is called the “main Agena library folder .

34 2 Installing and Running Agena

Note that you must have the expat, fonfconfig, freetype, libjpegsé?2, libgee, libgd
(version 2.0.36 or earlier), libiconv, libintl, libncurses, libpng, libreadline, xom, and
Zlib libraries installed before.

From the command line, type agena and press RETURN.
The name of the Linux package is agena .

On some versions of Linux (at least Slackware and Slackware based distributions),
you may have to add

export LD_PRELOAD=/ust/lib/libncurses.so

in .lbashrc before starting Agenakdit.

2.3 Windows
Just execute the Windows installer, and choose the components you want to instaill.
Make sure you either let the installer automatically set the environment variable

called AGENAPATH containing the path fo the main Agena library folder (the
default) or set it later manually in the Windows Control Panel, via the " System ™ icon.

—IEix

Choose Components

A g enagd »» Choose which Features of Agena wou wank to install,

heck the components wou wank to install and uncheck the components wou don't wank to
inskall, Click Mext o continue,

Select the type o nstal: [ANAA
Or, select the u:-ptiu:_unal Agena Core Files (required) -
;_chusr{n;i::unents vl wWish b AgenaEdit
- [vf] Documentation
Set Environment Yariable AGEMAPATH
Append path ko Agena binary ko PATH
i Dlesk'liu:upIShu:urtcut LI
— Descripkion
Space required: 5.7MB Position yaur mouse aver & component ko see jts
descrpkion,

Iullsaft Install Svskem ve 46

< Back I Mext = I Zancel

Image 2. Leave the framed settings checked

agena >> 35

You may start Agena either via the Start Menu, or by typing agena in a shell.

=4 |NT Shell - agena =10l x|

=
Ihagena

GENA >> 2.6.8 <G> 2006-2015% http: - Aagena.sourceforge._net
>

- =

Image 3: Start-up message in Windows

Alternatively you may start Agenakdit, the Agena editor and runtime environment,
via the Start Menu, or by typing agenaedit in a shell.

If you do not have admin rights to start the installer, or want to use the interpreter on
a removable stick, download the portable version of Agena available af
Sourceforge.net and study the readme. w32 file.

For the portable version:

If you would like to use Agena on a removable drive or do not have Admin rights to
run the binary Windows installer, just install this portable release.

In a NT shell, create a folder called '‘agena’ anywhere on your drive, change into
this directory and decompress this file into this folder preserving the subdirectory
structure of the ZIP file.

(Only if you use Windows 2000 or earlier: Now set the environment variable
AGENAPATH, refering to the main Agena library “agena.lib” file. For example, if you
install Agena info the folder c:\agena, the library files will reside in the c:\agenallib
subfolder, so enter the following statement:

set AGENAPATH=c:/agena/lib
Note the forward slashes in the path and the variable name in capital letfters.
In XP and later, Agena determines the path to the main Agena library
automatically, provided you do not alter the subdirectory structure of the portable
distribution.
For all Windows versions:
Also append the path to the folder where the agena.exe binary resides to the PATH
system variable, this time using backslashes, so that the statement looks something

like this:

PATH=%path%;c:\agena\bin

36 2 Installing and Running Agena

In the NT shell, type
agena
to start Agena.

If you installed Agena on a fixed drive, you can permanently set these two values in
Windows. Start the online help of Windows, search for “environment variable™ and
set the following two values in the “current user” section as follows:

Create a new environment variable AGENAPATH and set it o c:/agena/lib (with
slashes).

Search for the already existing PATH variable and append the path c¢:\agena\bin
(with backslashes) to it putting a semicolon in front of this path to separate it from all
the other paths already existing.

2.4 eComéStation and OS/2 Warp 4

The WarpIN installer allows you 1o choose a proper directory for the interpreter, and
then installs all files into it.

Make sure you either let the installer automatically set the environment variable
called AGENAPATH containing the path to the main Agena library folder (the WarpIN
default) by leaving the "Modify CONFIG.SYS" entry in the System Configuration
window checked, or set it later by manually editing config.sys.

Just enter agena in an eCS shell to run the interpreter, or doubleclick the Agena icon
in the programme folder. Agena may require EMX runtime 0.9d fix 4 or higher in
eCS - O§/2.

2.5 DOS

In DOS, create a folder called agena anywhere on your drive, change into this
directory and decompress the agenazip file into this folder preserving the
subdirectory structure of the ZIP file.

Now set the environment variable AGENAPATHN the autoexec.bat file. Use a text
editor for this. For example, if you installed Agena into the folder c:\agena , and the
library.agn file is in the lib subfolder, enter the following line into the autoexec.bat
file:

set AGENAPATH=c:/agena/lib

Note the forward slash in the path and the variable name in capital letters.

agena >> 37

Also append the path to the agena folder to the PATH system variable using
backslashes, so that the entry looks something like this:

PATH C:\;C:\NWDOS;C:\AGENA\BIN

Although it is not necessary in FreeDOS 1.1, af least with Novell DOS 7, you must
install cwsbpPmMI.EXEdelivered with the DJPGG edition of GCC as a TSR programme
before starting Agena. The binary can be found in the DJGPP distribution.

In order to always load this TSR when booting your computer, open the
autoexec.bat file with a text editor. Assuming the cwsbPMI.EXEfile is in the c:\tools
folder, add the following line:

loadhigh c:\tools\cwsdpmi.exe -p

Novell DOS's command line history works correctly on the Agena prompt.

2.6 Mac OS X 10.5 and higher
Simply double-click the agena-x.y.z-mac.pkg installer in the file manager and follow
the instructions. Do not choose an alternative destination for the package.

The Agena executable is copied into the /usr/local/bin folder, supporting files into
lusr/agena , and the documentation to /Library/Documentation/Agena . The
lusr/agena/lib directory is called the “main Agena library folder .

Note that you may have 1o install the readline library before.

From the command line, type agena and press RETURN.

2.7 Agena Initialisation

When you start Agena, the following actions are taken:

1. The package tables for the C libraries shipped with the standard edition of
Agena (e.g. math, strings, efc.) are created so that these package procedures
become available to the user.

2. All global values are copied from the G table to ifs copy _origG, so that the
restart function can restore the original environment if invoked.

3. The system variables libname and mainliboname pointing to the main Agena
library folder and optionally to other folders is set by either querying the
environment variable AGENAPATH or - if not set - checking whether the current
working directory contains the string /agena , building the path accordingly.

The main Agena library folder contains library files with file suffix agn written
agena, or binary files with the file suffix so or dil originally written in ANSI C.

38

2 Installing and Running Agena

In UNIX, Mac OS X, Haiku and Windows, if the path could not be determined as
described before, libname and mainlibname are by default set to
lusr/agenallib in UNIX and Mac OS X, /boot/common/share/agenallib in Haiku,
and %ProgramFiles%\agenallib in Windows, if these directories exist and if the
user has at least read permissions for the respective folder. The liboname variable
is used extensively by the with and readlib functions that initialise packages. If it
could not be set, many package functions will not be available.

Searching all paths in liboname from left fo right, Agena tries fo find the standard
Agena library library.agn and if successful, loads and runs it. The library.agn
fle includes functions written agena that complement the C libraries. If the
standard Agena library could not be found, a warning message, but no error, is
issued. If there are multiple library.agn files in your path, only the first one found
is initialised.

The global Agena initialisation file - if present - called agena.ini in DOS based
systems and .agenainit in UNIX based systems including Haiku is searched by
fraversing all paths in lioname from left to right. As with library.agn , this file
contains code written agena that an administrator may customise with pre-set
variables, auxiliary procedures, etc. that shall always be available to every
Agena user. If the initialisation file does not exist, no error is issued. If there are
multiple Agena initialisation files in your liboname path, only the first one found is
processed.

The user's personal Agena initialisation file called .agenainit on UNIX-based
platforms including Haiku, and agena.ini on DOS-based platforms - if present - is
searched in the user's home folder and run. If this initialisation file does not exist,
no eror is issued. After that the Agena session begqins. See Appendix A6 for
further details.

The path to the current user's home directory is assigned to the environ.homedir
environment variable.

2.8 Installing Library Updates

Sometimes, library updates are provided at Sourceforge if library functions written in
the Agena language have been patched or also if new functions written in the
language have been developed.

For instructions on how to easily install such an update, have a look at the
libupdate.read.me file residing on the root of the agena-x.y.z-updaten.zip archive
which can be downloaded from the Binaries Agena Sourceforge folder.

In general, the updates can be installed by just unpacking the respecitve ZIP
archive into the main Agena folder.

A library update can be installed on every supported operating system, but you
may need administrative rights.

agena >>

39

40

2 Installing and Running Agena

agena >>

41

Chapter Three

Overview

42

3 Overview

agena >> 43

3 Summary

Let us start by just entering some commands that will be described later in this
manual so that you can become acquainted with Agena as fast as possible. In this
chapter, you will also learn about some of the basic data types available.

On UNIX-based systems, Haiku, or DOS, type agena in a shell to start the interpreter.
On eComéStation - OS/2 and Windows, either click the Agena icon in the
programme folder or type agena in a shell.

Alternatively, in Solaris, Linux, and Windows, you may start Agenakdit, the Agena
editor and runtime environment, by typing agenaedit in a shell or via the
Programme Manager (Windows only).

3.1 Input Conventions in the Console Edition

Any valid Agena code can be enfered at the console with or without a frailing
colon or semicolon:

e |f an expression is finished with a colon, it is evaluated and its value is printed at
the console.

* |f the expression ends with a semicolon or neither with a colon nor a semicolon,
it is evaluated, but nothing is printed on screen.

You may opftionally insert one or more white spaces between operands in your
statements.

3.2 Input Conventions in Agenakdit

The Intel Solaris, Linux, Windows, and Mac distributions contain an editor providing
syntax-highlighting and the facility to run the code you edited.

Any valid Agena code can be entered in the editor with or without a frailing
semicolon.

The output of an Agena programme typed into the editor is displayed in a second
window:

e Hit the F5 key to compute all statements you entered.

* Consecutive statements can be executed by selecting them and hitting the Fé6
key.

e To display results in the output window, pass the respective expression to the
print function, e.g.:

print(exp(2*Pi*)) Or a := 1, print(a);

44 3 Overview

'l y

| Agenadit - Untitled (modified) = B X

File Edit Search Run Help

f = w2 x > exp(=in{x)) >>;

for x from -2 to 2 by 0.25 do

print{x, f(=x))
B (1) AGENA > > 0.34.0 (Done) =3 | =
-2 0.40280712612353
i 0.37381810622153
=Y.5 0.368B0213330276
+¥:25 0.38713391223618
=1 0.43107595064558
0. 7% 0.505787T4485886
-0.5 0.615813896108773
-0.25 0.78082520824503
0 1
0.25 1.2806963574442
0.5 1.6151462964421
P 1.8771150960557
1 2.3197768247159
1.25 2.5830855122552
1.5 2.7114810176B22
Y15 2.6750978172454
2 2.482577728015
L —_—

You may optionally insert one or more white spaces between operands in your
statements.

3.3 Getting Familiar

From this point on, this manual will deal with the console (and not Agenakdit) edition
only.

Assume you would like Agena to add the numbers 1 and 2 and show the result.
Then type:

> print(1+2)
3

If you want to store a value to a variable, type:
>c:=25;

Now the value 25 is stored to the name ¢, and you can refer to this number by the
name c in subbsequent calculations.

Assume that ¢ is 25° Celsius. If you want to convert it to Fahrenheit, enter:

> print(1.8*c + 32);
77

There are many functions available in the kemel and various libraries. To compute
the inverse sine, use the arcsin operator:

agena >> 45

> print(arcsin(1));
1.5707963267949

The root function determines the n-th root of a value:
> print(root(2, 3));
1.2599210498949

3.4 Useful Statements

Instead of using print, you may also output results by entering an expression and
completing it with a colon:

> root(2, 3):
1.2599210498949

The global variable ans always holds the result of the last statement you completed
with a colon.

> In(2*Pi):
1.8378770664093

> ans:
1.8378770664093

The console screen can be cleared in the Solaris, Windows, UNIX, Mac OS X, Haiku,
eComStation - OS/2, and DOS versions by just entering the keyword cls':

> cls

The restart statement? resets Agena to its initial state, i.e. clears all variables you
defined in a session.

> restart
The bye statement quits a session - but you could also press CTRL+C.
> bye

If you would like to automatically run a procedure before restarting or quitting
Agenaq, just assign this procedure to the name environ.onexit. See the description of
the bye statement in Chapter 7.1 for more deftails.

If you prefer another Agena prompt instead of the predefined one, assign:

> PROMPT :='Agena$’
Agena$ _

! The statement is not supported by AgenaEdit.
2
dito.

46 3 Overview

You may put this statement into the initialisation file in the Agena lib or your home
folder, if you do not want to change the prompt manually every time you start
Agena. See Appendix A6 for further detail.

Agenas$ restart;

Let us have a closer look af the functionality and data types available in Agena:

3.5 Assignment and Unassignment

As we have already seen, to assign a number, say 1, to a variable called q, type:

>a.=1,;

Variables can be deleted by assigning null or using the clear statement. The latter
also performs a garbage collection.

>a = null:
null

> clear a;

> a:
null

3.6 Arithmetic

Agena supports both real and complex arithmetic with the + (addition), -
(subtraction), * (multiplication), / (division) and ~ (exponentiation) operators:

> 1+2:
3

Complex numbers can be input using the | constant or the | operator:

> exp(1+2*):
-1.1312043837568+2.4717266720048*|

> exp(1'2):
-1.1312043837568+2.4717266720048*|

3.7 Strings
A text can be put between single or double quotes:

> str ;= 'a string’":
a string

Substrings are extracted by passing their indexes:

> str[3 to 6]:
stri

agena >> 47

Concatenation, search, and replace operations:

> str ;= str & ' and another one, too0":
a string and another one, too

> instr(str, 'another’):
14

> replace(str, ‘and’, '&'):
a string & another one, too

There are various other string operators and functions available.

3.8 Booleans

Agena features the true, false, and fail o represent Boolean values. fail may be
used to indicate a failed computation. The operators <, >, =, <>, <=, and >=
compare values and retumn either true or false. The operators and, or, not, nand,
nor, and xor combine Boolean values.

>1<2:
true

> true or false:
true

3.9 Tables

Tables are used to represent more complex data structures. Tables consist of zero,
one or more key-value pairs: the key referencing to the position of the value in the
table, and the value the data itself.

>thl:=[

> 1~[a,7.71],

> 2~[b', 7.70]

> 3~[c, 7.59]

>1];

To get the subtable [a, 7.71] indexed with key 1, and the second value 7.71 in

this first subtable, input:

> thi[1]:
[a, 7.71]

> thi[1, 2]:
7.71

The insert statement adds further values into a table.

> insert ['d’, 8.01] into tbl

> thl:
[[a, 7.71], [b, 7.7], [c, 7.59], [d, 8.01]]

Alternatively, values may be added by using the indexing method:

48 3 Overview

> tbl[5] :=['e', 8.04];

> tbl:
[[a, 7.71], [b, 7.7], [c, 7.59], [d, 8.01], [e, 8.0 A

Of course, values can be replaced:

> tbl[3] :=['2', -5];

> thl:
[[a, 7.71], [b, 7.7], [z, -5], [d, 8.01], [e, 8.04]]

Another form of a table is the dictionary, which indices can be any kind of data -
not only positive integers. Key-value pairs are entered with tildes.

> dic:= ['donald’ ~ 'duck’, 'mickey' ~ 'mouseT;

> dic['donald:
duck

3.10 Sets

Sets are collections of unique items: numbers, strings, and any other data except
null. Any item is stored only once and in random order.

> s ;= {'"donald’, 'mickey’, 'donald'}:
{donald, mickey}

If you want 1o check whether 'donald' is part of the set s, just index it or use the in
operator;

> s['donald']:
true

> s['daisy']:
false

> 'donald' in s:
true

The insert statement adds new values to a set, the delete statement deletes them.

> insert 'daisy’ into s;
> delete 'donald' from s;

>s:
{daisy, mickey}

Three operators exist to conduct Cantor set operations: minus, intersect, and union.

agena >> 49

3.11 Sequences

Sequences can hold any number of items except null. All elements are indexed
with infegers starting with number 1. Compared to tables, sequences are twice as
fast when adding values to them. The insert, delete, indexing, and assignment
statements as well as the operators described above can be applied to
sequences, 100.

> s :=seq(l, 1, 'donald', true):
seq(1, 1, donald, true)

> s[2]:
1

> s[4] :={1, 2, 2};
> insert[1, 2, 2] into s;

>s:
seq(1, 1, donald, {1, 2}, [1, 2, 2])

3.12 Pairs

Pairs hold exactly two values of any type (including null and other pairs). Values can
be retrieved by indexing them or using the left and right operators. Values may be
exchanged by using assignments to indexed names.

>p:=10:11;

> left(p), right(p), p[1], p[2]:
10 11 10 11

> p[1] :=-10;

3.13 Conditions

Conditions can be checked with the if statement. The elif and else clauses are
optional. The closing fi is obligatfory.

> if 1 <2 then

> print(valid)

> elif 1 = 2 then

> print(invalid’)

> else

> print(invalid, too")
> fi;

valid

The case statement facilitates comparing values and executing corresponding
statements.

There are two flavours: The first checks an expression for certain values.

> c :='agena’;

50 3 Overview

> case C
of 'agena’ then
print('Agena!’)
of 'lua’ then
print(‘Lual!’)
else
> print('Another programming language !")
> esac;
Agena!

VVVVYV

The second one works exactly like the if statement but may improve readability of
programme code.

>vi.=1;

> case

> of v >0 then print(1)
> of v =0 then print(0)
> else print(-1)

> esac;

1

3.14 Loops

A for loop iterates over one or more statements. It begins with an initial numeric
value (from clause), and proceeds up to and including a given numeric value (to
clause). The step size can also be given (step clause). The od keyword indicates the
end of the loop body.

The fromn and step clauses are optional. If the from clause is omitted, the loop starts
with the initial value 1. If the step clause is omitted, the step size is 1.

The current iteration value is stored to a control variable (i in this example) which
can be used in the loop body.

> forifrom1to3by1do
> print(i, i*2, i"3)

> od;

1 1 1
2 4 8
3 9 27

A while loop first checks a condition and if this condition is frue or any other value
except false, fail, or null, it iterates the loop body again and again as long as the
condition remains frue. The following statfements calculate the largest Fibonacci
numiber less than 1000.

>a:=0;b:=1;

> while b < 1000 do

> c:=b;b:=a+b;a:=c
> od;

> print(c);
987

agena >> 51

A variation of while is the do/as loop which checks a condition at the end of the
iteration. Thus the loop body will always be executed at least once.

>c:=0;

>do
> incc
>as c<10;

> print(c);
10

All flavours of for loops can be combined with a while condition. As long as the
while condition is satisfied, i.e. is true, the for loop iterates.

> for x to 10 while In(x) <= 1 do
> print(x, In(x))

> od;

10

2 0.69314718055995

The skip statement causes another iteration of the loop to begin at once, thus
skipping all of the following loop statements after the skip keyword for the current
iteration.

The break statement quits the execution of the loop entirely and proceeds with the
next statement right after the end of the loop. Thus the above loop could also be
written as:

> for x to 10 do

> if In(x) > 1 then break fi;
> print(x, In(x))

> od;

10

2 0.69314718055995

which of course is equivalent 1o

> for x to 10 while In(x) <= 1 do
> print(x, In(x))

>od

1 0

2 0.69314718055995

for loops can also be combined with a closing as or until condition. In this case, the
loop body is always executed at least once. The loop is iterated as long as the as
condition remains true, or the until condition evaluates to false.

> for x to 10 do

> print(x, In(x))
>asin(x) <=1

1 0

2 0.69314718055995
3 1.0986122886681

> for x to 10 do

52 3 Overview

> print(x, In(x))

> until In(x) > 1

1 0

2 0.69314718055995
3 1.0986122886681

3.15 Procedures
Procedures cluster a sequence of statements into abstract units which then can be

repeatedly invoked.

Local variables are accessible 1o its procedure only and can be declared with the
local statement.

The return statement passes the result of a computation.

> fact := proc(n) is

> |ocal result;

> result:=1;

> forifrom 1tondo
> result ;= result * i
> od;

> return result

> end;

> print(fact(10));
3628800

A procedure can call itself.

If your procedure consists of exactly one expression, then you may use an abridged
syntax if the procedure does not include statements such as if, for, insert, etc.

> deg = << (x) ->x * 180/ Pi >>;

To compute the value of the function at 7, just input:

> print(deg(Pi/4));
45

A function with two arguments:

>sum:=<< (X, y)->X+y>>;

> print(sum(, 2));
3

3.16 Comments
You should always document the code you have written so that you and others will
understand its meaning if reviewed later.

A single line comment starts with a single hash. Agena ignores all characters
following the hash up to the end of the current line.

agena >> 53

> # this is a single-line comment

> a = 1; # a contains a number

A multi-line comment, also called the ‘long comment” is started with the token
sequence #/ and ends with the closing /# token sequence®.

> #/ this is a long comment,
> split over two lines /#

Alternatively, C comments are supported:

> [* this is a one-line comment */

> [* this is a long comment,
> split over two lines */

3.17 Wiiting, Saving, and Running Programmes

While short statements can be entered directly at the Agena prompt, it is quite
useful to write larger programmes in a text editor (or with Agenakdit that is shipped
with the interpreter) and save them to a text file so that they can be reused in future
sessions.

Note that Agena comes with language scheme files for some common text editors.
Look into the schemes subdirectory of your Agena installation.

Let us assume that a programme has been saved to a file called myprog.agn in the
directory /home/alex in UNIX, Or c:\Users\alex in Windows. Then you can execute it
at the Agena prompt by typing:

> run 'home/alex/myprog.agn’

in UNIX or

> run 'c:/users/alex/myprog.agn’
in Windows. Note the forward slashes used in Agena for Windows.

If you both want to start an Agena session and also run a programme from a shell,
then enter:

$ agena -i /home/alex/myprog.agn
in UNIX or

C:\>agena -i c:\users\alex\myprog.agn

¥ Multi-line comments cannot begin in the very first line of a programme file. Use a single comment,
i.e. #, instead.

54 3 Overview

in Windows. See Appendix A4 for further switches.

3.18 Using Packages
Many functions are included in packages, also called libraries, which must af first
be initialised so that the package functions can e used.

For example, all statistics functions are included in the stats package which can be
invoked with the import statement:

> import stats;

> stats.amean([1, 2, 3, 4]):

All packages 1o be initially initialised in such a way are marked in Chapter 7.

Shortcuts to the package functions can be defined by passing the alias option to
the import statement.

>amean([1, 2, 3, 4]):
Error in stdin, at line 1:
attempt to call global "amean” (a null value)

> import stats alias
Warning: iqr, sorted have been reassigned.

> amean([1, 2, 3, 4]):
2.5

If you want to define shortcuts to certain package functions, pass their names right
after the alias option. You may specify one or more function names:

> import stats alias amean, smm;

You may also have a look at the readlib and initialise functions described in
Chapter 7.1.

agena >>

55

Chapter Four

Data & Operations

56

4 Data

agena >> 57

4 Data & Operations

Agena features a set of data types and operations on them that are suited for both
general and specialised needs. While providing all the general types inherited from
Lua - numbers, strings, booleans, nulls, tables, and procedures - it also has four
additional data types that allow very fast operations: sets, sequences, pairs, and
complex numbers.

Type Description
number any integral or rational numiber, plus undefined and infinity
string any ftext
boolean booleans (e.g. frue, false, and fail)
null a value representing the absence of a value
table a multipurpose structure storing numbers, strings, booleans,
tables, and any other data type
procedure a predefined collection of one or more Agena statements
the classical Cantor set storing numbers, strings, booleans, and
set :
all other data types available
a vector storing numbers, strings, booleans, and all other data
seguence : :
types except null in sequential order
. a fixed-size vector storing any value including null and featuring
reqister Y . .
a top position pointer to prevent access 1o elements above it
pair a pair of two values of any type
a complex number consisting of a real and an imaginary
complex
numiber
part of systern memory containing user-defined data; userdata
userdata objects can only be created by modifying the ANSI C sources of
the interpreter
. a value representing a C pointer; available only if you modify the
lightuserdata ANSI C sources of the interpreter
thread a non-preemptive multithread object (a coroutine)

Table 1: Available types

Tables, sets, sequences, reqisters, and pairs are also called sfructures in this
manual.

You can determine the type of a value with the type operator which returns a string:

> type(0):
number

> type(‘a text"):
string

There is also a structure derived from both tables and sets: bags, see Chapter 7.8;
also linked lists have been implemented using tables, see Chapter 7.7.

58 4 Data

4.1 Names, Keywords, and Tokens

In Chapter 3, we have already assigned data - such as numbers and procedures -
to names, also called “variables . These names refer to the respective values and
can be used conveniently as a reference to the actual data.

A name always begins with an upper-case or lower-case lefter or an underscore,
followed by one or more upper-case or lower-case letters, underscores or numbers
in any order.

Since Agena is a dynamically typed language, no declarations of variable names
are needed.

Valid names Invalid names
var lvar

_var 1
varl
_varln

1
ValueOne

valueTwo

Table 2: Examples for valid and invalid names

The following keywords are reserved and cannot be used as names:

abs alias and antilo2 antilog10 arccos arcsec ar csin arctan as assigned
atendof bea bottom break by bye case catch char cis clear cls conjugate
copy cos cosh cosxx create dec delete dict div d o downto duplicate elif
else end entier enum esac even exchange exp fail false feature fi filled
first finite flip for from global if imag import in inc infinity inrange
insert int intdiv intersect into is join keys la st left In Ingamma local
lower minus mod mul nan nand nargs nor not numer ic od odd of onsuccess
or pop proc gmdev gsadd real redo reg relaunch r eminisce replace restart
return right rotate sadd seq sign signum sin sin ¢ sinh size skip smul
split sqrt subset tan tanh then to top trim true try type typeof
unassigned undefined union unique until upper va lues when while with

Xnor xor xsubset yrt

boolean complex lightuserdata null number pair r egister procedure
sequence set string table thread userdata

The following symbols denote other tokens:

+-FE R0 /% +% -\ & && ||~~~ % "M # =<><=>=<>===~=
~<> KL >>> < >>>> () {}H[] ->@ @@s$,..?2 ++-
I\ |

agena >> 59

4.2 Assignment

Values can be assigned to names in the following fashions:

name = value
name;, hame,, --- , hamey .= value,, value,, --- , valuey
name, hame,, --- , namey -> value

In the first form, one value is stored in one variable, whereas in the second form,
called "multiple assignment statement™, name; is set to value;, name; is assigned
value,, etc. In the third form, called the “short-cut multiple assignment statement”,
a single value is set to each name to the left of the -> token.

First steps:
>a:=1;

> a.

1

An assignment statement can be finished with a colon to both conduct the
assignment and print the right-hand side value at the console.

>a:=1:
1

> a = exp(a):
2.718281828459

Multiple assignments:

>a,bi=1,2

If the left-hand side contains more names than the number of values on the
right-hand side, then the excess names are set fo null.

>c,d=1

>c:
1

>d:
null

60 4 Data

If the right-hand side of a multiple assignment contains extra values, they are simply
ignored.

The multiple assignment statement can also be used to swap or shiff values in
names without using temporary variables.

>a,b:i=1,2;
>a,b:=b, a
2 1

A short-cut multiple assignment statement:

> X, y -> exp(l)r

> X
2.718281828459

>y
2.718281828459

4.3 Enumeration

Enumeration with step size 1 is supported with the enum statement:

enum name; [, namey,--- |
enum name; [, name,, --- | from value

In the first form, name,;, name,, etc. are enumerated staring with the numeric
value 1.

> enum ONE, TWO;

> ONE:
1

> TWO:

2

In the second form, enumeration starts with the numeric value passed right after the
from keyword.

> enum THREE, FOUR from 3

> THREE:
3

> FOUR:
4

agena >> 61

4.4 Deletion and the null Constant

You may delete the contenfs of one or more variables with one of the following
methods: Either use the clear command:

clear name; [, name,, --- , namex]

>a.=1,;
> clear a;
>a:

null

which also performs a garbage collection useful if large structures shall be removed
frorn memory, or set the variable to be deleted to null:

>b:=1;

> b= null:
null

The null value represents the absence of a value. All names that are unassigned
evaluate to null. Assigning names to null quickly clears their values, but does not
garbage collect them.

The null constant has its own type: 'null'.

> type(null):
null

If you want to test whether a value is of type 'null, contrary to all other types, you
have to put the type name in brackets:

> type(null) = 'null”;
true

In all cases - whether using the clear statement or assigning fo null - the memory
freed is not given back to the operating system but can be used by Agena for
values yet to be created.

There are two operators that quickly check whether a value is assigned or not:
assigned and unassigned.

> assigned(v):
false

> unassigned(v):
true

62 4 Data

4.5 Precedence

Operator precedence in Agena follows the table below, from lower to higher
priority:

Oor Xor nor xnor

and nand

<><=>= === ~= ~<> <> |

in subset xsubset union minus intersect atendof
&:@%

+ - || ™M split

* [0\ && *% /% +% -%% <<< >>> <<<< >>>>
not - (Unary minus) ++ --

N k%

I and all self-defined binary operators and unary operators including ~~

As usual, you can use parentheses to change the precedence of an expression.
The concatenation (&), exponentiation (», *+), pair (:), Mmapping (@, and selction ($)
operators are right associative, e.g. x~y~z = x™(y” z). All other binary operators
are left associative.

> 14344
13

> (1+3)*4:
16

4.6 Arithmetic

4.6.1 Numbers

In the ‘real” domain, Agena internally only knows floating point numbers which can
represent integral or rational numeric values. All numbers are of type number.

An integral value consists of one or more numbers, with an optional sign in front of .

e 1

. 20
. 0
. +4

A rational value consists of one or more numbers, an obligatory decimal point at
any position and an optional sign in front of it:

e -1.12
0.1
e .1

Negative integral or rafional values must always be entered with a minus sign, but
positive numbers do not need to have a plus sign.

agena >> 63

You may optionally include one or more single quotes or underscores within a
number fo group digits:

> 10'000'000:
10000000

You can alternatively enter numbers in scientific notatfion using the e symbol.

> le4.
10000

> -le-4:
-0.0001

If a number ends in the letter K, M, G, T, or D, then the number is multiplied by 1,024,
1,048,576 (= 1,024%), 1,073,741,824 (= 1,024%, 1,099,511,627,776 (= 1,024%, or
12, respectively. If a number ends in the lefter k, m g, or t, then the number is
multiplied by 1,000, 1,000,000, 1,000,000,000, 1,000,000,000,000 or respectively.

> 2k:
2000

> 1M:
1048576

> 12D:
144

Besides decimal numbers, Agena supports binary, octal, and hexadecimal
numibers. They are represented by the first two lefters ob or 0B, 0o Or 00, 0x Or 0X,
respectively:

System Syntax Examples
; Ob<binary number> or _ i
binary OB<binary number> 0b10 = decimal 2
Oo<octal number> or _ ;
octal 00<octal numbers 0b10 = decimal 9@
hexadecimal | Jx<hexadecimal number> —OF | o, — gecimal 10

0X<hexadecimal number>

If you use only real numbers in your programmes, then Agena will calculate only in
the real domain. If you use at least one complex value (see Chapter 4.6.5), then
Agena will calculate in the complex domain.

Since Agena internally stores numlbers in double or complex double precision, you
will sometimes encounter round-off errors. For example, some values such as /2 or
% cannot be accurately represented on a machine.

The mapm package can be used in such situations because it provides arbitrary
precision arithmetic. See Chapter 7.10 for more information.

64 4 Data

Agena knows two representation for zero: 0 and -0, where -0 means something like
zero but “approached from™ —co. In relations, 0 and -0 are always the same, e.g. 0
= -0 = frue, and 0 < -0 = false. In arithmetic, for example -1 * -0 = -0. To test for
-0, use math.isminuszero .

4.6.2 Arithmetic Operations

Agena has the following arithmetical operators:

Operator | Operation Details / Example
+ Addition 1+2»3
- Subtraction 3-2»1
* Multiplication 2%*3»6
/ Division 4122
N Exponentiation with rational power 2"3»8
** Exponentiation with integer power 2**3»8
% Modulus 5%2»1
\ Integer division 5\2»2
% Percents, percentage 100% 2»2
[% Percents, ratio 100 /% 2 »5k
+% Percents, add-on (premium) 100 +% 2» 102
-% Percents, discount 100-% 2»98

Table 3. Arithmetic operators

The modulus operator is defined as a % b = a - entier(a/b)*b, the integer division as
a\ b = sign(a) * sign(b) * entier(abs(a/b)).

Agena has a lot of mathematical functions both built info the kemel and also
available in the math, stats, linalg, and calc lioraries. Table 4 shows some of the
mMost common.

The mathematical procedures that reside in packages must always be entered by
passing the name of the package followed by a dot and the name of the
procedure. Use the import statement to activate the package before using these
functions, e.qQ. to initialise the statistics package called stafts, type:

> import stats;

Unary operators® like In, exp, efc. can be entered with or without simple brackets.

Procedure Operation Library | Example and result
sin(x) Sine (x in radians) Kernel |sin(0) »0

COs(x) Cosine (x in radians) Kermel |cos(0) »1

tan(x) Tangent (x in radians) Kernel | tan(l) » 1.557407..
arcsin(x) Inverse sine (x in radians) | Kernel | arcsin(0) »0
arccos(x) Arc cosine (x in radians) Kernel | arccos(0) » 1.570796..

4 See Appendix Al for a list of all unary operators.

agena >> 65
Procedure Operation Library | Example and result
arctan(x) Arc tangent (x in radians) | Kemel | arctan(Pi) » 1.262627..
sinn(x) Hyperbolic sine Kermel |sinh(0) »0
cosh(x) Hyperbolic cosine Kernel | cosh(0) »1
tanh(x) Hyperbolic tangent Kermel |tanh(0) »0
abs(x) Absolute value of x Kemel |abs(-1) »1
entier(x Rounds x downwards to Kernel ent?er(2.9) » 2

the nearest integer entier(-2.9) » -3
even(x) Checks whether x is even | Kermnel | even(2) » true
exp(x) Exponentiation € Kemel |exp(0) »1
Ingamma(x) InT"X Kemel | exp(ingamma(3+1)) » 6
int(x Rounds x to the nearest Kemel int(2.9) » 2

infeger towards zero int(-2.9) » -2
In(X) Natural logarithm Kemel |[In(1) »0
log(x, b) Logartihm ofxfo he Kemel |log82) »3

Rounds the real value x 1o roundf(
foundflx, d) | o G-th digit Base | sqr2), 2) » 1.41
sign(x) Sign of x Kemel | sign(-1) »-1
sart(x) Square root of x Kemel |sart(2) » 1.414213..
sadd([---]) Sum Kermel | sadd([1, 2, 3]) » 6
mean([---] Arithmetic mean stats stats.mean([1, 2, 3]) » 2
medion([--] | Median siats | “ha sy w25

Table 4. Common mathematical functions

In addition, Agena can conduct bitwise operations on numbers.

Operator | Operation Details / Example
&& Bitwise “and” operation 78&8&2»2
| | Bitwise “or” operation 1112»3
A Bitwise " exclusive-or' operation 7™M2»5
~~ Bitwise complementary operation | ~~7» -8
If the right-hand side is positive,
the bits are shiffed to the left
(multiplication with 2), else they
. o , are shifted to the right (division
shift Bifwise shiff by 2). Likewise, << < conducts
a left-shift, >>> a right-shift.
<<<< and >>>> rotate bits
left- and rightwards.
getbit(s) | retumns stored bif(s) getbit(3, 1)
setbit(s) sets bit(s) setbit(3, 1)

Table 5: Bitwise operators and functions

By default, the operators internally calculate with signed integers. You can change
this behaviour to unsigned infegers by using the environ.kerel function:

66 4 Data

> environ.kernel(signedbits = false);

The default is restored as follows:

> environ.kernel(signedbits = true);

4.6.3 Increment, Decrement, Multiplication, Division

Instead of incrementing or decrementing a value, say

>a:=1;

by entering a statement like

>a=za+1:
2

you can use the inc and dec commands® which are also around 10% faster:

inc name [, value]
dec name [, value]

If value is omitted, name is increased or decreased by 1.

>inc a;

Likewise, the mul and div statements multiply or divide their argument by a scalar,
mod takes the modulus, and intdiv conducts an intfeger division, their defaults also
being 1.

® Finishing an inc or dec statement with a colon instead of a semicolon is refusec.

agena >> 67

4.6.4 Mathematical Constants
Agena features arithmetic constants mentioned in Appendix A9.

Al mathematical functions return the constant undefined instead of issuing an error
if they are not defined at a given point:

> In(0):
undefined

With values of type number, the finite function can determine whether a value is
neither +infinity nor undefined.

> finite(fact(1000)), finite(sqrt(-1)):
false false

The float function checks whether a value is a float and not an integer.

> float(1):
false

> float(1.1):
true

4.6.5 Complex Math

Complex numbers can be defined in two ways: by using the ! constructor or the
imaginary unit represented by the capital letter 1. Most of Agena's mathematical
operators and functions know how to handle complex numbers and will always
return a result that is in the complex domain. Complex values are of type complex.

>a:.=11;
> b = 243%;

> a+b:
3+4%

> a*b:
-1+5%|

The following operators work on rational numbers as well as complex values: +, -, *,
/[, ™, *,= <> abs, arccos , arcsec , arcsin , arctan , conjugate , cos, cosh, entier ,
exp, flip , Ingamma, In , log , sign, sin , sinh , sgrt , tan , tanh , And unary minus. With
these operators, you can also mix numbers and complex numbers in expressions.
You will find that most mathematical functions are also applicable 1o complex
values.

> ¢ := In(-1+I) + In(0.5):
-0.34657359027997+2.3561944901923*|

The real and imaginary parts of a complex value can be extracted with the real
and imag operators.

68 4 Data

> real(c), imag(c):
-0.34657359027997 2.3561944901923

Three further functions may also be of interest: abs returns the absolute value of a
complex number, argument returns its phase angle in radians, and conjugate
computes the complex conjugate.

Note that the | operator has the same precedence as unary operators like -, sin ,
cos, etc. This means that -112 = -1+2* , but also that sin 112 = (sin 1)I12 . It is
advised that you use brackets when applying unary operators on complex values.

The setting environ.kernel(zeroedcomplex = true) makes Agena print complex
values that are close to zero as just 0 in the output region of the console. Internally,
however, complex values are not rounded by this or any other sefting.

4.6.6 Comparing Values

Relational operators can compare both numeric and complex values. Whereas all
relational operators work on numbers, complex numibers can only be compared for
equality or inequality.

Operator | Description Complex values supported
< less than no
> greater than no
<= less than or equals no
>= greater than or equals no
= equals yes
<> not equals yes
in in range no

>1<2:

true

>1=1:

true

>1<>1:

false

The result true indicates that a comparison is valid, and false indicates that it is
invalid. See Chapter 4.8 for more information.

Most computer architectures cannot accurately store numiboer values unless they
can be expressed as halves, quarters, eighths, and so on. For example, 0.5 is
represented accurately, but 0.1 or 0.2 are not.

Since Agena is not a computer algebra system, you will sometimes encounter
round-off errors in computations with numibers and complex numbers:

>0.2+0.2+0.2=0.6:
false

agena >>

69

In such cases, the ~= operator or the qpprox function might be of some help

since it compares values approximately.

>0.2+0.2+0.2~=0.6:
true

>0.2!0.2 + 0.2!0.2 + 0.2!0.2 = 0.6!0.6:

false

> approx(0.210.2 + 0.210.2 + 0.210.2, 0.6!0.6):
true

To determine whether a number is part of a closed interval, use the in operator:

>2in0:10:
true

You can use the ++ and -- operators to define open borders:
>1in 1++:10--:

false

4.7 Strings

4.7.1 Representation
Any text can be represented by including it in single or double quotes:

> 'This is a string":
This is a string

Of course, strings - like numbers - can be assigned to variables.

> str :="l am a string.";
> str:
| am a string.

Strings - regardless whether included in single or double gquotes - are all of type

string.,

> type(str):
string

and can be of amost unlimited length. Strings can be concatenated, characters
or sequences of characters can be replaced by other ones, and there are various

ofher functions to work on strings.

Multiline-strings can be entered by just pressing the RETURN key at the end of each

line:

70 4 Data

> str:="Two
lines’;

which prints as

> str:
Two
lines

A string may contain no text at all - called an emplty string -, represented by two
consecutive single quotes with no spaces or characters between them:

>

4.7.2 Substrings

You may obtain a specific character by passing its position in square brackets right
behind the string name. If you use a negative index n, then the |n|-th character
from the right end of the string is refurned.

> str :='l am a string.";

> str[1];
I

In general, parts of a string consisting of one or more consecutive characters can
e obtained as with the notation:

string[start [10 end] |

You must at least pass the start position of the substring. If only sfart is given then the
single character at position start is returned. If end is given too, then the substring
starting af position sfart up to and including position end is returned.

> str := 'string’

> str[3]:
r

> str[3 to 5]:
rin

> str[3 to 3]:
r

You may also pass negative values for starf and/or end. In these cases, the
positions are determined with respect to the right end of the string.

> str[3 to -1]:
ring

agena >> 71

> str[3 to -2]:
rin

> str[-3 to -2]:
in

> str[-3]:
[

4.7.3 Escape Sequences
In Agena, a text can include any escape sequences® known from ANSI C, e.g.:
* \n :inserts a new line,

* \t :inserts a tabulator
* \b : puts the cursor one position to the left but does not delete any characters.

> 'l am a string.\nMe too.";
| am a string.
Me too.

> 'These are numbers: 1\t2\t3":
These are numbers: 1 2 3

> 'Example with backspaces:\b but without the colon
Example with backspaces but without the colon.

If you want to put a single or double quote into a string, put a backslash right in front
of it:

>'A quote: \'":
A quote: '

> "A quote: \"";
A quote: "

However, if a string is delimited by single quotes and you want to include a double
quote (or vice versq), a backslash is not obligatory, e.g. "agena™ is a valid string.

Likewise, a backslash is inserted by typing it twice.

4.7.4 Concatenation

Two or more strings can be concatenated with the & operator:

> 'First string, ' & 'second string, ' & 'third str ing":
First string, second string, third string

Numbers (but not complex ones) are supported, as well, so you do not need to
convert them with the tostring function before applying &:

% See also Appendix A7.

72 4 Data

> 1 & 'duck":
1 duck

4.7.5 More on Strings

Instead of putting single or double quotes around a text, you may also use a back
quote in front of the text, but not af its end. The string then automatically ends with
one of the following tokens’:

<space>",~[]{}();:#'=2&% $8§\! A@<>|\r\int

This also allows UNIX-style filenames to be entered using this shor-cut method.

> “text:
text

> */proglang/agena/lib/library.agn:
/proglang/agena/lib llibrary.agn

If you want o include double quotes in a string that is delimited by single quotes,
backslashes may be omitted:

> "Willy wahlen":
"Willy wahlen”

And vice versa:
> "Willy wahlen™:

'Willy wahlen'

4.7.6 String Operators and Functions
Agena has basic operators useful for text processing:
Operator Return Function

Checks whether a substring s is included in
sting 1. If true, the position of the first

sint number or nul occurrence of s in t is returned; otherwise null
is returned.
Checks whether a string t ends in a substring s.
s atendof t number or null | If frue, the position of the position of s in tis

returned; otherwise null is returned.

Replaces all patterns p in string s with substring
r. If pis not in s, then s is retfurned unchanged.
p might also be the position (a positive
intfeger) of the character to be replaced.

Splits a string into its words with d as the
delimiting character(s). The items are returned
as a seguence of strings.

replace(s, p. r) | string

sequence of

s split d strings

7 For the current settings of your Agena version see the bottom of the agnconfh file in the src
directory of the distribution.

agena >> 73
Operator Return Function
size(s) nuMber Rgtums The length of string s. If s is the empty
string, O is returned.
abos(s) number Eetums the numeric ASCII code of character
, Retuns the character corresponding to the
char(n) sting given numeric ASCIl code n.
lower(s) string Converts a sTr!ng fo Iowerpose. Western
European diacritics are recognised.
. Converts a string to uppercase. Westemn
Upper(s) sting European diacritics are recognised.
tonumber(s) number or Converts a sfring info a number or complex
complex value | number.
Converts a number to one string. If a complex
tostring(n) string value is passed, the real and imaginary parts
are returned separately as two strings.
tim(s) string Deletes leading and trailing spaces as well as
excess embedded spaces.

Some examples:

> str ;= 'a string’;

Table 7: String operators

The character s is at the third position:

>'s'in str:
3

Let us split a string into its components that are separated by white spaces:

> strosplit' "
seq(a, string)

str is eight characters long:

> size(str):
8

The ASCII code of the first character in str , a, is:

> abs(str[1]):
97

franslated back to

> char(ans):
a

74

4 Data

Put all characters in str 10 uppercase:

> upper(str):
A STRING

And now the reverse:

> lower(ans):
a string

The following functions can e used to find and replace characters in a string:

Function Functionality Example
Returns the first position of a substring (left | 't in 'string’ » 2
in operand) in a string (right operand); if the
substring cannoft e found, it returns null.
Looks for the first match of a pattemn i”?;r(ena,
(second argument) in a sting (first -[a%]g-,'
argument). If it finds a match, then instr| 1)»1
returns its position; otherwise, it returns null.
An optional numerical argument specifies
where to start the search. The function
supports paffern matching, almost similar
fo regular expressions. The operator is
more than twice as fast as strings.find. If
true is given as a fourth argument, patftern
instr matching is switched off to speed up the
search.
If the option 'reverse' is given, then starting | instr(‘agena’, ‘a’,
from the right end and always running to | Teverse)»5
its left beginning, the operator looks for the
first match of the substring and returns the
position where the pattern starts with
respect to its left beginning. When
searching from right to left, pattem
mathing is not supported.
Checks whether a stiing (right operand) 'i”,?;r‘]tiﬁgfmf
ends in a substring (left operand). If true, | ,, 5
atendof b , . .
the position is returned; otherwise null is
returned.
Retums the first match of a substring St,r"gg_s-f,i”fg(,
(second argument) in a sting (first |, ; réng’ ")
argument) and returns the positions where |
the pattem starts and ends. An optional St.”sr:rgirf'f.'”.?ﬁ
strings.find third argument specifies the position | 3) 9.
where to start the search. If it does not find | » null

a pattern, the function returns null.

strings.find(
'string’, 't.")
»2,3

agena >> 75

Function Functionality Example
The function supports paftern matching
facilities described in Chapter 7.2.3.

See also: strings.mfind. which retumns all
occurrences.

replace(str,
In a string (first argument) replaces all | 'string’, ‘text)
occurences of a substing (second | ” X
argument) with another one (third
argument) and retuns a new string.
replace Pattern matching facilites are nof
supported.

A sequence of replacement pairs can be re‘;‘ggffgffg-?g'

passed to the operator, too.)
» STring

Table 8: Search and replace functions and operators

For more information on these functions, check Chapter 7.2.1 and Chapter 7.2.2.
See also the descriptions of strings.match and strings.gmatch.

The replace operator can be used to find and replace characters in a string.

4.7.7 Comparing Strings

Like numbers, single or multiple character strings can be compared with the familiar
relational operators based on their sorfing order which is determined by your current
locale.

> lal < lbl:
true

>'aa' > 'bb":
false

If the sizes of two strings differ, the missing character is considered less than an
existing character.

> lbal > Ibl:
true

4.7.8 Patterns and Captures

Sometimes, just looking for a fixed pattern, e.g. a simple substring, in a string does
not suffice. You may want to search for a pattern of different kinds of characters -
e.g. both numiers and letters, or either lefters or numbers, or a subset of them -, or
of variable number of characters, or both of them.

76 4 Data

Agena provides both character classes and modifiers to accomplish this. While
common Regular Expressions are not supported, Agena offers quite similar facilities,
all taken from Lua.

For performance reasons, you may use the following rule of thumb?:

* If you would like to determine the start position of the very first match of a fixed
pattern only, use the in operator, for in is the fastest.

* If you want to look as fast as possible only for the start position of the very first
match of a “variable™ pattern, using character classes and/or modifiers, or
would like to give the position where to start the quickest search, use instr.

* If both the start and end position is needed, prefer strings.find. The instr operator
can also return the start and end position, with or without variable patterns, but
mMay be slower than strings.find in mMost situations.

Character classes represent certain sets of tokens, e.qg. the class %drepresents one
digit, and %arepresents one upper-case or lower-case letter. Assume we would like
to determine the position of the hour 00:00:00 in the following date/time string:

> date :='23.05.1949 00:00:00'

We could use the instr operator to determine the start position of the hour,

> instr(date, '%d%d:%d%d:%d%d"):
12

or strings.find to get the start and end position of it.

> strings.find(date, '%d%d:%d%d:%d%d"):
12 19

strings.match extracts the hour.

> strings.match(date, '%d%d:%d%d:%d%d"):
00:00:00

For a complete list of all supported classes, please have a look at the end of this
chapter or Chapter 7.2.3.

Character sets define user-defined classes determined by any character class
and/or single tokens, put in square brackets. For example, [01] may represent a
binary, and [%l -] any lower-case letter, white space or hyphen. A range of
characters is represented by a hyphen, thus[A-Ca-c] represents one of the first
three upper and lower case letters in the alphabet.

8 Different kinds of paftern matching facilities have been infroduced in Agena deliberately, for the
kind of search can significantly influence performance when processing a large number of strings. If
you want to parse a large number of files and know where 1o look, io.skiplines may boost
performance on slow drives, as well.

agena >> 77

> instr(‘binary: 10, '[01]):
9

A caret in front of a class indicates that a string should begin with this class, and a
dollar frailing a class denotes that it should end with the given class.

> instr('1l is a number', "\[%l]):
null

> instr('1 is a number', '%I$'):
13

Patterns also support modifiers for repetition or optional parts. The plus sign indicates
one or more repetitions of a class, the asterisk zero or more repetitions, and the
question mark zero or one occurrence.

> date :='23.05.1949 00:00:00'

> strings.find(date, '%d+.%d+.%d+"): # find the da te 23.05.1949
1 10

> date :='23.05. 00:00:00'

> strings.find(date, '%d+.%d+.%d*"): # find 23.05. , optionally the year
1 6

The single doft represents any occurrence of any character in a string, regardless
whether the character is a cipher, a letter, or special character. If you would like to
search for one of the special characters *, +, 2, ., [,], efc. in a string, just escape it
with the percentage sign.

> instr(date, '%."): # find the first dot in the d ate string
3

instr and strings.find also allow to switch off pattern matching by passing true as the
last argument:

> instr(date, ., true):
3

If a pattern is put in parentheses, one or more portions of a string Matching this
pattern are extracted from a string, to be optionally assigned to names. This feature
is also called a capture. Two examples:

> strings.match('<id>1234</id>', '<id>(.*)</id>"):
1234

> date := 'May 23, 1949 12:15:00";

> strings.find(date, '(%ow+) (%d+), ?(%d+)"):
1 12 May 23 1949

> year, day, month ;= strings.match(date, '(%w+) (% d+), ?(%d+)"):
May 23 1949

78 4 Data

> year, month, day:
May 1949 23

Another useful function is strings.gmatch which returns a function that iteraftes over
all occurrences of a pattermn in a string:

> f ;= strings.gmatch('1 10, '(%d+)"):
procedure(008E1278)

> £():
1

> f():
10

You may also use the wrapper function strings.gmatches which returns a sequence
of all the substrings matching a given pattem.

> strings.gmatches('1 10', '(%d+)"):
seq(1, 10)

There is a small difference between the * and - modifiers for matching zero or
more occurrences which may influence execution time significantly: while * looks
for the longest match, - does for the shortest:

> strings.match('<p> a</p><p>2</p>', '<p>(.-)</p>'); # - shortest
a

> strings.match('<p> a</ p><p>h</p>', '<p>(.*)</p>'): # * longest
a</p><p>b

With captures, and with captures only, strings.find not only returns the start and end
position of the match, but also the match itself as a third return.

> strings.find('<p>a</p><p=>b</p>', '<p>(.-)</p>'):
1 8 a

To check whether one of the characters is in a given set, use square brackets. In the
next example, we check whether the first character in a pattern is either '1', '2', or '3',
and the rest of the pattern is '‘abc'.

> strings.match('2abc’, '[123]abc"):
2abc

The pattemn in the above example, e.qg. its second argument, in general matches a
substring in a string. If you would like to make sure that a pattern matches an entire
string, put a caret in front of the pattern and a dollar sign at its end:

> strings.match('2abc’, '""[123]abc$):
2abc

Thus, since the string to be searched is longer,

agena >> 79

> strings.match(‘'y2abcy’, \[123]abc$"):

returns:

null

Concerning recognising one or more ligatures and umlauts, along with one or more
Latin letters, also just use square brackets and combine them with a modifier:

> strings.match('Selcuk, Turkey', '([cé68%al*)"):
Selcuk

Refrieve a value either residing in a conventional XML tag or its worst-case (though
here invalid) SOAP variant:

> pattern := '<.*Data.*>(%a+)</.*Data>";

> str ;= strings.match(

> '<soap:Data attr=\'foo\'>value</soap:Data>',
> pattern);

> str:
value

> str ;= strings.match('<Data>value</Data>', patter n);

> str:
value

80

4 Data

Summary’ of character classes and pattern modifiers:

Classes
%a

%A
%c
%C
%d
%D
%k
%K
%l
%L
%p
%P
%s
%S
%u
%U

%V
%V

%w
%W
%X
%X
%z
%Z

Modifiers +

any character

leftersatozorAto Z

anything not matching the letters a to z or Afo Z

control characters

anything not matching control characters

digits 0 to @

anything not matching digits O to 9

upper and lower-case consonants (y is considered a vowel)
anything not matching upper and lower-case consonants
lower-case letters

anything not matching lower-case letters

special characters,e.Q., .., -+ *~?21# ()[1{}"
anything not representing special characters

spaces including \t, \n, and \r

anything not matching spaces including \f, \n, and \r
upper-case letters

anything not representing upper-case letters

upper and lower-case vowels including y and Y

anything not representing upper and lower-case vowels
includingy and Y

alphanumeric charactersato z, Ato Z, and 0 to 9
anything not matching he class %w

hexadecimal digits 0 to 9, Ato F, and a to f

anything not matching he class %x

an embedded zero, i.e. \O.

anything not matching an embedded zero

one or more occurrences
zero or more occurrences, returning the largest match
zero or more occurrences, returning the smallest match
Zero or one occurrences

Table 9: Character classes and modifiers

? Based on: Programming in Lua”, 2nd edition, by Roberto lerusalimschy, lua.org, pages 180f.

agena >> 81

4.8 Boolean Expressions

Agena supports the logical values true and false, also called "booleans . Any
condition, e.g. a < b, results fo one of these logical values. They are often used fo
tell a programme which statfements to execute and thus which statements not to
execute.

Boolean expressions mostly result to the Boolean values true or false. Boolean
expressions are created by:

e relational operators (>, <, =, ==, ~=, ~<>, <=, >=, <>),
* logical names: true, false, fail, and null,
* in, subset, xsubset, and various functions.

Agena supports the following relational operators:

Operator | Description Example

< less than 1<2

> greater than 2>1

<= less than or equals 1<=2

>= greater than or equals 2>=1

= equals 1=1

—— strict equality for structures'® [11];:1[1]

o approximate equality/inequality for 121

~<’> real and complex numbers, and [1] ~<> [1]
structures

<> not equals 1<>2

Table 10: Relational operators

The logical operators and, or, nand, nor, xor, and xnor behave a little bit differently:
They consider anything except false, fail, and null as true, and false otherwise. They
return either the first or second operand, which can be any data - not just true or
false - subject fo the following rules:

Operator | Description Examples
Returns its first operand if it is or evaluates | trueand 1 » 1
d fo false, fail or null, otherwise refurns its | \2oc and 1 » faise
an © tdise, 1ai ufl, u true and false » false
second operand. false and true » false
Returns its first operand if it is not or does | true or true » true

. true or false » true
or not evaluate fo false, fail, or null, | 5 o true » 2
otherwise it retuns its second operand. nullor2 » 2
With Booleans: Returns the first operand if

i true xor false» true

the second one evaluates or is false, | true xor true » false
Xor fail, or null. It retuns the second | false xor true » true
operand if the first operand evaluates to | L Xor null» 1

.) 1xor2»2
false, fail, or null and if the second

10 See Chapter 4.9.3.

82 4 Data
Operator | Description Examples
operand is neither false, fail, or null.
With non-Booleans: refurns the first
operand if the second operand
evaluates to null, otherwise the second
operand is returned
' . not true » false
t Tumns a true expression 1o false and vice | not false » true
no versa not 1 » false
' not null » true
nand Returns frue if at least one operand is | true nand false » true
false, otherwise returns false. 1 nand null » true
nor Retuns tfrue if bQTh operands are false, false nor false » true
and false otherwise.
Returns true if both Boolean operands
Xnor are the same (where false and fail are | false xnor false » true

considered equal), and false otherwise.

Table 11: Logical operators

As expected, you can assign Boolean expressions to names

>cond:=1<2:

true

>cond:=1<2orl>2and1=1:

true

or use them in if statements, described in Chapter 5.

In many situations, the null value can be used synonymously for false.

The additional Boolean constant fail can be used to denote an error. With Boolean
operators (and, or, not), fail behaves like the false constant, e.g. nof(fail) = false,
but remember that fail is always unlike false, i.e. the expression fail = false results to

false.

true, false, and fail are of type boolean. null, however, has its own type: the string

'null'.

The and and or operators only evaluate their second argument if necessary, called

short-circuit evaluation. Thus the following statement does not issue an error:

>a = null

> if a :: number and a > 0 then print(In(a)) fi

They are also handy to define defaults for unassigned names:

>a = null

>a:=aor0

agena >> 83

4.9 Tables

Tables are used to represent more complex data structures. Tables consist of zero,
one or more key-value pairs: the key referencing to the position of the value in the
table, and the value the data itself.

Keys and values can be numbers, strings, and any other data type except null.
Here is a first example: Suppose you want to create a table with the following
meteorological data recorded by Viking Lander 1 which touched down on Mars in
1976:

Sol Pressure in mb | Temperature in °C
1.02 | 7.71 -78.28
1.06 | 7.70 -81.10
1.10 | 7.70 -82.96

>VLL:=[

> 1.02~[7.71, -78.28],
> 1.06 ~[7.70, -81.10],
> 1.10 ~ [7.70, -82.96]
>];

To get the data of Sol 1.02 (the Martian day #1.2) input:

> VL1[1.02]:
[7.71, -78.28]

Tables may be empty, or include other tables - even nested ones.

You can control how tables are printed af the console in two ways: If the setting

environ.kernel('longtable’) is ftrue (e.g. by enfering the statement
environ.kernel(longtable = true) , then each key~value pair is printed at a
separate line. If the setting environ.kernel('longtable’) is false, all key~value

pairs will be printed in one consecutive line, as in the example above. Also, you
can define your own printing function that fells the interpreter how to print a table (or
other structures). See Appendix A5 for further information on how to do this and
other settings.

Stripped down versions of tables are sets and sequences which are described later.
Most operations on tables introduced in this chapter are also applicable to sets and
seguences.

4.9.1 Arrays

Agena features two types of tables, the simplest one being the array. Arrays are
created by putting their values in square brackets:

84 4 Data

[[value, [, values,--]]]

>A:=[4,5, 6]
[4,5, 6]

The table values are 4, 5, and 6; the numbers 1, 2, and 3 are the corresponding
keys or indices of table A, with key 1 referencing value 4, key 2 referencing value 5,
etc. With arrays, the indices always start with 1 and count upwards sequentially. The
keys are always integral, so A in this example is an array whereas table vL1 in the last
chapter is not.

To determine a table value, enter the name of the table followed by the respective
index in square brackets:

fablenamelkey]

> A1]:
4

Instead of using constants to index a table, you may also compute an index both in
table assignments or queries. The following selects the middle element of A:

>, r:=1, size A:
1 3

> A[(I+N)\2]:
5

If a table contains other tables, you may get their values by passing the respective
keys in consecutive order. The two forms are equivalent:

fablenamelkeyilkey:][-- |
fablenamelkey, keys,- |

>A =3, 4]
[[3. 4]

The following call refers o the complete inner table which is af index 1 of the outer
table:

> A1]:
(3, 4]

The next call returns the second element of the inner table.

> AlL][2], AlL, 2]:
4 4

agena >> 85

Tables may be nested:

>A:=[4, [5, [6]]]:
[4, [5, [6]1]

To get the number 6, enter the position of the inner table [5, [6]] as the first index,
the position of the inner table [6] as the second index, and the position of the
desired entry as the third index:

> A2, 2, 1]
6

With tables that contain other tables, you might get an error if you use an index that
does not refer to one of these tables:

> A[1][0]:
Error in stdin, at line 1:
attempt to index field *?" (a number value)

Here A[1] returns the number 4, so the subsequent indexing attempt with 4[0] is an
invalid expression. You may use the getentry function to avoid error messages:

> getentry(A, 1, 0):
null

Similarly, the .. operator allows 1o index tables even if its left-hand side operand
evaluates to null. In this case, null is returned, as well, and no error is issued. It is
three times faster than getentry.

> create table A;

> A.b:
null

>Ab.c:
Error in stdin, at line 1:
attempt to index field “b™ (a null value)

> A..b..c:
null

> create table A;

> A1]:
null

> A[1][2]:
Error in stdin, at line 1;
attempt to index field *?" (a null value)

> AL[1]..[2]:
null

86 4 Data

Sublists of table arrays can be determined with the following synfax:

fablename[m to n]

Agena returns all values from and including index position m to n, with m and n
negative or positive integers or 0. If there are no values between m and n, an
empty list is returned. Table values with non-integer keys are ignored.

> A =10, 20, 30, 40]
> A2 to 3]
[2 ~ 20, 3 ~30]

Tables can contain no values at all. In this case they are called empty tables with
values 1o be inserted later in a session. There are two forms to create empty tables.

create table name; [, table name,,--- |

name; :=[]

> create table B;

creates the empty table B,
>B:=];

does exactly the same.

You may add a value to a table by assigning the value to an indexed table name:

> B[1] :="'a’;

> B:
[a]

Alternatively, the insert statement always appends values to the end of a table'':

insert value, [, value,, ---]into name

> insert 'b' into B;

> B:
[a, b]

To delete a specific key~value pair, assign null o the indexed table name:

" The insert statement cannot be applied on weak tables. See Chapter 6 for further information on
this variant,

agena >> 87

> B[1] := null;
> B:
[2 ~ b]

The delete '“statement works a little bit differently and removes all occurences of a
value from a table.

delete value, |, value,, --- | from name

> insert 'b' into B;
> delete 'b' from B;

> B:
I

In both cases, deletion of values leaves holes’ in a table, which are null values
between other non-null values:

>B:=[1,2,2,3]
> delete 2 from B

> B:
[1~1,4~3]

There exists a special sizing option with the create table statement which besides
creating an empty table also sets the default numiber of entries. Thus you may gain
some speed if you perform a large number of sulbbsequent table inserions, since
with each insertion, Agena checks whether the maximum number of entries has
been reached. If so, each time it automatically enlarges the table which creates
some overhead. The sizing option reserves memory for the given number of
elements in advance, so there is no need for Agena to subsequently enlarge the
table until the given default size will be exceeded.

Arrays with a predefined number of entries are created according to the following
syntax:

create table name;(size,) [, table names(size,), - |

When assigning entries to the table, you will save at least 1/3 of computation time if
you know the size of the table in advance and initialise the table accordingly. If you
want to insert more values later, then this will be no problem. Agena automatically
enlarges the table beyond its initial size if needed.

> create table a(5);

12 dito.

88 4 Data

> create table a, table b(5);

4.9.2 Dictionaries
Another form of a table is the dicfionary with any kind of data - not only positive
infegers - as indices:

Dictionaries are created by explicitly passing key-value pairs with the respective keys
and values separated by tildes, which is the difference to arrays:

[[keys ~ value, [, key, ~ value,,-- 1]

>A=[1~4,2
[L~4,2~5,3

> B :=[abs('p") ~ 'th]:
[231 ~ th]

Here is another example with strings as keys:
> dic ;= ['donald’ ~ 'duck’, 'mickey' ~ 'mouse';

> dic:
[mickey ~ mouse, donald ~ duck]

As you see in this example, Agena internally stores the key-value pairs of a
dictionary in an arbitrary order.

As with arrays, indexed names are used to access the corresponding values stored
fo dictionaries.

> dic['donald:
duck

If you use strings as keys, a short form is:

> dic.donald:
duck

Further entries can bbe added with assignments such as:
> dic['minney'] := 'mouse’;

which is the equivalent 1o

> dic.minney :='mouse’;

With string indices, an alternative to using quotes keys with the filde syntax is:

[[name, = value, [, name, = value,,--- 1]]

agena >> 89

Hence,

> dic :=['donald’ ~ 'duck’, 'mickey' ~ 'mouse’];

and

> dic := [donald = 'duck’, mickey = 'mouse?;

are equal. You can also mix filde (~) and equals (=) assignments:
> dic := [donald = 'duck’, 'mickey' ~ 'mouse’];

If you want to enter the result of a Boolean equality check into a table, use the ==
token instead of the = sign:

>value =1

> [value == 1, value <> 1]:
[true, false]

Dictionaries with an initial number of entries are declared like this:

create dict name;(size4) [, dict names(sizey),--- |

You may mix declarations for arrays and dictionaries, so the general syntax is:

create {table | dict} name[(size/)] [, {table | dict} name;|(size,)]. -]

Technically, tables consist of an array and a hash part. The array part usually stores
all the elements in an array, the hash part the values of a dictionary. You can both
pre-allocate the array and hash part of a table aft once:

create table names(arraysizes, hashsize+) [, - |

4.9.3 Table, Set and Sequence Operators

Agena features some built-in table, set and sequence operators which are
described below. A “structure in this context is a table, set, or sequence.

90

4 Data

Name Return Function
. Checks whether the structure A contfains the given
cinA Boolean
value c.
, Determines whether a structure contains at least one
filled A Boolean .
value. If so, it returns true, else false.
Checks whether two tables A, B, or two sets A, B, or two
_ sequences A, B contain the same values regardless of
A=B Boolean . o
the number of their occurrence; if B is a reference to
A, then the result is also frue.
Checks whether two sets/tables/sequences A, B do not
contain the same values regardless of the number of
A<>B Boolean . o
their occurrence; if B is a reference to A, then the result
is false.
Checks whether two tables A, B, or two sets A, B, or two
sequences A, B contain the same number of elements
A== Boolean | and whether all key~value pairs in the tables or entries
in the sets or sequences are the same; if B is a
reference 1o A, then the result is also frue.
not(A == B) Boolean | The negation of A == B.
Like ==, but checks the respective elements for
A~=B Boolean | approximate equality. Use environ.kernel/eps 1o
change the setting for the accurarcy threshold.
not(A ~= B) Boolean | The negation of A ~=B.
Checks whether the values in structure A are also
A subset B Boolean |values in B regardless of the number of their
occurrence. The operator also returns true if A = B.
Checks whether the values in structure A are also
A xsubset B Boolean | values in B. Confrary 1o subset, the operator returns
false if A = B.
Concatenates two tables, or two sets, or two
seguences A, B simply by copying all its elements -
. table, . , .
A union B sef se even if they occur multiple fimes - 1o a new structure.
+5€9 With sets, all items in the resulting set will be unique, i.e.
they will not appear multiple times.
table Returns all values in two tables, two sets, or two
A intersect B sef s,e sequences A, B that are included both in A and in B as
+5€9 a new structure.,
. table, Returns all the values in A that are notf in B as a new
A minus B
set, seq | structure,
Creates a deep copy of the structure A, ie. if A
table, . . .
copy A includes other tables, sets, pairs, or sequences, copies
set, seq)
of these structures are built, too.
join A string Concatenates all strings in the table or sequence A.
Returns the size of a table A, i.e. the actual number of
size A number | key~value pairs in A. With sets and sequences, the

number of items is returned.

agena >> 91

Name Return Function

This function sorfs fable or sequence A in ascending
order. It directly operates on A, so it is destructive. With
tables, the function has no effect on values that have

sort(A) ;c;ble, non-integer keys. Note that sort is not an operator, so
9 you must put the argument in brackets. Please also
see Chapter 7 for its derivatives: sorted,
skycrane.sorted, stats.issorted, and stats.sorted .
Removes multiple occurrences of the same value and
returns the result in a new structure. With tables, also
, table, N . : :
unique A seq removes all holes (missing keys) by reshuffling ifs

elements. This operator is not applicable to sets, since
they are already unique.

Sums up all numeric table or sequence values. If the
sadd A number | table or sequence is empty or contains no numeric
values, null is returned. Setfs are not supported.

Raises each value in a table or sequence to the
power of 2 and sums up these powers. If the table or

gsadd A number : . .
sequence is empty or contains no numeric values, null
is returned. Sets are not supported.
table, ,
f@A seq, set Maps a function f on all elements of a structure A.
FSA table, Selects all elements of a sfructure A that satisfy a

set, seq | condition evaluated by function f.

Table 12: Table, set, and sequence operators
Here are some examples - try them with sets and sequences as well;

The union operator concatenates two tables simply by copying all its elements -
even if they occur multiple times.

[a, b, c, a,d]

intersect returns all values that are part of both tables as a new table.

[a]

If a value appears multiple times in the set at the left hand side of the operator, it is
written the same number of times o the resulfing table.

minus returns all the elements that appear in the table on the left hand side of this
operator that are not members of the right side table.

[b, c]

92

4 Data

If a value appears multiple times in the set at the left hand side of the operator, it is
written the same number of times to the resulting table.

The unique operator

« removes all ho

les (" missing keys) in a fable,

e removes multiple occurrences of the same value.

and returns the result in a new table. The original table is not overwritten. In the

following example, there is a hole at index 2 and the value 'a'

>unique[1~'a',3~'a', 4
[b, a]

~'b:

appears twice.

You can search a table for a specific value with the in operator. It retuns true if the
value has been found, or false, if the element is not part of the table. Examples:

>'a'in[a,'b,'c:

returns true.

>1in[a,'b,'c:

retuns false. Rememlber that in only checks the values of a table, not its keys.

4.9.4 Table Functions

Agena has a number of functions that work on tables (and sequences), e.g.:

Function Description Further detail
Maps a function f onto all ' mgy e an ononymOLIJs
map(f, 0) function, as well. See also zip
elements of structure o. .
in Chapter 7.1.
Removes index kev and its All elements fo the right are
purge(o, key) 4 shiffed down, so that no holes

corresponding value from o.

are created.

put(o, key, value)

Inserts a key ~ value pair into
structure o.

The original element at
position key and all other
elements are shifted up one
place.

Returns all the elements that

f may be also an anonymous

. " function. The remove
select(f, o) sqhsfy the Boqleon condition function conducts the
given by function f. . .
opposite operation.
, Substitutes all occurrences of
subs(o, x:v)

value x in o with value v.

Table 13: Basic table library procedures

The map function is quite handy to apply a function with one, or more arguments
to all elements of a table by one stroke:

agena >> 93

> map(<< x -> x"2 >>,[1, 2, 3)):
[1, 4, 9]

The @ operator also maps a function on all elements of a table, sequence, set, or
pair. Contrary to map, it accepts univariate functions only, but is faster:

><<x->x"2>> @1, 2, 3
[1, 4, 9]

Likewise, the faster § operator selects those elements of a table, set, or sequence
that satisfy a condition determined by a univariate function.

><<x->x>1>>9%]1, 2, 3]
(2, 3]

Suppose we want to add a new entry 10 at position 3 of table C';

>C:=11, 2, 3,4]
> put(C, 3, 10)

> C:
[1, 2,10, 3, 4]

Now we remove this new entry 10 at position 3 again:

> purge(C, 3)

> C:
[1, 2,3, 4]

Determine all elements in ¢ that are even:

> select(<< x -> even(x) >>, C):
[2~2,4~4]

Or return all elements not even:

> remove(<< x -> even(x) >>, C):
[1~1,3~3]

Note that remove and select do not alter the original structure passed as the
second argument.

Zip zips together two tables by applying a function to each of its respective
elements.

> C:
[1, 2,3, 4]

13 put and purge have to shift elements up or down, drawing performance. You may use the llist
package to conduct these kinds of operations much faster in case of a large numiber of insertions
or deletions.

Q4 4 Data

> zip(<< (X, y) -> x +y >>, C, [10, 20, 30, 40]):
[11, 22, 33, 44]

For other functions, have a look at Chapter 7 of this manual and the Agena Quick
Reference Excel sheet.

4.9.5 Table References

If you assign a table to a variable, only a reference to the table is stored in the
variable. This means that if we have a table

>A=1[1,2];
assigning
>B = A;

does not copy the contents of A to B, but only the address of the same memory
area which holds table [1,2] , hence:

> insert 3 into A;

> A:
[1, 2, 3]

also yields:

> B:
[1, 2, 3]

Use copy to create a tfrue copy of the contents of a table. If the table contains
other tables, sets, sequences, or pairs, copies of these structures are also made
(so-called "deep copies’). Thus copy retumns a new table without any reference to
the original one.

> B := copy(A);
> insert 4 into A;
> B:

[1, 2, 3]

With structures such as tables, sets, pairs, or sequences, all names 1o the left of an
-> token will point to the very same structure to its right. This behaviour may be
changed in a future version of Agena.

>A B->]]

>A[1]:=1

> B:
(1]

agena >> 95

Tables can also directly or indirectly contain themselves, in which case they are also
called "cycles’. Just some few examples:

>A=]]
>A=[A A
> A:

(0. 0
>AA=A
>A:

[1~1,2~1[], A~ circum_table(0236A460)]

4.9.6 Unpacking Table s by Name

There is syntactic sugar for the assigment statement to unpack named values, i.e.
datfa indexed with string keys, from tables using the in keyword:

key, [, key,,---]in tablename

is equal to

key, [. key,,--- | := tablename.key, [, fablename.key.,--- |

A short example may suffice:

> zips ;= [duedo =40210:40629,
> bonn =53111:53229,
> cologne = 50667:51149];

> duedo, bonn in zips

> duedo, bonn, cologne:
40210:40629 53111:53229 null

The local statement, see Chapter 6.2, supports this sugar, as well. Read also
Chapter 5.2.12 for a variant implemented available in the with statement.

4.9.7 Defining Multiple Constants Easily

The // ... \\ constructor allows to define a table of constant numbers and/or strings
the simple way: items may not be separated by commas, and strings do not need
fo be put in quotes as long as they satisfy the criteria for valid variable names
(hame starting with a hyphen or letter, including diacritics). Records are supported
as well. Expressions like “sin(0)" etc. are not parsed. Example:

>a:=//0~01 2 3 zero one two three '2and3' \\;

96 4 Data

[0~0,1~1,2~2,3~3,4~zero,5~0ne, 6~ two, 7 ~ three,
8 ~ 2and3]

4,10 Sets

Sets are collections of unique items: numbers, strings, and any other data except
null. Their syntax is:

{[item, [, itemy,-- 1]}

Thus, they are equivalent to Cantor sets: An item is stored only once.

>A:={1,1,2 2
{1, 2}

Besides being commonly used in mathematical applications, they are also useful
to hold word lists where it only matters to see whether an element is part of a list or
not:

> colours := {'red', 'green’, 'blue'};

If you want 1o check whether the colour red is part of the set colours, just index it as
follows:

setnamelitem]

If an element is stored o a set, Agena returns true:

> colours['redT:
true

If an item is not in the given set, the retumn is false. Nofe that we can use the same
short form for indexing values (without quotes) as can be done with tables.

> colours.yellow:
false

If you want to add or delete items to or from a set, use the insert and delete
statements. (The standard assignment statement setnamelkey] := value is also
supported).

insert item, [, itemy, ---] into name

delete item, [, item,, ---] from name

> insert 'yellow' into colours;

agena >> 97

The in operator checks whether an item is part of a set - it is an alternative to the
indexing method explained above, and returns true or false, too.

> 'yellow' in colours:
true

The data type of a set is set.

> type(colours):
set

You may predefine sets with a given number of entries according fo the following
syntax:

create set name [(sizes) 1 [, set name, [(sizes)],]

When assigning items later, you will save at least 90 % of computation fime if you
know the size of the set in advance and initialise it with the maximum numiber of
future entries as explained above. More items than stated at initialisation can be
entered anytime, since Agena automatically enlarges the respective set
accordingly and will also reserves space for further entries.

Sets are useful in situations where the numibber of occurrences of a specific item or
its position do not concern. Compared 1o tables, sets consume around 40 % less
memory, and operations with them are 10 % to 33 % faster than the corresponding
table operations.

Specifically, the more items you want to store, the faster operations wil be
compared to tables.

Nofte that if you assign a set to a variable, only a reference to the set is stored in the
variable. Thus in a statement like A :={}; B := A , A and B point to the same set.
Use the copy operator if you want to create "independent” sets.

Sets can also include themselves, just an example:

>A={)
>A:={A AL
{1

If you want to know the number of occurrences of a unique element in a
distribution, the bags package might be of interest, see Chapter 7.8.

The following operators work on sets:

98 4 Data

Name Retun Function

cinA Boolean | Checks whether the set A contains the given value c.
Determines whether a set contains at least one value.
If so, it returns true, else false.

Checks whether two sets A, B contain the same values
A=B Boolean | regardless of the number of their occurrence; if B is a
reference 1o A, then the result is also frue.

Checks whether two sets A, B do not contain the same

filled A Boolean

A<>B Boolean | values regardless of the numiber of their occurrence; if
B is a reference to A, then the result is false.
A== Boolean | Same as =.

Checks whether the values in set A are also values in B.
The operator also returns true if A = B.

Checks whether the values in set A are also values in B.
Contrary to subset, the operator returns false if A = B.
Concatenates two sets A, B simply by copying all its
A union B set elements to a new set. All items in the resulting set will
e unique, i.e. they will not appear multiple times.
Returns all values in two sets A, B that are included
both in A and in B as a new set.

Returns all the values in A that are notf in B as a new

A subset B Boolean

A xsubset B Boolean

Aintersect B | set

A minus B set set
Creates a deep copy of the set A, i.e. if A includes
copy A set other tables, sets, pairs, or sequences, copies of these
structures are built, t100.
. Returns the size of a set A, i.e. the actual number of
size A numiber

elements in A.

f@A set Maps a function f on all elements of a set A.

FSA set Selects all elements of A that safisfy a given condition
checked by function f.

Table 14: Set operators

4.11 Sequences

Besides storing values in fables or sets, Agena also features the sequence, an
object which can hold any numiber of items except null. You may sequentially add
items and delete items from it. Compared 1o tables, inserion and deletion are
twice as fast with sequences.

Sequences store items in sequential order. Like in tables, an item may be included
multiple times. Sequences are usually indexed with positive integers in the same
fashion as table arrays are, starfing at index 1. If you pass a negative index n, then
the |n|-th value from the right end, i.e. the top of the sequence is determined.
Other types of indexes are not allowed. As with tables, you can compute the index
in assignments or queries.

agena >> 99

Suppose we want to define a sequence of two values. You may create it using the
seq operator.

seq([tfemy [, itemy,-- 11)

>a:=seq(0, 1, 2, 3);

> a:
seq(o, 1, 2, 3)

You can access the items the usual way:

seqgnamelindex]

> a[1]:
0

> a[2]:
1

If the index is larger than the current size of the sequence, an error is returned',

> a[5]:
Error, line 1: index out of range

Sublists of sequences can be determined with the following syntax:

seqgname[m to n)

Agena returns all values from and including index position m to n, with m and n
positive or negative integers. In case of a non-existing key, an error is issued.

> a[2 to 3]:
seq(l, 2)

The way Agena outfputs sequences can be changed by using the seftype function.

In general, the settype function allows you to set a user-defined subtype for a
seguence, set, table, or pair.

> a =seq(0, 1);
> settype(a, 'duo’);

>a:
duo(0, 1)

' The error message can be avoided by defining an appropriate metamethod.

100 4 Data

The gettype function retumns the new type you defined above as a string:

> gettype(a):
duo

If no user-defined type has been set, gettype returns null.

Once the type of a sequence has been set, the typeof operator also retumns this
user-defined sequence type and will not return 'sequence’

> typeof(a), gettype(a):
duo duo

This allows you to programme special operations only applicable to certain types of
sequences.

The :: and :- operators can check user-defined types. Just pass the name of your
type as a string:

>a ::'duo”:
true

> a :-'duo”
false

Note that if a user defined-type has been given, the check for a basic type with the
i and :- operators will return false or true, respectively.

> a i sequence:
false

> a .- sequence:
true

A user-defined type can be deleted by passing null as a second argument to

seftype.

> settype(a, null);

> typeof(a):
sequence

The create sequence statement creates an empty sequence and optionally allows
fo allocate enough memory in advance to hold a given number of elements
(which can be inserted later). Agena automatically will extend the sequence, if the
predetermined numiber of items is exceeded. The sequence and seq keywords are
synonyms.

create sequence name, [, seq namey,--- |
create sequence name;(size) [, seq hames(sizey), - |

agena >> 101

ltems can be added only sequentially. You may use the insert statement for this or
the conventional indexing method.

> create sequence a(4);
> insert 1 into a;
> a[2] :=2;

> a:
seq(l, 2)

Nofe that if the index is larger than the number of items stored to it plus 1, Agena
returns an error in assignment statements, since "holes” in a sequence are not
adllowed. The next free position in a is at index 3, however a larger index is chosen in
the next example.

>a[4] =4
Error, line 1: index out of range

>a[3]:=3

ltems can be deleted by sefting their index position to null, or by applying delete,
i.e. stating which items - not index positions - shall be removed. Note that all items
to the right of the value deleted are shifted fo the left, thus their indices will change.

> a[1] := null

> a:
seq(2, 3)

> delete 2, 3 from a

>a:
seq()

Thus concerning the insert and delete statements, we have the following familiar
syntax:

insert item, [, iftem,, ---] into name

delete item, [, item,, ---] from name

If you assign a sequence to a variable, only a reference to the sequence is stored
in the variable. Thus sequences behave the same way as tables and sets do, i.e. in
a statement like A = seq(); B := A , A and B point to the same seqguence in
memory. Use the copy operator if you want to create "independent” sequences.

> A :=seq()
>B:=A

> A[1] = 10

102 4 Data

> B:
seq(10)

As with tables and sets, sequences can also reference to themselves:

> A :=seq()
>A[l] =A
> A2l =A

> A
seq(circum_sequence(01E647D8), circum_sequence(01E6 47D8))

The following operators, functions, and statements work on sequences:

Name Description Example
= Equality check the Cantor way a=b
== Strict equality check a==
~= approximate equality check a~=b
<> Inequality check the Cantor way a<>b
Type check operator A Usertype:
- Negation of type check operation A usorype”
@ Maps a function on all elements of a @ a
sequence.
S Selects all elements of A that satisfy a given f$a
condition.
insert Inserts one or more elements. insert 1 into a
delete Deletes one or more elements. delete 0,1
bottom Returns the item with key 1. bottom a
top Returns the item with the largest key. top a

as an operator works like top but also removes
the item from the sequence

Creates an exact copy of a sequence; deep
copy copying is supported so that structures inside | copy a
sequences are properly treated.

Checks whether a sequence has at least one

PopP pop a

filed) filled a
item.
Returns entries without issuing an error if a

getentry)) , 9 getentry(a, 1, 3)
given index does not exist.

in Checks whether an element is stored in the 0in seq(1, 0)
seguence, retumns frue or false.

i Concatenates all strings in a sequence in | . .

join) 9 9 join(a)
sequential order.

o Pops the first or the last element fromm a | pop bottom from a
Pop seqguence. pop top from a
size Returns the current number of items. size a
sort Sorts a sequence in place. Please also see sort(a)

Chaopter 7 for its derivatives: sorted,

agena >> 103
Name Description Example
skycrane.sorted, stats.issorted, and
stats.sorted .
fype Returns the general type of a sequence, i.e. type a
sequence.
Returns the user-defined type of a sequence,
typeof or the basic type if no special type has been | typeof a
defined.
unique Reduces muITlpIe occurrences of an item in a unique a
seguence to just one,
unpack l7Jn]pocks a seguence. See unpack in Chapter unpack(a)
Maps a function on dall elements of a | map(<<x->x"2
map sequence. >>, seq(1, 2, 3))
' . zip(<< X, y->
i Zips together two sequences by applying a | x+y>>,
P function to each of its respective elements. seq(l, 2),
seq(3, 4))
Searches all values in one sequence that are | seq(1, 2)
intersect also values in another sequence and returns | intersect
them in a new sequence. seq(2, 3)
Searches all values in one sequence that are seq(L. 2
minus not values in another sequence and returns miﬂﬁs’ qu(z, 3)
them as a new seguence.
subset Checks whether all values in a sequence are | seq(1)
included in another sequence. subset seq(1, 2)
. Concatenates two sequences simply by | seq(1, 2)
union i i union seq(2, 3)
copying all its elements. als,
settype Sets a user-defined type for a sequence. settype(a, ‘duo’)
gettype Returns a user-defined type for a sequence. gettype(a)
setmeta- , setmetatable
table Assigns a metatable to a sequence. (a, mtbl)
%eglr;\efo- Returns the metatable stored to a sequence. | getmetatable(a)

Table 15 Basic sequence operators and functions

For more functions, consult the Agena Quick reference Excel sheet. Also, you may
have a look at the llist linked list package presented in Chapter 6.27, if you have to

conduct a lot of insertions and/or deletions in a data structure.

104 4 Data

4.12 Stack Programming

Sequences and sometimes table arrays can e used to implement stacks, and
besides the insert/into statement to put an element to the top, an efficient
statement is available to remove an item from the bottom or from the top of the
stack:

pop bottom from name

pop top from name

Both variants work on tables even if their integer keys are not distributed
consecutively.

The bottom and top operators return the element at the bottom of the stack and
the top of the stack, respectively. They both do not delete the element returned
from the stack.

> stack := seq();
> insert 10, 11, 12 into stack;

> bottom(stack):
10

> top(stack):
12

> pop bottom from stack;
> pop top from stack;

> stack:
seq(11)

The rotate statement moves each element in a sequence or the array part of a
table one position to the bottom (downwards) or to the top (upwards):

rotate bottom name

rotate top name

The element at the boftom or the top is moved to the top or the bottom,
respectively.

>s:=seq(l, 2, 3);
> rotate bottom s;

>s:
seq(2, 3,1)

agena >> 105

>s:=seq(l, 2, 3):
seq(l, 2, 3)

> rotate top s;
> s:

seq(3, 1, 2)

The pop operator - contrary to top - both returns the top element of sequence or
reqgister and then removes it from the structure. With tables, it returns the value
indexed by the largest integer key and then also removes it.

> pop(s):
2

>s:
seq(3, 1)

There are two other statements that work on sequences and registers only: The
exchange statement swaps the two topmost elements, and the duplicate
statement adds a copy of the current fopmost element to the end of the structure.

> exchange s

>s:
seq(l, 3)

> duplicate s

>s:
seq(l, 3, 3)

You may try to use the put function to insert new values in the interior of a stack
shifting up other values to open space, and purge to delete values in the interior of
a stack.

See also Chapter 7.41 for the three built-in numerical stacks.

4,13 More on the create Statement

You cannot only initialise any table arrays with the create statement, but also
dictionaries, sets, and sequences with only one call and in random order, so the
following statement is valid:

> create table a, dict b(10), set ¢, sequence d(100), table e(10);

>a,b,cde:

0 0 { seal [

106 4 Data

4.14 Pairs

The structure which holds exactly two values of any type (including null and other
pairs) is the pair. A pair cannot hold less or more values, but its values can be
changed. Conceived originally to allow passing options in a more flexible way to
functions, it is defined with the colon operator:

itemy : item;

The left and right operators provide read access 1o its left and right operands; the
standard indexing method using indexed names is supported, as well:

left [(] pair [)]
right [(] pair)]

> left(p), p[1]:
1 1

> right p, p[2]:
2 2

An operand of an already existing pair can be changed by assigning a new value
to an indexed name, where the left operand is indexed with number 1, and the
right operand with number 2:

>p[1] :=2;

> p[2] :=3;

You can compute the index as long as the result evaluates to the integers 1 or 2, as
well.

As with sequences, you may define user-defined types for pairs with the settype
function which also changes the way pairs are output.

> typeof(p):
pair
> settype(p, 'duo’);

> p:
duo(2, 3)

> typeof(p):
duo

agena >> 107

> gettype(p):
duo

> p::pair:
false

> p ::'duo”
true

The only other operators besides left and right that work on pairs are equality (=, ==,
~=), inequality (<>, ~<>), 1, :-, type, typeof, and in.

>p=32
false

With pairs consisting of numbers, the in operator checks whether a left-hand
argument number is part of a closed numeric interval given by the given right-hand
argument pair.

>2in 0:10:
true

>'s"in 0:10:
fail

As with all other structures, if you assign a pair to a variable, only a reference to the
pair is stored in the variable. Thus in a statement like A := a:b; B := A ,Aand B
point o the same pair. Use the copy operator if you want to create "independent

pAirs.

Summary:
Name Description Example
=, ==, ~ Equality checks (mostly same functionality) | a=b
<> Inequality check a<>b
Type check operator :;; %%'gftype-
- Negation of type check operation o %ﬁ;ﬂype-
@ Maps a function on each operand. f@a
Creates an exact copy of a pair, deep
copy copying is supported so that structures | copy a
inside pairs are properly freated.
If the left operand x is a number and if the
left and right hand side of the pair a:b are
numbers, then the operator checks
in whether x lies in the closed interval [a, b] | 1.5in1:2
and returns true or false. If at least one
value x, a, b is not a number, the operator
returns fail.
left Returns the left operand of a pair. left(a)
right Returns the right operand of a pair. right(a)
type With pairs, always returns ‘pair’ type(a)

108 4 Data
Name Description Example
Returns either the user-defined type of the
typeof pair, or the basic type (pair) if no | typeof(a)
special type was defined for the pair.
settype Sets a user-defined type for a pair. settype(a, ‘duo’)
gettype Returns the user-defined type of a pair. gettype(a)
setmetatable | Sefs a metatable 1o a pai. Sy vkl
getmetatable | Retuns the metatable stored to a pair. getmetatable(p)

Table 16: Operators and functions applicable to pairs

agena >> 109

4.15 Registers

Registers are memory-efficient, fixed-size Agena "sequences’ that also store null's.
They are not automatically extended if more values have to be added, but can be
manually resized.

Registers allow to hide data: by changing the pointer to the top of a register using
registers.seftop, any values stored above (the position of) this pointer can neither be
read nor changed by any of Agend's functions and operators. Registers are
supported by most of the existing statements, operators and functions. Please also
refer to Chapter 6.15 “Sandoboxes .

The concept of the fixed size and the top pointer is key to understanding and
working with registers.

By default, the top pointer always refers 1o the very last element in a register - it is
automatically changed only if an element is removed with the pop top or pop
bottom statements, the pop operator, or the purge function.

In general, registers can save memory if you know the precise number of values to
be stored, or to be added or removed later, in advance. As such, they behave like
C arrays storing any value without provoking faults. With respect to sequences, there
usually are no performance gains with most operations - but since registers do not
automatically shift elements, they are eight times faster with the respective deletion
operations.

Let us first create a register with eight items:

>a:=reg(1,2,3,4,5,6,7,8):
reg(l, 2, 3,4,5,6,7,8)

Read the first element:

> a[1]:

1

Set the first entry fo null - contrary to other data structures, the size of register is not
reduced, and no values are shifted.

> a[1] := null;

> a:
reg(null, 2, 3, 4,5, 6,7, 8)

Now reset the pointer to the top of the register to the fourth element:

> registers.settop(a, 4);

> size(a):

110 4 Data

> a:
reg(null, 2, 3, 4)

> a[5]:
In stdin at line 1:
Error: register index 5 out of current range.

Stack traceback:
stdin, at line 1 in main chunk

By changing the position of the top pointer beyond 4, we can read and change
the values again:

> registers.settop(a, 8);

reg(null, 2, 3, 4,5, 6,7, 8)

When passing no elements fo the reg operator, by default a register with sixteen
slots is created.

> reg():
reg(null, null, null, null, null, null, null, null, null, null, null, null,
null, null, null, null)

But you can change this default to another value:
> environ.kernel(regsize = 8);

> reg():
reg(null, null, null, null, null, null, null, null)

Registers containing null's may issue errors with some functions or operators.

Changing the size of a reqister at runtime is easy:

>b:=reg(a, b, 'c):
reg(a, b, ¢)

register.extend enlarges a register to the given number of elements.

> registers.extend(b, 8);

> b:
reg(a, b, ¢, null, null, null, null, null)

register.reduce shrinks a register to the given number of elements.

> registers.reduce(b, 4);
> b
reg(a, b, c, null)

Registers support metamethods, but not user-defined types. To hide the current size
of the register as defined above, we could assign:

agena >>

> size a:

8

>mt:=]

> ' size' ~ proc(x) is
> return O

> end

>]

> setmetatable(a, mt);

> size a:
0

Name Description Example

= Equality check the Cantor way a=b

== Strict equality check a==

~= approximate equality check a~=b

<> Inequality check the Cantor way a<>b
Type check operator a :: register

- Negation of type check operation a :- register

@ Maps a function on all elements of areqister. | f@ a

S Selects all elements of a that satisfy a given f$a
condition.

insert Inserts an element at the first position that | insert 0, 1
holds a null value. Into a

delete Deletes one or more elements and replaces | delete 0, 1
them with null. froma

bottom Returns the item with key 1. bottom a

top Returns the item with the largest key. top a
as an operator works like top but also removes

pop . pop a
the item from the sequence
Creates an exact copy of a register; deep

copy copying is supported so that structures inside | copy a
register are properly freated.

filed Qhecks whether a reqister has at least one filled a
item.

getentry RQTurng entries wi’rhou’rl issuing an error if @ getentry(a, 1, 3)
given index does not exist.

in Checks whether an element is stored in the 0in reg(L, 0)
segquence, retumns frue or false.

PO Pops the first or the last element from a

bottorn/ register, shifting other elements to close the | pop bottom from a

top space, if necessary. Reduces the size of the | Pop top from a
register by one.

size Returns the numiber of "visible™ elements. size a

sort Sorts a regqister in place. Please also see sort(a)
sorted.

fype Returns the general type of a register, i.e. type a

register.

112 4 Data
Name Description Example
. Reduces multiple occurrences of an item in a .
unique register 1o just one. e a
unpack L7Jn]pocl<s a register. See unpack in Chapter unpack(a)
duplicates | Finds duplicate elements. duplicates(a)
map Maps a function on all elements of a register. Lnf pgg((f, 2> g))z
Removes the value at the given position and
purge shiffs all elements to close the space. Also
reduces the size of the register by one.
_ _ . zip(<< X,y ->
i Zips together two register by applying a| x+y>>,
P function to each of its respective elements. reg(1, 2),
reg(3, 4))
Searches all values in one register that are | reg(1, 2)
intersect also values in another register and retumns | intersect
them in a new register. reg(2, 3)
Searches all values in one register that are not
minus values in another register and refurns them as reg(l, 2)
minus reg(2, 3)
a new reqister.
subset Checks whether all values in a register are | reg(1)
included in another register. subset reg(1, 2)
wsubset Checks whether all values in a register are | reg(1)
included in another register. xsubset reg(1, 2)
union Concatenates two registers simply by copying | reg(1, 2)
all its elements. union reg(2, 3)
setmeta- ASS| tatable t ist setmetatable
table ssigns a metatable to a reqister. (a, mtbl)
%eglrgefo- Returns the metatable stored to a register. getmetatable(a)
registers. Resets the top pointer fo the given position, an
settop integer.
registers. Shrinks the size of a reqister to the given value.
reduce
registers. Enlarges the size of a register to the given
extend value.
Egr\:g/n' Sets the default size of newly created registers
. the given value, a non-posint.
regsize

Table 17: Some operators and functions applicable to registers

agena >> 113

4.16 Exploring the Interals of Structures

If you would like to know how a table, set, sequence, or pair is represented
internally, please have a look at the environ.aftrib function explained in Chapter
7.21. It might help when debugging code.

The function returns the estimated number of bytes used by a structure, how many
slots have been pre-allocated and how many are actually occupied, whether a
user-defined type has been set, how many elements have been allocated to the
array and hash parts of a table, etc.

4,17 Other Types

For threads, userdata, and lightuserdata please refer to the Lua 5.1 documentation
and Chapter 6.29.

Agena supports the following metamethods with userdata: =, ==, ~=, size, in,
union, intersect, minus, sadd, and gsadd. ' _index' , '_ writeindex' ,'_gc ,and
'__tostring' are supported, as well.

114

4 Data

agena >>

115

Chapter Five

Control

116

5 Control

agena >>

117

5 Control

5.1 Conditions

Depending on a given condition, Agena can alternatively execute certain
statements with either the if or case statement.

5.1.1 if Statement

The if statement checks a condition and selects one statement fromn many listed. Its

syntax is as follows:

if conditfion, then
statements;,

[elif condition, then
statements;]

[onsuccess
statements;]

[else
statements,]

fi

The condition may always evaluate to one of the Boolean values true, false, or fail,

then
if @ tue—> Blockl
fdse
then
olif @ tue—>| Block2
fdse
\ 4
else Block3
i ONSUCCES S
fi < Block4

or to any other value .

The elif, else, and onsuccess
clauses are optional. While
more than one elif clause
can be given, only one else
and one onsuccess clause is
accepted. An if statement
may include one or more elif
clauses, and opftionally an
onsuccess clause, and no
else clause.

If an if or elif condition results
to true or any other value
except false, fail, or null, its
corresponding then clause is
executed. If all conditions
result to false, fail, or null, the
else clause is executed if

present - otherwise Agena proceeds with the next statement following the fi

keyword.

118 5 Control

If an onsuccess clause is given, and in case one if or elif condition results to true,
the statements in this onsuccess branch are executed. This allows 10 move code
common fo all then clauses info one single branch, reducing the code size.

Examples:

The condition true is always true, so the string 'yes' is printed.

> if true then
> print('yes")
> fi;

yes

The next example demonstrates the bbehaviour if the condition is neither a Boolean
nor null:

> if 1 then

> print('One")
> fi;

One

In the following statement, the condition evaluates to false, so nothing is prinfed:

> if 1 <> 1 then
> print('this will never be printed")
> fi;

An if statement with an else clause:

> if false then

> print(‘this will never be printed")
> else

> print('this will always be printed')
> fi;

this will always be printed

An if statement with an elif clause:

> if 1 = 2 then

> print(‘this will never be printed")
> elif 1 < 2 then

> print('this will always be printed')
> fi;

this will always be printed

An if sfatement with elif and else clauses:

> if 1 =2 then

> print(‘this will never be printed")
> elif 1 < 2 then

> print('this will always be printed')
> else

> print('neither will this be printed")
> fi;

this will always be printed

agena >> 119

One last example, this time demonstrating the optional onsuccess clause. As
shown, both then statements include the same flag := true statement.

> if 1 =2 then

> print('this will never be printed";
> flag :=true

> elif 1 = 1 then

> print('this will always be printed");
> flag :=true

> else

> flag :=false

> fi;

this will always be printed

> flag:
true

So the two assignment statements may be moved into one onsuccess clause.

> if 1 =2 then

> print('this will never be printed";
> elif 1 = 1 then

> print('this will always be printed");
> onsuccess

> flag :=true

> else

> flag :=false

> fi;

this will always be printed

> flag:
true

5.1.2 if Operator

The if operator checks a condition and returns the respective expression.

if condifion then expression; else expression, fi

This means that the result is expression, it condition is frue or any other value except
false, fail, or null; and expression., otherwise.

Example:

> x := if 1 = 1 then true else false fi:
true

which is the same as:

>if 1 =1 then
> X :=true
> else

> x:=false
> fi;

120 5 Control

The if operator only evaluates the expression that it will return. Thus the other
expression which will not be retuned will never be checked for semantic
correctness, e.g. out-of-range string indices, etc. You may nest is operators.

The if operator cannot return multiple values, only one.

5.1.3 case Statement

The case statement facilitates comparing values and executing corresponding
statements. There exist two variants, the first one is:

case name
[of valuey, [, values,, ---] then sfatements,
[of value,, to value,, then statements,]
[Oof -]
[onsuccess - |
[else statements,]
esac
>a: ="k}
> case a
> of'a','e','l",'0, 'u, 'y then result := ‘vowel'
> else result := 'consonant’
> esac;
> result:
consonant

You can add as many of/then statements as you like. Fall through is not supported.
This means that if one then clause is executed, Agena will not evaluate the
following of clauses and will proceed with the statement right after the closing esac
keyword.

Instead of passing one or more individual values, you can also check whether a
numiber x or the first character of a - non-empty - string x is part of a range a fo b,
i.e.a<x<b.Onetorange is allowed per of clause.

>a:=0;

> case a

> of -1 then result :=-1

> of 0to 10 then result := 10
> of'a'to'c'then result :=0
> esac;

As with the if statement, if an onsuccess clause is given, and in case one of the
conditions results to true, the statements in the onsuccess branch are executed.
This allows to move code common fo all then clauses into one single branch,
reducing the code size.

agena >> 121

If none of the of conditions is satisfied, and if an else clause is given, then the
respective else statements are processed, otherwise Agena executes the code
following the esac token.

ccse Check Vdue
then
of @ yes—>| Block1

then
of @ yes—>| Block2

no
else Block3

l Oonsuccess
esac < Block4 [«

The second variant is exactly equal to the if statement but may improve the
readability of programme code.

case
of condition, then stafements,
[of condition, then stafements,)
[of .-]
[onsuccess - |
[else statements,]

esac

> x = Pi;

> case

> ofx<Othens:=-1

> ofx=0thens:=0

> ofx<Othens:=1

> else error('This should not happen.")
> esac;

122

5 Control

| Loop Header | while

<G>

frue

next *
fferation Block

fal

Y

Loop End

1

se

«

od

quit
loop
iterafion

With both variants, instead of the then
keyword the -> token can be used.

5.2 Loops

Agena has three basic forms of
control-flow statements that perform
looping: while and for, each with
different variations.

5.2.1 while Loops

A while loop first checks a condition
and if this condition is true or any
other value except false, fail, or null, it
iterates the loop body again and
again as long as the condition
remains true.

If the condition is false, fail or null, no further iteration is done and conftrol returns to
the statement following right after the loop body.

If the condition is false, fail, or null from the start, the loop is not executed at all.

while condition do
statements

od

Thus the programme flow is as shown in the diagram.

The following statements calculate the largest Filbonacci numiber less than 1000.

>a:=0;b:=1;
le b <1000 do

b;
a+b;
c

> whi
> C
> b
> a
> od;

>cC:
987

The following loop will never be executed since the condition is false:

> while false do
> print('never printed')
> od;

agena >> 123

Variations of while are the do/as and do/until loops which check a condition at the
end of the iteration, and thus will always be executed at least once.

In the do/as variant, as long as the condition evaluates to true, the loop is not left.

do
statements
as condition

>c:=0;

> do

> incc
>asc<10;
> C:

10

do/until loops are iterated until the given condition is met.

do
statements
until condition |>c:=0;

>do
> incc
> until ¢ > 10;
Loop Header do
> C:
11 next (
iferation
. o B lock
Another flavour of the while loop is the infinite
do/od loop which executes statements e
infinitely and can be interupted with the as
break or return statements. See Chapter until
5.2.10 for further information on the break _
statement. It is synfactic sugar for the while O O
true do/od construct. U”“'Jf“e
Loop End
do
statements

od
>i:=0;
>do
> inci;
> if i > 3 then break fi;
> print(i)

> od;

124 5 Control

for loops are used if the numiber of iterations is known in advance. There are for/to
loops for numeric progressions, and for/in loops for table and string iterations.

5.2.2 for/to Loops

Let us first consider numeric for/to loops which use numeric values for control.

for name [from sfarf] [to sfop]
[by step] do
statements

od

name, start, stop, and step are all numeric values or must evaluate to numeric
values.

The statement at first sets the variable name to the numeric value of starf. name is
called the confrol or loop variable. If start is not given, the start value is +1.

When leaving out the to clause, the loop iterates until the largest number
representable on your platform has
been reached.

/_¢ﬁ It then checks whether sfarf < stop.

Loop Header numericfor it s5 it executes statements and

v refurns to the top of the loop,
increments name by step and then
checks whether the new value is
less or equal stop. If so, statements

are executed again. If step is not
ame > stop) . . .
quit given, the control variable is always
loop

name : = start

Herction incremented by +1.
false
\ > forifrom1to3by1do
next > print(i, i*2, i"3)
iteration Block > od;
1 1 1
¢ tue 2 4 8
name .= 3 9 27
name + step
¢ > forito 3 do
> print(i, i*2, i"3)
Loop End od > od;
1 1 1
< 2 g 8

3 27

agena >> 125

The control variable of a loop is always accessible to its surrounding block, so you
may use its value in subsequent statements. This rule aqpplies only 1o
for/from/to-loops with or without a while, as, or until extension. Note that within
procedures, the loop control variable is automatically declared local, while on the
interactive level, it is global.

> for i while fact(i) < 1k do od
>
7

The following rules apply to the value of the control variable after leaving the loop:

1. If the loop terminates normally, i.e. if it iterates until its stop value, then the value
of the control variable is its stop value plus the step size.

2. If the loop is left prematurely by executing a break statement' within the loop,
or if a for/while loop is terminated because the while condition evaluated 1o
false (see Chapter 5.2.8), then the control variable is set to the loop's last
iteration value before quitting the loop. There will be no increment with the loop's
step size. The same applies to for/as and for/until loops (see Chapter 5.2.9).

Loops can also count backwards if the step size is negative (see also the next
chapter):

> forifrom2to1by-1do
> print(i)

> od

2

1

A special form is the to/do loop which does not feature a control variable and
iterates exactly n times.

>to 2 do

> print(iterating')
> od

iterating

iterating

Agena automatically uses an advanced precision algorithm based on Kahan
summation if the step size is non-integral, e.g. 0.1, -0.01. This mostly prevents
round-off errors and thus avoids that the loop stops before the last iteration value
(the limit) has been reached and that iteration values with round-off errors are
returned. You may switch Agena into the Kahan-Ozawa mode to use an extended
round-off prevention algorithm by issueing the statement in a session:

> environ.kernel(kahanozawa = true);

1% See Chapter 5.2.8 for more information in the break statement,

126 5 Control

Please note that both modes are not always failsafe.

If the step size is an infeger, e.g. 1000, -1.0, then Agena does not use advanced
precision to ensure maximum speed.

5.2.3 for/downto Loops

count from a start value down to a stop value, with a default countdown step size
of (implicit minus) one. To count down, the optional step size should be positive.

for name from start downto stop [by sfep] do
statements
od

5.2.4 for/in Loops over Tables

are used to traverse tables, strings, sets, and sequences, and also iterate functions.

If null is passed after the in keyword, or if the value evaluates to null, then Agena
does not execute the loop and continues with the statement following it.

Let us first concentrate on table iteration.

for key, value in tbl do
statrements
od

The loop iterates over all key~value pairs in table bl and with each iteration assigns
the respective key to key, and its value to value.

>a:=[4,5, 6]
>fori,jinado
> print(, j)

> od

1 4

2 5

3 6

There are two variations: When putting the keyword keys in front of the control
variable, the loop iterates only on the keys of a table:

for keys key in tbl do
statements
od

agena >> 127

Example:

> for keysiinado
> print(i)

> od

1

2

3

The other variation iterates on the values of a table only:

for value in tbl do
statements
od

> foriin ado
> print(i)

> od

4

5

6

The control variables in for/in loops are always local to the body of the loop (as
opposed to numeric for loops). You may assign their values to other variables if you
need them |ater.

You should never change the value of the control variables in the body of a loop -
the result would be undefined. Use the copy operator to safely traverse any
structure if you want to change, add, or delete its entries.

Because of the implementation of tables, please note that the keys in a table are
not necessarily fraversed in ascending order. You may want fo iterate sequences or
implement and linked list (see Chapter 6.27).

5.2.5 for/in Loops over Sequences

All of the features explained in the last subchapter are applicable to sequences, as
well.

5.2.6 for/in Loops over Strings

If you want to iterate over a string character by character from its left to its right, you
may use a for/in loop as well. All of the variations are supported.

for key, value in string do sftatements od

for value in sfring do sfatements od

for keys value in string do sfatements od

128 5 Control

The following code converts a word fo a sequence of abstract vowel, ligature, and
consonant place holders and also counts their respective occurrence:

> str ;= 'eefter’;
> result ;= ";
>c,v,|->0;

> for i in str do

> casei

> of 'a’, 'e', 'I', '0', 'u' then

> result ;= result & 'V';

> incv

> of ‘&', ‘&', '@g', '6' then

> result ;= result & 'L

> inc |

> else

> result := result & 'C'

> inc c

> esac

> od;

> print(result, v & ' vowels', | & ' ligatures', ¢ &' consonants’);
LCCcvC 1 vowels 1 ligatures 3 consonan ts

5.2.7 for/in Loops over Sets

All for loop variations are supported with sets, as well. The only useful one, however,
is the following:

> sister := {'swistar', 'sweastor’, 'svasar’, 'sist er}

> for i in sister do print(i) od;
svasar

swistar

sweastor

sister

You may try the other loop alternatives to see what happens.

5.2.8 for/in Loops over Procedures

The following procedure, called an iterator, returns a sequence of values multiplied
by two. If state = n, then the procedure retuns null which quits the for/in iteration.
See Chapter 6 which describes procedures in detail.

> double := proc(state, n) is
> if n < state then
> inc n;

> return n, 2*n
> else

> return null

> i

> end;

> for i, j in double, 5, 0 do
> print(i,)
> od

agena >> 129
1 2
2 4
3 6
4 8
5 10
5.2.9 for/while Loop s
Loop Header numeric All floyours .of for lloops cgn be
for/while combined with a while condition. As
v long as the while condifion is
name : = start satisfied, the for loop iterates. To be
more precise, before Agena stars
the first iteration of a loop or
ame > stop confinues with the next iteration, it
checks the while condition to be
e frue or any other value except false,
auit fail, or null.
loop
fteration
Condition An example:
tue > for x to 10
v > while In(x) <=1 do
fue > print(x, In(x
hed Block >Odp (x, In(x))
iteration 1 0
v folse > 0.69314718055995
name .=
+ st :
e T =P Regardiess of the value of the while
od condition, the loop control variables
Loop End are always initiated with the start
values: with for/to loops, aQ is

assigned to i (or 1 if the from clause
is not given); key and/or value are
assigned with the first item in the

table, set, or sequence sfruct or the first character in string sfring.

for i [from Q] to b [by step] while condition do statements od
for [key,] value in sfruct while condifion do statements od
for keys key in sfruct while condition do statements od
for [key,] value in sfring while condition do statements od
for keys key in sfring while condition do statements od

130

5 Control

5.2.10 for/as & for/until Loop's

As with the optional while clause, all flavours of for loops can be combined with an

as or an until condition.

In these cases, a loop is always iterated at least once, and after the first iteration is
completed, Agena checks the given condition and decides whether to start the

next iteration or to leave the loop.

In the following example, the for/as loop starts with /=0 and since the first check to

the as condition results to true,
the next iteration with i=1 s
conducted. The next check to
the as condition results 1o false,
thus the loop quits.

> for x from 0 do
> print(x, 10"X)
>as 10 <10
0 1

1 10

The next loop iterates three
fimes, until i=2, since only then
the until condition becomes
frue.

> for x from 0 do
> print(x, 10"x)
> until 10”x > 10

0 1
1 10
2 100

next
iterction

—

numeric
Loop Header for/as funtil
name ;. =start
fdse
Block
A
name ;.=
name +step true
Condition quit
loop
iteration
cs: fdse
until: frue
Loop End I od

agena >> 131

5.2.11 Loop Jump Control

Agena features statements to manipulate loop execution. skip and break are
applicable to all loop types, whereas redo and relaunch work in for loops only.

The skip statement causes another iteration of the loop to begin at once, thus
skipping all of the loop statements following it.

The break statement quits the execution of the loop entirely and proceeds with the
next statement right after the end of the loop.

>forito5do

> if i = 3 then skip fi;
> print(i)
> if i = 4 then break fi;

> Loop Header [« > od:
inttiate 1
next 2
iteration 4
skip
ot This is equivalent to the following
iteration statement:
break
> forito 5 while i <5 do
> if i = 3 then skip fi;
it > print(i)
loop > od;
Loop End immediately 1
2
4
(—

>a:=0;

> while true do

> inca;

> if a>5 then break fi;
> if a < 3 then skip fi;
> print(a)

> od;

3

4

5

There exists syntactical sugar for both the skip and the break statements: instead of
pufting these statements into if clauses, just add the when token along with a
condition to the respective keyword.

>a:=0;

> while true do

> inca;

> break when a > 5;
> skipwhena<3;
> print(a)

> od;

132

5 Control

3
4
5

In for/to and for/in loops, the
redo statement is similar to
skip: it jumps back to the
beginning of the loop but does
not change the loop control
variable in for/fo loops or the
index/value control variables in
for/in loops. Thus, it restarts the
current iteration from the
beginning, Af restart, it does,
however, check an opfional
while condition, if present.

> flag := true;

> forjin[10, 11, 12] do
print(j, flag);
if flag and j = 11 then
clear flag;
print(j, flag,
'jump back")
> redo
> Ai;
> until j > 12;

\Y

V V V

10 true

11 true

11 false jump back
11 false

12 false

next
iteration

for Header
< restart
current
redo iteration
initiate
next
iteration
Skip
restart loop
relaunch
break
Quit
loop
for End irmediately
<«

The relaunch statement completely restarts a for/to and for/in loop from its very
beginning, i.e. resets the current control variable to its start value (from clause or first

element, respectively).

> flag := true;

> forjin[10, 11, 12] do
> print(j, flag);

> ifflag andj= 11 then
> clear flag;
>
>
>

print(j, flag,
'restart’)

relaunch

> fi;

> until j > 12;

10 true

11 true

11 null restart

10 null

11 null

12 null

agena >> 133

5.2.12 with Statement for Dictionaries

The with statement unpacks values indexed by string keys from a table, declares
them local and then is able to access them in a block. The new names are
variables on their own and do not refer to the indexed values in the table:

with key, [, key,,, ---] in tfablename do
statements
od

> zips :=['duedo’ ~ 40210:40629,
> bonn =53111:53229,
> cologne = 50667:51149];

> with duedo, bonn in zips do

> print(duedo, bonn, cologne);

> duedo := null; # zips.duedo is not changed
> print(duedo)

> od;

40210:40629 53111:53229 null

null

> zips.duedo:
40210:40629

The with statement unpacks values indexed by string keys from a table, declares
them local and then is able to access them in a block. The new names are
variapbles on their own and do not refer to the indexed values in the table.

Another flavour of the with statement has the following syntax:

with fablename do
statements
od

Within the body of this variant, the table tablename can be referenced by just an
underscore. It also allows to actively change values in fablename. Example:

> zips := [duedo = 4000, bonn = 5300]

> with zips do

> print(_.bonn);

> .bonn:=53111
> od

5300

> zips:
[bonn ~ 53111, duedo ~ 4000]

134 5 Control

agena >> 135

Chapter Six

Programming

136 6 Programming

agena >> 137

6 Programming

Writing effective code in a minimum amount of time is one of the key features of
Agena. Programmes are usually represented by procedures. The words
‘procedure” and “function® are used synonymously in this text.

6.1 Procedures

In general, procedures cluster a sequence of statements into abstract units which
then can be repeatedly invoked.

Writing procedures in Agena is quite simple:

procname = proc([par, [::fypeq] [, par: [::itype,], - 1]) [i: returntype] is
[local name; [, namey,--- i
statements

end

All the values that a procedure shall process are given as parameters par,, etc. A
function may have no, one, or more parameters. A parameter may be succeeded
by the name of a type (see Chapter 6.8.2), or a set of up to four types, that an
argument must satisfy when the procedure is called.

If a type is given right after the parameter list, Agena checks whether the retumn of
the procedure is of the given return type, which may also be a user-defined type.
The is keyword is obligatory.

A procedure usually uses local variables which are private to the procedure and
cannot be used by other procedures or on the Agena interactive level.

Global variables are supported in Agena, as well. All values assigned on the
inferactive level are global, and you can also creafe global variables within @
procedure. The values of global variables can be accessed on the interactive level
and within any procedure.

A procedure may call other functions or itself. A procedure may even include
definitions of further local or global procedures.

The result of a procedure is retfumned using the return keyword which may be put
anywhere in the procedure body, and which also immediately terminates further
execution of the procedure.

retun [value [, values, - 1]

As you can see, you may not only return a single result, but also multiple ones, or
none at all.

138 6 Programming

Furthermore, a procedure does noft return anything - not even the null value -

* if no return statement is given at all,
* if nO values are passed to the return statement.

The following procedure computes the factorial of an integer':

> restart;

> fact := proc(n) is
> # computes the factorial of an integer n
> if n <0 then return fall

> elif n=0thenreturn 1

> else return fact(n-1)*n

> fi

> end;

It is called using the synfax:

funcname(largs [, argz,--- 1))

> fact(4):
24

where the first parameter is replaced by the first argument arg,, the second
parameter is substituted with arg,, etc.

A when clause can be added to a return statement that does not pass any values
including null. In this case, the execution of a function is being finished if the
Boolean when condition has been satisfied, e.9. return when x <> 0

Last of all, procedures can alternatively e defined as follows:

proc procname([par, [::fypeq] [par:[:fypes], - 1) [i: returntype] is
[local name, [, namey,--- |
statements

end

Thus, the factorial function can also be entered as follows:

> proc fact(n) is

> if n <0 then return fail
> elifn=0thenreturn1
> else return fact(n-1)*n
> fi

> end;

*The library function fact is much faster,

agena >> 139

6.2 Local Variables

The function above does not need local variables as it calls itself recursively.
However, with large values for n, the large number of unevaluated recursive
function calls will ultimately cause stack overflows. SO we should use an iterative
algorithm fo compute the factorial and store infermediate results in a local variable.

A local variable is known only to the respective procedure and the block where it
has been declared. It cannot be used in other procedures, the interactive Agena
level, or outside the block where it has been declared.

A local variable can be declared explicitly anywhere in the procedure body, but at
least before its first usage. If you do not declare a variable as local and assign
values later to this variable, then it is global. Note that control variables in for loops
are always implicitly declared local to either their surrounding (for/to loops) or inner
block (for/in loops), so we do not need to explicitly declare them.

Local declarations come in different flavours:

local name, [, name,, -+ |
local name; [, name,, - | := value, [, value,, ---]
local name, [, name,, -+]-> value
local enum name; [, name,, ---] [from value]
local key; [, key,, ---]in tablename

In the first form, name,, etc. are declared local.

In the second and third form, name,, etc. are declared local and, as opposed 1o
the first form, followed by initial assignments of values to these names.

In the fourth form, name,, etc. are declared local with a subsequent enumeration
of those names, i.e. assignment of ascending positive integers to these names.

In the last form, table values are unpacked using syntactic sugar for the key,, key,
= fablename.key,, tablename.key,, etc. assignment statement, with key,, key.,
etc. being automatically declared local.

Let us write a procedure to compute the factorial using a for loop. To avoid
unnecessary loop iterations when the intermediate result has become so large that
it cannot be represented as a finite numiber, we also add a clause to quit loop
iteration in such cases.

> fact := proc(n) is
if n < 0 then return fail fi;
local result := 1;
for i from 1 to n do
result ;= result * i
if not finite(result) then break fi
od;

VVVYVYVYV

140 6 Programming

> return result
> end;

> fact(10):
3628800

Since result has been declared local so it has no value at the interactive level.

> result:
null

There is a shortcut to create local structures - tables, sets, and sequences:

create local <sfructure> name;, [, <structure> name,, --- |

where <sfructure> might be the keyword table, set, or sequence. You can declare
different local structures with one create local statement.

A useful function is environ.globals which determines global variable assignments
inside procedures and helps to find those positions where a local declaration has
been forgotten.

6.3 Global Variables

Global variables are visible to all procedures and the interactive level, such that
their values can be queried and altered everywhere in your code.

Using global variables is not recommended. However, they are quite useful in order
to have more control on the behaviour of procedures. For example, you may want
to define a global variable _EnvMorelnfo that is checked in your procedures in
order to print or not to print information to the user.

Global variables can be indicated with the global keyword. This is optional,
however, and only serves documentary purposes.

> fact := proc(n) is

> global _EnvMorelnfo;

> if n <0 then return fail fi;
> |ocal result ;= 1;

> forifrom 1tondo

> result ;= result * i

> if result = infinity then
> if _EnvMorelnfo then print('Overflow !') fi;
> break

> fi
> od;
> return result
> end;

We must assign _EnvMorelnfo any value different from null, fail, or false in order to
get a warning message af runtime.

agena >> 141

> EnvMorelnfo ;= true;

> fact(10000):

Overflow !

infinity

6.4 Changing Parameter Values

You can assign new values to procedure parameters within a procedure. Thus, an
alfernative to the abs operator might be:

> myAbs := proc(x) is
> ifx<0then

> X 1= -X
> fi;
> return X
> end;

> myAbs(-1):
1

6.5 Optional Arguments

A function does not have 1o be called with exactly the number of parameters given
at procedure definition. You may also pass less or more values. If no value is
passed for a parameter, then it is automatically set 1o null at function invocation. If
you pass more arguments than there are actual parameters, excess arguments are
ignored.

For example, we can avoid using a global variable to get a warning message by
pAssing an optional argument instead.

> fact := proc(n, warning) is
if n < 0 then return fail fi;
local result := 1;
for i from 1 to n do
result ;= result * i
if result = infinity then
if warning then print(‘Overflow !) fi;
break
fi
od;
return result
end;

VVVVVVVVVVYV

> fact(10000):
infinity

The option should be any value other than null, false, or fail to get the effect.

> fact(10000, true):
Overflow !
infinity

142 6 Programming

A variable numiber of arguments can be passed by indicating them with a question
mark in the parameter list and then querying them with the varargs system table in
the procedure body.

> varadd := proc(?) is
> local result := 0;

> forito size varargs do
> inc result, varargsi]
> od;

> return result

> end;

> varadd(l, 2, 3, 4, 5):

15

You may determine the numiber of arguments actfually passed in a procedure call
by querying the system variable nargs inside the respective procedure. A variant of
the above procedure might thus be:

> varadd := proc(?) is
> local result := 0;

> forito nargs do

> inc result, varargsi]
> od;

> return result

> end;

> varadd(l, 2, 3, 4, 5):
15

Let us build an extended square root function that either computes in the real or
complex domain. By default, i.e. if only one argument is given, the real domain is
taken, otherwise you may explicitly set the domain using a pair as a second
argument.

> xsqrt := proc(x, mode) is
> if nargs = 1 or mode ='domain":"real’ then
> return sqrt(x)

> elif mode = 'domain".'complex’ then
> return sqrt(x + 0*l)
> else

> return fail

> fi

> end;

> xsqrt(-2):
undefined

> xsqrt(-2, 'domain’:'real’):
undefined

If the left-hand value of the pair in a function call shall denote a string, you can
spare the single quotes around the string by using the = token which converts the
left-hand name to a string'’.

171 you need o conduct a Boolean equality operation in a function call, such like fa=b) , use the
isequal function, like f(isequal(a, b))

agena >> 143

> xsqrt(-2, domain = 'complex’):
1.4142135623731%

6.6 Passing Options in any Order

We can combine the varargs facility with the usage of pairs in order to pass one or
more optional arguments in any order.

f:=proc(?) is
local bailout, iterations := 2, 128; # default values
for i to nargs do
case left(varargsli])
of 'bailout' then
bailout := right(varargs]i]);
of 'iterations' then
iterations := right(varargsli]);
else
print ‘'unknown option’
esac
od;
print(‘bailout = ' & bailout, 'iterations =" & iterations)
end;

> f();

bailout=2 iterations = 128

VVVVVVVVVVYVYVYVYV

> f('bailout:10);

bailout =10 iterations = 128
> f('iterations':32, 'bailout':10);
bailout =10 iterations = 32

Again, the single quotes around the name of the option (left-hnand side of the pair)
can be spared by using the = token which converts the given name to a string.

> f(bailout = 10, iterations = 32);
bailout =10 iterations = 32

Sometimes, implementing checks on options may take a substantial amount of
programming fime, so please have a look at the checkoptions function which may
save up to 20 % of code. You might see Chapter 7.1 for further details.

6.7 Type Checking

Although Agena is untyped, in many situations you may want to check the type of a
certain value passed to a function. Agena has four facilities for this:

the type operator determines the basic type of its argument;

the typeof operator checks for a basic or user-defined type;

the :: operator evaluates a value for a given type or user-defined type;

the :- operator checks whether a value is not of a given type or user-defined

type;

o~

144 6 Programming

5. basic or user-defined types can be optionally specified in the parameter list of a
procedure by means of the preceding :: token so that they will be checked af
procedure invocation, see Chapter 6.8.2;

6. the type or types of retunn of a procedure may be given right after the
parameter list, see Chapter 6.8.3.

The following standard types are available in Agena:

boolean, complex, lightuserdata, null, number, p air, procedure,
register, sequence, set, string, table, thread, userdata.

These names are reserved keywords, but with the exception of the null constant
evaluate fo strings so that they can be compared with the result of the type
operator that returns the type of a value as a string:

type(value)

> type(1):
number

> type(1) = number:
true

The only exception to the above is when checking for the type of anything
evaluating to null. In this case, put the null constant into quotes:

>a :=null;

> type(a) = 'null”:
true

The :: and :- operators check whether their arguments are or are not of a specific
type - or user-defined type - and return true or false. They are speed-optimised and
around 20 % faster than comparing the return of the type operator with a type
name, as shown in the example above.

value :: fypename
value :- fypename

Examples:

> 1 :: number:
true

>'1':- number:
true

In case of user-defined types, the type name must always be a string put into
quotes. See Chapter 6.12 for more information.

agena >> 145

6.8 Error Handliing

6.8.1 The error Function

The error function immediately terminates execution of the procedure, and prints
an error message if given.

error(‘error string')

> fact := proc(n) is

if n :- number then
error('number expected’)

fi;
if n <0 then return null
elif n = 0 then return 1
else return fact(n-1)*n
fi

end;

VVVVVYVVYV

> fact('10"):
Error: number expected

Stack traceback:
stdin, at line 3, at line 1

6.8.2 Type Checks in Procedure Parameter Lists

You may optionally specify permitted types in the parameter list of a procedure by
using double colons:

> fact := proc(n :: number) is
> if n <0 then return null
> elifn=0thenreturn 1

> else return fact(n-1)*n

> A

> end;

> fact('10"):
Error in stdin:
invalid type for argument #1: expected number, g ot string.

This form of type checking is more than twice as fast as the ifitype/error
combination. If the argument is of the corect type, Agena executes the
procedure, otherwise it issues an error. Agena will also return an error if the argument
is not given:

> fact()
Error in stdin:
missing argument #1 (type number expected).

Finally, argerror is a little bit ssarter than error for it automatically indicates the type
of an argument actually passed to a procedure in its error message.

>a:=1;

146 6 Programming

> if a ;- string then

> argerror(a, 'myproc', 'expected a string')

> fi

Error in ‘myproc’: expected a string, got number.

Furthermore, you may specify a set of one to four allowed basic types for any
parameter with the set notation:

sec ;= proc(x :: {number, complex}) is
return 1/cos(x)
end;

6.8.3 Checking the Type of Return of Procedures

Agena can check whether all returns of a procedure are of a give type by
specifying this return type right after its parameter list.

> fact := proc(n :: number) :: number is
> if n <0 then return undefined

> elifn=0thenreturn1

> else return fact(n-1)*n

> i

> end;

> fact(10):
3628800

If one of the returns is not of the return type, the procedure issues an error.

> fact := proc(n :: number) :: number is
> if n < 0 then return undefined

> elfn=0thenreturn 1

> else return 'don\'t know'

> i

> end;

> fact(10):
Error in stdin, at line 5:
‘return” value must be of type number, got strin g.

Stack traceback:
stdin, at line 5, at line 1

You can define up to four basic types that are allowed to be returned by putting
them in curly brackets, just like in parameter lists:

> f:= proc(x) :: {number, complex} is return 'a' e nd
> 1()
In stdin at line 1:

Error in “return’; unexpected type string in ret urn.

If you would like to automatically check structures for proper content at function
invocation, please have a look at the end of Chapter 6.19.

There are other functions for error handling:

agena >> 147

6.8.4 The assume Function

assume checks a Boolean relation. In case the relation is valid, it returns frue and all
other arguments given. In case of an invalid relafion, it ferminates execution of the
procedure and prints an eror message. The second argument to assume is
optional; if not given, the text “assumption failed" is returned with invalid relations.

assume(relation [, ‘error string'])

>assume(l=1,'lis not1):
true lisnotl

>assume(l<>1,'lis1"):
Error in "assume™ 1 is 1.

Stack traceback: in “assume”
stdin, at line 1 in main chunk

6.8.5 Trapping Errors with protect/lasterror

protect traps any error, but does not terminate a function call. In case of no errors, it
returns all results of the call. In case of an eror, it returns the error message as a
string and also sets the global variable lasterror to this error message. In case of a
successful call, lasterror is always nuill.

protect accepts the name of the function f o be executed as its first argument,
and all arguments a, b, .- of f as optional arguments:

protect(f[, a [, b, 1))

Thus, if a function has no arguments, simply pass the expression protect(f)

> iszero := proc(X) is
if x <> 0 then
error(‘'argument must be zero')
else
return true
fi
end;

VVVYVYVYV

To call iszero in protected mode, enter:

> protect(iszero, 0):
true

> |asterror:
null

> protect(iszero, 1):
argument must be zero

> |asterror:
argument must be zero

148 6 Programming

To conveniently check whether an error occurred, you might enter:

> protect(iszero, 0) = lasterror:
false

> protect(iszero, 1) = lasterror:
true

Note that protect does not directly work with operators, instead you may include a
call to an operator in a new function:

> mycopy = proc(x) is
> return copy(x)
> end;

> protect(mycopy, 1:1) = lasterror:
true

6.8.6 Trapping Errors with the fry/catch Statement

Instead of intercepting errors with protect and lasterror, you may use the try/catch
statement:

fry
statements,
[catch [errvar then]
statements)]

yrt

Any statements statements; may e put right after the try keyword. If an error occurs
in one of these statements, Agena immediately jumps to the catch clause if
present, ignoring any subsequent statements in stafements,. If there is no catch
clause, execution immediately continues with the statement after the yrt keyword,
regardless of whether an eror occurred or nof, also ignoring all subsequent
commands in sfatements;.

If a catch clause is given, then in case of an error the error message is stored to the
local variable errvar, and after that the statements statements, after the then
keyword are processed. errvar does not need to be declared, it is implicitly local 1o
the catch clause only. You may also leave out specification of an error variable - in
this case the error message is automatically stored to the local lasterror variable,
and the then keyword must be left out.

Examples:

> try

> error('Oops !);

> print(Invalid index ")
> yrt;

agena >> 149

As shown above, due to the immediate jump out of the try body, the print function
is not called. In the next example, the eror message is stored to the variable
message, and in the catch clause it is then printed at the console.

> try
> error('Oops !);

> print(Invalid index ")

> catch message then

> print('The error was: ' & message);
> yrt;

The error was: Oops !

> message:
null

Now we do not specify an error variable in the catch clause:

> try
> error('Oops !);

> print(Invalid index ")

> catch

> print('The error was: ' & lasterror);
> yrt;

The error was: Oops !

6.9 Multiple Returns

As stated before, a procedure can return no, one, or more values. Just specify the
values to be returned:

> f:=proc() is
> a:=2;

> returnl, a
> end;

> £():
1 2

There are two ways to refer to these multiple returns in sulbbsequent statements. If you
assign the return to only one variable, e.Q.

>m :=f():
1

the second return is lost, so enter:

>m, n :=f();

A function may return a variable number of values, so it might be useful to put them
in a sequence or table:

150 6 Programming

> seq(f()):
seq(l, 2)

Sometimes a procedure shall only return the first result of a computation only. In this
case, put the call that results into multiple returns into brackets. math.fraction returns
three values: the numerator, the denominator, and the accuracy, in this order. Let
us write a numerator function that only returns the first result of math.fraction.

> numerator := proc(x :: number) is
> return (math.fraction(x))

> end;

> numerator(0.1):

The ops function refums all its arguments after argument number index, an integer.

ops(index, arg; [, argz,)

The following statement determines the denominator and the accuracy.

> ops(2, math.fraction(0.1)):
10 O

To return only the first result, the denominator, put the call to ops in brackets.

> denominator := proc(x :: number) is
> return (ops(2, math.fraction(x)))
> end;

> denominator(0.1):
10

unpack retuns all elements in a table or sequence:

> squared := proc(t :: table) is

> local result ;== << x ->x"2>> @ t;
> return unpack(result)

> end;

> squared([1, 2, 3, 4]):
1 4 9 16

Optionally, unpack accepts the positions of the first to the last element to be
returned as its second and third argument. If only the second argument is given, all
elements in a structure from the given position are determined.

unpack(structure [, beginning [, end]])

> squared := proc(t :: table, ?) is

> local result ;= << x ->x"2 >> @ t;

> return unpack(result, unpack(varargs))
> end;

agena >> 151

> squared([1, 2, 3, 4], 2):
4 9 16

> squared([1, 2, 3, 4], 2, 3):
4 9

6.10 Procedures that Return Procedures

Besides returning numlboers, strings, tables, etc., procedures can also refurn new
procedures. As an example, the function polygen

> polygen := proc(?) is
local s := seq(unpack(varargs));
return proc(x) is
local r := bottom(s);
for i from 2 to size s do
ri=r*x + gi]
od;
return r
end
end;

VVVVVVVVYV

returns a procedure to evaluate a polynomial of degree n from the given
coefficients cn, Co1, ==+ 4 Cas Cy

<<X)->¢c X" H e X"+ 0+ e*x+c g >>
In the following example, polygen creates the polynomial 3x? — 4x+1as a procedure.

> f .= polygen(3, -4, 1)
> f(2):
5

6.11 Shortcut Procedure Definition

If your procedure consists of exactly one expression, then you may use an abridged
syntax if the procedure does not include statements such as if/then, for, insert, etc.

<< ([[poar [:: typei] [, par: [typez], -+ 1] [)] -> expr >>

As you see, optional basic and user-defined types can be specified in the
parameter section.

Let us define a simple factorial function.

> fact := << (x :: number) -> exp(Ingamma(x + 1)) > >

> fact(4):
24

Brackets around parameters are optional, even if you specify types.

152 6 Programming

> isInteger = << X -> int(x) = x >>;

> isinteger(1):
true

> isinteger(1.5):
false

Passing optional arguments using the ? notation is supported. In this case, use the
varargs table as described above.

6.12 User-Defined Procedure Types

The settype function allows to group procedures proc;, proc,, --- , by giving them a
specific type (passed as a string) just as it does with sequences, tables, sets, and
pAirs.

settype(proc, [, proc,, -+], 'your_proctype')

User-defined procedures can be queried with the typeof operator which returns a
string.

>fi=<<x->1>>;
> settype(f, ‘constant’);

> typeof(f):
constant

> type(f): # only returns the basic type
procedure

The .. and :- operators can also validate a user-defined procedure type. Pass the
name of the user- defined type as a string:

proc, :: 'your_proctype'
proc; :- 'your_proctype'

> f :: 'constant":
true

> f ;- 'constant':
false

Note that the type operator only checks for basic types.

An alternative to typeof is the gettype function. If a user-defined has been seft, then
it returns its name as a string, otherwise, it returns null.

If you want to check whether user-defined types have been passed to a
procedure, you may use the double colon notation in its parameter list.

agena >> 153

Suppose you have defined a type called triple

>t:=][1, 2, 3]
> settype(t, 'triple’)

> sum := proc(x :: triple) is
> return sadd(x)
> end

> sum(t):

6.13 Scoping Rules

In Agena, variables live in blocks or “scopes . A block may contain one or more
other blocks. A local variable is visible only to the block in which it has been
declared and to all blocks that are part of this block. Thus, variables declared local
in inner blocks are not accessible to the outer blocks.

Procedures, if- and case-statements, while-, do- and for-loops create blocks, or
more precisely, a block resides between:

then and elif, else, or fi keywords - in if statements;

then and of, else, or esac keywords - in case statements;

do and as - in do/as loops;

do and od - in for and while 100ps;

is and end - in procedures;

scope and epocs - in scope blocks (including the with statement; see below).

ok~

As an example, variables declared as local within procedures are only visible to the
block in which they have been defined. Especially, they cannot be accessed from
outside the procedure in which they are hosted.

Variables declared as local in the then clauses of an if-statement live only in the
respective then part. The same applies to variables declared locally in else clauses.

> f .= proc(x) is

> ifx>0then

> local i := 1; print('inner, i)
> else

> local i := 0; print('inner', i)
> Ai;

> print(outer’, i) #iis not visible
> end;

> f(1);

inner 1

outer null

Variables declared as local in for- or while-loops are only accessible in the bodies
of these loops. The loop control variables of for/to-loops are automatically declared
local to their surrounding block, while control variables of for/in-loops are implicitly
declared local to the respective loop bodies.

154 6 Programming

f:=proc(x) is
while x < 2 do
local i :=x
inc x
print(‘inner’, i)
od;
print('outer’, i) #iis not visible
end;

VVVVVYVVYV

> f(1);
inner 1
outer null

A special scope can e declared with the scope and epocs statements:

scope
declarations & statements
epocs

The next example demonstrates how it works:

f:=proc() is
local a :=1;
scope
local a := 2;
writeline('inner a: ', a);
epocs;
writeline('outer a: ', a);
end;

> f()

inner a: 2
outer a: 1

VVVVVYVVYV

The scope statement can also be used on the interactive level to execute a
sequence of statements as one unit, Compare

> print(1);
1
> print(2);
2

> print(3);
3

with

> scope
> print(1);
> print(2);
> print(3)
> epocs;
1

2

3

agena >> 155

6.14 Access to Loop Control Variables within Procedures

As dlready mentioned, the control variable of a for/to loop is always local to the
body surrounding the loop.

> mandelbrot := proc(x, v, iter, radius) is

> locali,c, z;

> z:=xly;

> c:=z

> forifrom O to iter while abs(z) < radius do
> z:=72"2+¢C

> od;

> returni # return the last iteration value

> end;

The procedure counts and returns the number of iterations a complex value z takes
fo escape a given radius by applying it to the formula z = z™ 2+c.

> mandelbrot(0, 0, 128, 2):
129

The following example demonstrates that local variables are bound to the block in
which they have been declared.

f:=proc() is
local i;
forito 3do
local j;
for j to 3 do od;
print(i, j)
od;
print(i, j)
end;

VVVVVVVVYV

\Y

—h
<)
<

4
4
4
n

A WNPE

ull

6.15 Sandboxes

By default, every procedure has access to the full Agena environment, i.e. to all of
Agena's functions, packages, and all other values. You might want to limit this
access, for example if one of your procedures offers services on the Internet, or
want a procedure maintain its own environment,

Here, the environ.seffenv function comes into play. It initialises the environment a
function can use.

Example 1: Give access to all functions except the os package.

First copy Agena's environment represented by the system table G to a new table
so that altering this new table will not effect Agena's normal environment:

156 6 Programming

> newG = copy(_G); # copy can also duplicate cyc les like G

Delete the 0s package from this new environment:

> delete os from _newG;

Define a function that tries to determine the current working directory:

> curdir ;= proc() is
> return os.chdir()
> end;

Set the environment not featuring the os package, as excluded above:

> environ.setfenv(curdir, _newG);
> curdir():
Error in stdin, at line 2:
attempt to index global “os™ (a null value) with a string value

Stack traceback:
stdin, at line 2, at line 1

Example 2: Give access only the specific functions.

Let us re-define curdir: it will only access a redefined print function and all of the
functions of the os package. curdir cannot call any other function.

> curdir := proc() is
> print(os.chdir())
> end;

> environ.setfenv(curdir,
> ['print' ~ << x -> print('cwd is ' & X) >>,'0 s' ~ 0s])

> curdir():
cwd is C:/agenal/src

To determine the current environment used by a function, use environ.getfenv:

> environ.getfenv(curdir):
[os~(.-+), print ~ procedure(01D4BA18)]

Please see Chapter 7.21 (environ.getfenv, environ.setfenv, environ.isselfref) for
further features.

To hide data in a sandbox, please have a look at registers - explained in Chapter
415,

agena >> 157

6.16 Altering the Environment at Run-Time

Besides using a special environment (see the subchapter above), a procedure can
also create new variables and put them into Agenad's standard environment.

Why should one do so ? Consider the utils.decodexml function. It converts an XML
string info a table consisting of key-value pairs, the keys being the XML tags, and the
values the corresponding data. XML allows to use name spaces, so that tags might
look like <soap:body> , efcC.

So, XML data like

> str ;= '<soap:body>
> <orderid>123</orderid>
> </soap:body>'

is converted to

> order := utils.decodexml(str):
[soap_body ~ [orderid ~ 123]]

To read the order number, one might just enter:

> order.soap_body.orderid:
123

Unfortunately, especially the SOAP standard allows one to define her/his own name
space, so that the following is also equivalent and valid XML data:

> str := '<s:body>
> <orderid>123</orderid>
> </s:body>'

> order := utils.decodexml(str):
[s_body ~ [orderid ~ 123]]

In this case you would have to write a new statement to get the order ID since
fetching it with

> order.soap_body.orderid:
Error in stdin, at line 1:
attempt to index field “soap_body" (a null value)

will not work. Fortunately, Agena stores all values in the _G system table, with its keys
being strings representing the variable names, and the entries the values of the
these variables. So flexible code to read data from XML code featuring different
name spaces might ook like this:

> str := '<s:body>
> <orderid>123</orderid>
> </s:body>'

> order := utils.decodexml(str):
[s_body ~ [orderid ~ 123]]

158 6 Programming

> tag := tables.indices(order)[1]:
s_body

> prefix := tag[1 to ("_'in tag) - 1]:
s

> _G['order][prefix & '_body'].orderid:
123

Likewise, defining new variables within code can be done like this:
> _G[jpl] := ['Jet Propulsion Laboratory']

> jpl:
[Jet Propulsion Laboratory]

6.17 Packages

6.17.1 Writing a New Package

Let us write a small utilities package called helpers including only one main and
one auxiliary function. The main function shall return the number of digits of an
infeger.

Package procedures are usuadlly stored to a table, so we first create a table called
helpers . Affer that, we assign the procedure ndigits and the auxiliary
aux.islnteger function to this table.

> create table helpers, helpers.aux;
> helpers.aux.isinteger := << x -> int(x) = x >>; # aux function

> helpers.ndigits := proc(n :: number) is
if not helpers.aux.isinteger(n) then
error('Error, argument is not an integer")
fi;
if n =0 then
return 1
else
return entier(In(abs(n))/In(10) + 1);
fi;
end;

VVVVVVVVYV

Now we can use our new package.

> helpers.ndigits(0):

1

> helpers.ndigits(-10):
2

> helpers.ndigits(.1):
Error, argument is not an integer

Stack traceback: in “error’
stdin, at line 3, at line 1

agena >> 159

To save us a lot of typing, we can assign a short name to this table procedure.

> ndigits := helpers.ndigits;
> ndigits(999):
3

Save the code listed above to a file called helpers.agn in a subfolder called
helpers in the Agena main directory. In order to use the package again after you
have restarted Agena, use the run function and specify the full path.

> restart;

> run 'd:/agena/helpers/helpers.agn'
> helpers.ndigits(10):

2

You may print the contents of the package table at any time:

> helpers:
[aux ~ [isInteger ~ procedure(0044A6EO0)], ndigits ~ procedure(0044A850)]

6.17.2 The initialise Function

The initialise function, besides loading the package in a convenient way,
automatically assigns short names to all package procedures so that you may use
the shortcuts instead of the fully written function names.

In order to do this, you must first prepend or append the location of the directory
confaining your new package to libname, or execute Agena in the directory
containing your package. You may do this by adding the following line to your
personal Agena initialisation file (see Chapter A6), assuming that the helpers.agn
file has been stored to the folder d:/agena/helpers

libname := libname & ';d:/agena/helpers’;

Alternatively, you may save the helpers.agn file into the lib folder of your Agena
distribution if you do not want to modify lioname.

Now in the interactive level, type:
> restart;

lioname and some few other system variables are not reset by the restart statement
because restart deliberately does not touch the contents of these specific system
variables.

> initialise 'helpers’
ndigits

160 6 Programming

> ndigits(1); # same as helpers.ndigits(1)

You may also want with to print a star-up notice at every package invocation by
assigning a string to the table field " packagename.initsting . Put the following line
into the helpers.agn file after the create table statement, save the file and restart
Agena:

> helpers.initstring := 'helpers v1.0 as of June 11 , 2013\n\n’;

> restart;

> initialise 'helpers'
helpers v1.0 as of June 11, 2013

ndigits

Since you may not want that short names are set for certain, especially auxiliary
functions, their procedure names should be defined as follows:
‘packagename.aux.procedurename , €.Q. helpers.aux.isinteger

The contents of the helpers.agn file should finally ook like this:

create table helpers, table helpers.aux;
helpers.initstring := 'helpers v1.0 as of June 11, 2013\n\n’;
helpers.aux.isinteger := << x -> int(x) = x >>; # aux function

helpers.ndigits := proc(n :: number) is
if not helpers.aux.isinteger(n) then
error(‘'argument is not an integer’)
fi;
if n =0 then
return 1
else
return entier(In(abs(n))/In(10) + 1);
fi;
end;

Save the file again and restart Agena.

> restart;

> initialise 'helpers'
helpers v1.0 as of June 11, 2013

ndigits

You can also define a package initialisation routine. It will automatically be run by
the initialise statement aofter the package has been found and initialised
successfully. The name of the inifidlisation routine must e of the form
‘packagename.aux.init”, e.g.:

> helpers.aux.init := proc() is
> writeline('l am run’)
> end;

agena >> 161

Of course, you must create a "packagename.aux table before defining the
initialisation function.

Instead of using initialise to load a package, you may use the import/alias
statement - see Chapter 3.18 - sO

> initialise 'helpers';
is equivalent to

> import helpers alias;

6.18 Remember Tables

Agena features remember tables which if present store the results of previous calls
to Agena or C library procedures or contain a list of predefined results, or both. If a
function is called again with the same argument or the same arguments, then the
corresponding result is returned from the table, and the procedure body is not
executed, resulting in significantly better execution times. Remember tables are
called rtables or rotables for short.

All functions to create, modify, query, and delete remmember tables are available in
the rfable package.

There are two types of remember tables:

e Standard Remember Tables, called ‘rables’, that can be automatically
updated by a call to the respective function; they may e initialised with a list of
precomputed results (but do not need 10).

* Read-only Remember Tables, called rotables’, that cannot be updated by a
call to the respective function. Rotables should e inifialised with a list of
precomputed results.

6.18.1 Standard Remember Tables

A standard remember table is suited especially for recursively defined functions. It
may slow down functions, however, if they have rememiber tables but do not rely
much on previously computed results.

By default, no procedure contains a remember table. It must explicitly be created
either by including the feature reminisce statement as the very first line in a
procedure body, or by calling the rtable.rinit function right after the procedure has
been defined. A rememier table may optionally be filled with default values with
the rtable.rset function. Since those functions are very basic, a more convenient
facility is the nable.remember function which will exclusively be used in this chapter.

162 6 Programming

In order for an rtable to be automatically updated, the respective function must
retun its result with the return statement (which may sound profane). If a function is
called with arguments that are not already known to the remember table, then the
return stafement adds these arguments and the corresponding result or results fo
the rfable.

Let us first try the feature reminisce variant, which may suffice in most cases. Just
add this statement right after the is token in a procedure that computes Fibonacci
numbers:

> fib := proc(n) is

> feature reminisce; # creates a read-write rem ember table
> ifn=0o0rn=1thenreturn 1 fi; # exitco nditions

> return fib(n-2) + fib(n-1)

> end;

> fib(50):

20365011074

Now let us use the functions of the rtable package to administer remember tables.
Two examples: We want to define a function f(x) = x with f(0) = undefined.

First a new function is defined without using the feature reminisce phrase:

> f ;= proc(x) is return x end;

Only after the function has been created in such a way, the rtable (short for
remember table) can be set up. The rable.remember function can be used to
initialise rtables, explicitly set predefined values to them, and add further values |ater
in a session.

> import rtable alias;
> remember(f, [0 ~ undefined]);

The rtable has now been created and a default entry included in it so that calling f
with argument O returns undefined and not O.

> f(1):
1

> £(0):

undefined

If the function is redefineq, its rtable is destroyed, so you may have to initialise it
again.

Fibonacci numbers, as already shown above, can be implemented recursively and
run with astonishing speed using rtables.

agena >> 163

> fib := proc(n) is

> assume(n >=0);

> return fib(n-2) + fib(n-1)
> end;

The call to assume assures that n is always non-negatfive and serves as an
“emergency brake’ in case the remember table has not been set up properly.

The rtable is being created with two default values:

> remember(fib, [0~1, 1~1]);

If we now call the function,

> fib(50):
20365011074

the contents of the rtable will be:

> remember(fib):

[[22] ~ [28657], [39] ~ [102334155], [17] ~ [2584], 5] ~ [8], [27] ~
[317811], [50] ~ [20365011074], [3] ~ [3], [0] ~ [1], [46] ~ [2971215073],
[41] ~ [267914296], [1] ~ [1], etc.]

If a function has more than one parameter or has more than one return, remember
requires a different syntax: The arguments and the returns are still passed as
key~value pairs. However, the arguments are passed in one table, and the returns
are passed in another table.

> f:=proc(x, y) is

> returnx,y

> end;

> remember(f, [[1, 2] ~ [0, 0]]);

>a, b:=1(1, 2);

Please check Chapter 7.23 for more details on their use.

6.18.2 Read-Only Remember Tables

If you do not want that a function updates its remember table each time it is called
with new arguments and results, you may use a read-only remember table, called
‘rotable” for short. Rotables are initialised with a list of precomputed results.

The function itself cannot implicitly enter new entries 1o its remnemier table via the
return statement; it can only do so via a call to the rtable.rset function or a utility
that is based on rtable.rset, called rtable.defaults. This gives you full control on the

164 6 Programming

contents and the amount of data stored in a remember table - and thus on the
speed of your procedure.

Assume you want to define a procedure that computes factorials n!, and that does
not compute the results forn < 11, but retfrieves the results from an rotable instead.

A function might look like this:

> fact := proc(x :: number) is

> ifint(x) = x then # is x an integer (and non -negative) ?
> return exp(Ingamma(x + 1))

> else

> return undefined

> fi

> end;

The defaults function can set up the rotable and enter precomputed values into it.

> # set precompiled results for 0! to 10! to fact

> defaults(fact, [
> 0~1,1, 2,6, 24, 120, 720, 5040, 40320, 36288 0, 3628800
>]

The factorial function is significantly faster when called with arguments that are in
the rotable than if there would be no such value cache, because it would have to
re-compute the results instead of just reading them.

Let us look into the remember table:

> defaults(fact):
[[2] ~ [2], [1] ~ [1], [8] ~ [40320], [9] ~ [362880], [10] ~ [3628800],
[0] ~ [1], [4] ~ [24], [5] ~ [120], [6] ~ [720], [3 1~1[6], [7] ~ [5040]]

You can also easily add further argument ~ result pairs with the rtable.defaults
function:

> defaults(fact, [11 ~ 39916800]);

> defaults(fact):

[[2] ~ [2], [1] ~ [1], [8] ~ [40320], [9] ~ [362880], [10] ~ [3628800], [0]
~ [1], [11] ~ [39916800], [4] ~ [24], [7] ~ [5040], [6] ~ [720], [3] ~ [6],
[5] ~ [120]]

A read-only remember table can be deleted by passing null as a second
argument to defaults.

agena >> 165

6.18.3 Functions for Administering Remember Tables

For completeness, all basic functions that work on remember tables are the
following:

Procedure Details

rfable.rget(f) Returns the remember table of function f .

rtable.rinit(f) Initialises a standard rememlber table for the function
f

rtable.roinit(f) Initialises a read-only remember table for the function
f

rable.rset(Adds function argumeni(s) and the corresponding

f, [arguments], [returns]) | return(s) to the remember table of procedure f .
rable.rdelete(f) Deletes the remember table of function f entirely. If

you want to use a new remember table with the
function, you have to initidlise it with rtable.rinit or
rfable.roint again.

rfable.rmode(f) Returns the string 'Mable' if a function f has a standard
remember table, 'rotable' if it has a read-only
remember table, and 'none' if it has no rememiber
table at all.

Table 18: Functions for administering rernemlboer tables

6.19 Overloading Operators with Metamethods

One of the many useful functions inherited from Lua 5.1 are metamethods which
provide a means to use existing operators to tables, sets, sequences, registers,
pairs, and userdata.

For example, complex arithmetic could be entirely implemented with
metamethods so that you can use already existing symbols and keywords such as
+ or abs with complex values and do not have to learn names of new functions'®.
This method of defining additional functionality to existing operators is also known as
“overloading .

Adding such functionality to existing operators is very easy. As an example, we will
define a constructor to produce complex values and three metamethods for
adding complex values with the + foken, determining their absolute value with the
standard abs operator, and pretty printing them at the console.

At first, lets store a complex value z = x + yi to a sequence of size 2. The real part is
saved as the first value, the imaginary part af the second.

'® For performance reasons, complex arithmetic has been built directly info the Agena kemel.,

166 6 Programming

> cmplx := proc(a :: number, b :: number) is
> create local sequence r(2);

> inserta, bintor;

> returnr

> end;

To define a complex value, say z = 0 + |, just call the constructor:

> cmplx(0, 1):
seq(0, 1)

The output is not that nice, so we would like Agena to print cmplx(0, 1) instead of
seq(0,1) . This can be easily done with the settype function:

> cmplx := proc(a :: number, b :: number) is
> create local sequence r(2);

> inserta, bintor;

> settype(r, 'cmplx’);

> returnr

> end;

> cmplx(0, 1):
cmplx(0, 1)

Adding two complex values does not work yet, for we have not yet defined a
proper metamethod.

> cmplx(0, 1) + cmplx(1, 0):
Error in stdin, at line 1:
attempt to perform arithmetic on a sequence valu e

Metamethods are defined using dictionaries, called “metatables”. Their keys, which
are always strings, denote the operators 1o be overloaded, the corresponding
values are the procedures to be called when the operators are applied to tables,
sets, sequences (which are used in this example), or pairs. See Appendix A2 for a list
of all available method names. To overload the plus operator use the ' add'
string.

Assign this metamethod to any name, cmplx_mt in this example.

>cmplx_mt =
> ' add'~ proc(a, b) is

> return cmplx(a[1]+b[1], a[2]+b[2])
> end
>]

Next, we must attach this metatable cmpix_mt to the sequence storing the real and
imaginary parts with the setmetatable function. We have to extend the constructor
by one line, the call to setmetatable

> cmplx := proc(a :: number, b :: number) is
create local sequence r(2);

inserta, bintor;

settype(r, '‘cmplx’);

setmetatable(r, cmplx_mt);

return r

\Y

VVVYV

agena >> 167

> end;
Try it:

> cmplx(0, 1) + cmplx(0, 1):
cmplx(0, 2)

Add a new method to calculate the absolute value of complex numbers by
overloading the abs operator.

> cmplx_mt.__abs := << (a) -> hypot(a[1], a[2]) >>;

The metatable now contains two methods.

> cmplx_mt:
[__add ~ procedure(004A64D0), abs ~ procedure(004 D2D30)]

>z ;= cmplx(1, 1);

> abs(z):
1.4142135623731

It would be quite fine if complex values would be output the usual way using the
standard x + yi notation. This can be done with the ' tostring' method which
must return a string.

> cmplx_mt.__tostring := proc(z) is

> return if z[2]<0 then z[1]&z[2]&'I' else z[1]& '+'&z[2]&'T' fi
> end;

>z

1+1i

To avoid using the cmplx constructor in calculations, we want to define the
imaginary unit | = 0+i and use it in sulbsequent operations. Before assigning the
imaginary unit, we have to add a metamethod for multiplying a number by a
complex number.

> cmplx_mt.__mul := proc(a, b) is

> if typeof(a) = ‘cmplx' and typeof(b) = ‘cmplx’ then

> return cmplx(a[1]*b[1]-a[2]*b[2], a[1]*b[2] +a[2]*b[1])
> elif type(a) = number and typeof(b) = 'cmplx’ then

> return cmplx(a*b[1], a*b[2])

> fi

> end;

and also extend the metamethod for complex addition.

> cmplx_mt.__add := proc(a, b) is

if typeof(a) = 'cmplx’' and typeof(b) = 'cmplx’ then
return cmplx(a[1]+b[1], a[2]+b[2])
elif type(a) = number and typeof(b) = '‘cmplx’ then

return cmplx(a+b[1], b[2])
fi;

>
>
>
>
>
> end;

168 6 Programming

> i:= cmplx(0, 1);

> a = 14+2*%:
1+2i

Until now, the real and imaginary pars can only be accessed using indexed
names, say z[1] for the real part and z[2] for the imaginary part. A more
convenient - albeit not that performant - way to use a notation like zre and z.im in
both read and write operations is provided by the ' _index’ and ' writeindex'
metamethods, respectively.

The index metamethod for reading values from a structure works as follows:

e |f the structure is a table, then the metamethod is called if the call to an indexed
name results to null.

e |f the structure is a set, then the metamethod is called if the call to an indexed
name results to false.

* If the structure is a sequence, then the metamethod is called if the call to an
indexed name would result to an index-out-of-range error.

The wiiteindex metamethod for writing values to a structure works as follows:

e |f the structure is a table, sequence or pair, then the metamethod is always
called.
¢ The metamethod is also supported by the insert statement.

The respective procedures assigned to the index and _ writeindex keys of a
metatable should not include calls to indexed names, for in some cases this would
lead to stack overflows due to recursion (the respective metamethod is called
again and again). Instead, use the rawget function to directly read values from a
structure, and the rawset function to enter values into a structure.

Let us first define a global mapping table for symbolic names to infeger keys:
> cmplx_indexing ;= [re ~ 1, im ~ 2];

Now let us define the two new metamethods. Both will be capable to accept
expressions like are and a[1] . In the following read procedure the argument x
represents the complex value, and the argument y is assigned either the string 're’

or 'im . Thus, cmplx_indexing[re] will evaluate to the index 1, and
cmplx_indexing['im’] to index 2.

> cmplx_mt.__index := proc(x, y) is # read operati on

> if type(y) = string then # for calls like "a. re’ or "a.im’

> return rawget(x, cmplx_indexing[y])

> else

> return rawget(x, y) # for calls like "a[1] or "a[2]

> fi

> end;

agena >> 169

In the write procedure, argument x will hold the complex value, y will be either 're'
or'im , and z is assigned the component - a rational number -, i.e. x.re := z or
X.im:=z

> cmplx_mt.__ writeindex := proc(X, Y, z) is # writ e operation
> if type(y) = string then

> rawset(x, cmplx_indexing[y], z)

> else

> rawset(x, y, z) # for assignments like "a[1] := value’
> fi

> end;

You can now use the new methods.

>a
1+2i

> a.re:
1

>a.m = 3;

>a:
1+3i

Please note that while arithmetic metamethods can e applied on mixed types, for
example the above defined complex number and a simple Agena number,
relational operators cannot compare values of different types. Instead, Agena in
this case just returns false with the equality operators =, ==, and ~=; and issues an
error with relational operators that compare for order.

Using the _ writeindex metamethod, it is quite easy to write-protect structures.

>readonly_mt =

> ' writeindex' ~
> proc(t, k, v) is error('Error, structure is read-only.") end
>]

A constructor simplifies creating read-only structures:

> readonly := proc(t :: table) is

> setmetatable(t, readonly_mt);
> returnt

> end;

> moons := readonly(['Phobos’, 'Deimos);

Adding further values to the table, or changing an existing one, now will not work.

> insert 'Mars' into moons;
Error, structure is read-only.

Stack traceback: in “error’

> moons:
[Phobos, Deimos]

170 6 Programming

Using one and the same global table to define metamethods for various variables
may be appropriate to save memory, but maodification of the metatable itself may
have unwanted effects.

> readonly_mt._ writeindex := proc(t, k, v) is raws et(t, k, v) end;
> insert 'Mars' into moons;

> moons:
[1 ~ Phobos, 2 ~ Deimos, Mars ~ Mars]

Finally, to protect values already assigned to a table, we could define:

>readonly_mt =
__writeindex =
proc(t, k, v) is
if rawget(t, k) <> null then
error('Error, structure is read-only.)]
else
rawset(t, k, v)
fi
end

VVVVVVVVYV

]

> create table t;
> setmetatable(t, readonly_mt)
>t[1] ;=0

>t[1] =1
Error, structure is read-only.

To protect metatables from tampering, use the _metatable method and set it to
any value except null.

>readonly_mt =

> _ metatable = false,

> _ writeindex =

> proc(t, k, v) is error('Error, table is rea d-only") end
>

> readonly := proc(t :: table) is

> setmetatable(t, readonly_mt);
> returnt

> end;

> moons := readonly(['Phobos’, 'Deimos');

> setmetatable(moons, |

> _ writeindex =

> proc(t, k, v) is error('Error, table is read-only") end
>

>);

Error in “setmetatable’: cannot change a protected metatable.

Stack traceback: in “setmetatable’
stdin, at line 1 in main chunk

agena >> 171

A structure with a __call key in its metatable can also be called like a function.

> readonly := proc(t :: table) is

> setmetatable(t, [

> __call = proc(t) is

> fori, jin t do print(i, j) od
> end]);

> returnt

> end;

> moons := readonly(['Phobos’, 'Deimos);

> moons();
1 Phobos
2 Deimos

To close this chapter, metamethods can also be used to automatically check the
contents of structure passed at function invocation, and also to extend the ;: and :-
operators.

Let us assume we would like to write a procedure that sums up all numbers in a set:

>s:={1, 2, 3, 4, 5};

We create a metatable first,

> create table mt;

and then assign a proper evaluation procedure to the _ oftype metamethod that
makes sure that the set consists of numlbers only.

> mt.__ oftype := proc(x) is
if type x = set then
foriin x do
if i :- number then return false fi
od;
return true
else
return false
fi
end

VVVVVVVVYV

We assign the metatable 1o the set,

> setmetatable(s, mt);

and first try out the thus extended :: and :- operators.

> s set:
true

if an invalid member is inserfed into the set,

> insert 'a‘into s;

172 6 Programming

the type checks fail:

>s:set:
false

> s - set:
true

Now we use the type evaluator in a procedure call;

> sum ;= proc(x :: set) is

> locals:=0;foriinxdoincs,iod;retur ns
> end;
> sum(s):
In stdin:
argument #1 does not satisfy type check metameth od

The _ oftype metamethod works as follows: it first checks whether the structure (a
table, set, sequence, reqister, pair) or userdata at the left-hand side matches the
basic or user-defined type given at the right-hand side. If true, then Agena checks
whether the structure has an attached _ oftype metamethod and then runs it. The
validator function must either retun true if the criteria have all been met, or false,
fail, or null otherwise.

Notfe that in the validator mt. oftype definition given above, we use the type
operator instead of the :: operator in the first if statement since otherwise Agena
would issue a stack overflow error.

The _ oftype metamethods also work if an expected retun type has been
specified.

In some packages, for example llist and numarray, metamethods are included in
the binary C library file and can be accessed through the so-called registry, via the
debug.getregistry function. You may want to use this function to add further
self-defined metamethods written in the Agena language.

For example, the in metamethod of the numarray package is defined in the
Agena source file lio/numarray.agn, and not in the C library file.

> numarray.aux.mt ;= [
> _ in=proc(x, a) is

> return numarray.whereis(x, a, 1, Eps) <> null
> end
>]

The metatable stored to the registry can be read by a call 1o registry.get. Just insert
all of your own metamethod procedures by individually adding them, but do not
directly assign your metamethod table to the result of registry.get('numarray’) .

agena >> 173

> scope
> # protect against sandboxing (prevent errors at initialisation)
if registry.get :: procedure then
get the internal registry metatable for nu marrays
local _mt := registry.get('numarray");
if _mt :: table then
include each metamethod function step-b y-step
for i, j in numarray.aux.mt do
_mtfi] :=j
od
fi
fi
epocs;

\Y

VVVVVVYVYVYVYV

Never modify or delete existing metamethods, as this will lead to undefined
behaviour.

Note: the delete statement supports metamethods: it passes the data to be
deleted as its key and null as the value to the writeindex metamethod. To protect
values stored to structures you might define:

> readonly_mt._ writeindex := proc(t, k, v) is
> if unassigned v or assigned rawget(t, k) then

> error(‘cannot delete or modify value’)

> else

> rawset(t, k, v)

> fi

> end;

The pop. rotate, duplicate, and exchange statements issue an error if a given
structure features a _ writeindex metamethod. This prevents read-only sfructures

from lbeing modified.

6.20 Memory Management, Garbage Collection, and Weak Structures

Agena includes a garbage collector that sweeps all structures, procedures,
userdata, and threads (called "objects™ in this subchapter) that no longer have
valid references in your programme - i.e. are inaccessible. Agena can then use the
space for new objects. Numbers, complex numbers, strings, and Booleans are
never collected.

Consider the following code: Let us assign a table to a name.
>s:=]

Now s refers to a memory address so that Agena can access the table.

> environ.pointer(s):
008FOF38

If we reassign s, a different empty table is assigned to it.

174 6 Programming

>s:=]]
This newly created table is situated at another part of the memory.

> environ.pointer(s):
008A4188

Since the first table at memory position 008FOF38 can no longer be accessed, it
unnecessarily occupies space. The garbage collector regularly looks for
unreferenced objects and removes them.

Besides automatic garbage collection, the user can also invoke it manually, if
deemed necessary, or even stop and restart it by calling environ.gc .

Sometimes it may be necessary to immediately clear values occupying a large
amount of space. In this case assign null fo it, so that the next automatic collection
cycle can free it. If necessary call environ.gc for immediate collection. As a
shorfcut, you could also use the clear stafement which conducts both nulling a
value and collecting if.

If a table, set, sequence, or procedure, userdata, or thread is included in another
table or sequence, the garbage collector does not collect it if its reference should
have become invalid.

> restart

>t:=]
>v:=[1];insertvintot
>v:=[2];insertvintot

> environ.gc()

[1] is still part of the table.

>t
(1], [21]

If you do not want this fo happen, declare the table or sequence "weak™ by using
the weak metamethod. With tables, you can either declare ifs keys weak by
passing the string 'k' , or its values weak with the string v, or both with 'kv' . With
sequences, simply use use the string 'v' .

If the collector meets a weak key that has become inaccessible, it removes the
key-value pair. If the collector meets a weak value that has become inaccessible, it
removes the key-value pair.

>ti=[]

> setmetatable(t, [__weak' ~ 'v')

agena >> 175

>v:=[1];insertvintot
>v:=[2];insertvintot
> environ.gc()

>t

[2~[2]]

Do not change the _ wedak field after it has been assigned to an object, as the
behaviour would be undefined. The insert and delete statements will reject
manipulation of weak tables and sequences.

6.21 Extending Built-in Functions

You may redefine existing built-in functions if you want to change their behaviour or
extend its features. You can either write a completely new replacement from
scratch or use the original function in your modified version. Your new procedure
can then be called with the same name as the original one.

Note that only Agena functions written in C or in the language itself can be
redefined, and that operators cannot,

In Agena, each mathematical function f works as follows: if a number x, which by
definition represents a value in the real domain, is passed to them, then the result
f(x) will also be in the real domain. If x is a complex value, then the result will be in
the complex domain.

Suppose that you want to automatically switch to the complex domain if a function
value in the real domain could not be determined, i.e. if f(x) = undefined. An
example is:

> root(-2, 2):
undefined

On the interactive level enclose the new procedure definition with the scope and
epocs keywords. This is necessary because on the interactive level, each statement
entered at the prompt has its own scope and thus local variables cannot be
accessed in the statements thereafter.

The new function definition might be:

> scope

save the original function in a “hidden’ var iable
local oldroot := root;

define the substitute
root := proc(x, n) is # new definition
local result := oldroot(x, n);
if result = undefined then # switch to com plex domain
result := oldroot(x+0*1, n)
fi;

VVVVVVYVYVYVYV

176 6 Programming

> return result
> end;

>

> epocs;

The original function root is stored to the local oldroot variable so that the user can
no longer directly access it.

> root(-2, 2):
8.6592745707194e-017+1.4142135623731*1

If you wish to permanently use your redefined functions, just put them into the
initialisation file, located either in the lib folder of your Agena installation, or your
home directory. See Appendix 6 for further information.

Since files have their own "scope’, the scope and epocs keywords are no longer
needed (but can be left in the file).

6.22 Closures: Procedures that Remember their State

A procedure can remember its state. This state is represented by the function's
internal variables which can survive and keep their values even after the call to the
procedure completed.

SO with a successive call to the same procedure, it can access these values and
use them in the current call again.

Let us define an iterator function that successively returns an element of a table:

> traverse := proc(o :: table) is
local count := 0;
return proc() is
inc count;
return o[count]
end
end;

VVVYVYVYV

The traverse procedure is called a factory for it returns the closure as a function
which we assign to the name iterator . The iterator ~ function remembers its state
and can be called like "normal” functions:

> iterator():
a

What happened ? The call to traverse with the table [a', b, 'c] as its only
argument initialised the variable count and assigned it to 0. The table you passed is
also stored to the closure's internal state. With the first call 1o iterate , count was
incremented from 0 to 1, followed by the return of the first element in the table.

> iterator():
b

agena >> 177

> iterator():
c

Since the table has no more elements left (count = 4), it now returns null.

> iterator():
null

You can define more than one closure with a factory at the same time, each being
completely independent from the others:

> iterator2 := traverse(['a’, 'b', 'c']);

> iterator2():
a

> iterator2():
b

> iterator3 := traverse(['a’, 'b’, 'c']);

> iterator3():
a

178 6 Programming

6.23 Self-defined Binary Operators
A procedure f of two arguments x, y

> plus := proc(x, y) is return x + y end;

can be called like a binary operator through the syntax x f y:

> 1 plus 2:
3

When using a function as a binary operator, it has always the highest precedence.

6.24 OOP-style Methods on Tables

Agena supports OOP-style methods. To define a method for a table object
representing a bank account,

> account ;= ['balance’ ~ 0];

enter something like (please note the two @tokens):

> proc account@ @deposit(x) is
> inc self.balance, x;

> return self.balance

> end;

The name self always refers to the table object, here account . Call the method
using two @characters:

> account@ @deposit(100)

Query the object.

> account:
[balance ~ 100, deposit ~ procedure(016D6820)]

Let us define a method for withdrawing an amount of money.

> proc account@ @withdraw(x) is

> if x <0 then error(‘Error, value must be non- negative'.) fi;
> dec self.balance, x;

> return self.balance

> end;

To set up new accounts that inherit the methods and characteristics associated with
the account oObject, assign the metatable of the account object to the freshly
creafted account using the setmetatable function, and force Agena to search for
the methods or its balance stored o account by proper indexing (i.e. self.__index

= self). Thus, we use the account object as a prototype inherited by individual
accounts.

agena >> 179

> proc account@ @new(0) is

> o0:=o0or; # create object with i ts initial balance taken
> # from the current sta te of “account’ if not

> # given

> setmetatable(o, self); # assign metatable of ‘account’ (i.e. “self’)
> # object to new table

> self.__index := self; # inherit methods from ‘account” object

> returno

> end;

> a = account@@new();

> a.balance:
100

Set up a new account with its initial balance set 1o zero:

> b := account@ @new(['balance' ~ 0]);

Pay into the bank 200 currency units.

> b@@deposit(200):
200

If you want to create a different class of accounts, e.g. accounts on credit that own
all the features of account but do not allow any overdraft, just assign an account
object to it by calling the new method (do not just assign account 1O creditaccount):

> creditaccount ;= account@ @new();

and overwrite the withdraw mMethod:

> proc creditaccount@ @withdraw(x) is

> if x <0 then error(‘Error, value must be non- negative.") fi;
> if x > self.balance then error('Error, not eno ugh credit.") fi;
> dec self.balance, x;

> return self.balance

> end;

> ¢ ;= creditaccount@ @new();

> c@ @withdraw(1000):
Error, not enough credit.

Since b is an unlimited account, we can withdraw money as much as we want, as
its withdraw ~metamethod has not been replaced.

> b@ @withdraw(1000):
-800

180 6 Programming

6.25 Summary on Procedures
The following diagram tries to summarise all features of a procedure.

Input Type Checks 1
Procedure
No Parameters Arguments J
Parameters Retum
Poolyipe) bpels — | Vaiable Parameters C
oca r;
global _Eps; ~
r:=v,;
foriinvarargs do (
incr,i+_Eps Output -
(r)edt;urn . Remember Table 1
end No Retum
One Retum Read/Wiite Table
Multiple Retums Read-Only Table

[||

Multi-Line Procedures J

State (Closure) Standard Agena Type
Scope User-Defined Type One-Line Functions
Envionment

| J

6.26 1/O

Agena features various functions 1o deal with files, to read lines and write values to
them. Keyboard interaction is supported, too, as is interaction with other
applications. Most of the functions have been taken from Lua. All the functions for
input/output are included in the io (and the binio) packages.

Read and write access to files usually is conducted through file handles. At first, a
file is opened for read or write operations with the io.open function. Then you apply
the respective read or write functions and finally close the file again using io.close.

agena >> 181

6.26.1 Reading Text Files
Open a file and store the file handle to the name fh :

> fh := i0.open('d:/agena/src/change.log’):
file(7803A6F0)

Read the first ten characters:

> io.read(fh, 10):
Change Log

Read the next 10 characters:

> io.read(fh, 10):
for Agena

Close the file:

> io.close(th):
true

Besides file handles, many IO functions also accept file names. For example, the
io.lines procedure reads in a text file line by line. It is usually used in for loops. The
respective line read is stored to the loop key, the loop value is always null. The
function opens and closes the file automatically.

> for i, j inio.lines('d:/agena/lib/agena.ini') do

> print(, j)

> od

execute := os.execute; null
getmeta ;= getmetatable; null
setmeta := setmetatable; null

6.26.2 Writing Text Files

To write numloers or strings into a file, we must first create the file with the io.open
function. The second argument 'w' fells Agena to open it in “write” mode.

> fh := io.open(‘d:/file.txt', 'w");

As mentioned above, io.open returns a file handle to be used in subsequent io
operations.

> jo.write(fh, 'l am a text.");
If you would like to include a newline, pass the \n' string,
> jo.write(fh, 'Me ', 'too.", \n");

or use the io.writeline function which automatically adds a newline to the end of the
input. The next statement writes the number z to the file.

182 6 Programming

> jo.writeline(fh, Pi);
After all values have been written, the file must be closed with io.close.
> jo.close(fh);

The above statements produce the file contents:

| am a text.Me too.
3.1415926535898

In the next example we append text to the file we have already created. In order to
append - and not to overwrite existing - text, use the 'a* switch in the call to
io.open’. Using the w switch would replace the text already existing with the new
one. See Chapter 7.14 for further options accepted by io.open.

The file looks like this:

| am a text.Me too.
3.1415926535898
20

Tables, sets, or sequences cannot be written directly to files, they must be iterated
using loops so that their keys and values - which must be numibers or strings - can
be stored separately to the file thereafter. The same qpplies to pairs: use the left
and right operators to write their components.

The following statements write all keys and values of a table to a file. The keys and
values are separated by a pipe | ., and a newline is inserted right after each
key~value pair. Note that you can mix numbers and strings.

>a :=[10, 20, 30];
> file ;= io.open('d:/table.text’, 'w");

>fori,jinado _

> io.write(file, i, [, j, '\n")
> od;

> io.close(file);

Hint: To create UNIX text files on DOS-like systems, such as DOS, Windows, or
eComdstation - O§/2, just open the text file in binary mode. This avoids carriage
return control codes 10 be added 1o the file with each line break.

See Chapter 7.14 for a description of all io package functions.

19 See Chapter 7.14 for further options accepted by io.open.

agena >> 183

6.26.3 Keyboard Interaction

The io.read function allows to enter values interactively via the keyboard when
called with no arguments. Use the RETURN key to complete the input. The value
returned by io.read is a string. If you would like to enter and process numbers
thereafter, use the tonumber function to transform the string into a number.

> a:=io.read();
10

>a
10

> type(a):
string

> tonumber(a)"2:
100

All available keyboard functions are:

Procedure | Details

i0.anykey Checks whether a key has been pressed and returns true or false.
io.getkey Waits until a key is pressed and returns its ASCIl number. This function
is not available on all platforms.

io.read If called with no arguments, reads one or more characters from the
keyboard until the RETURN key is being pressed. The refurn is a string.

Table 19: Functions to read the keyboard

6.26.4 Default Input, Output, and Error Streams

Agena, enherited from Lua, provides aliases to the standard input, output, and error
channels known from C.:

* jo.stdin, the standard input stream, used to input data, usually the keyboard,

* jo.stdout, the standard output stream, used to output data, usually the console,

* jo.stderr, the standard error stream, used for error messages and diagnostics,
usually the console.

Examples:

> jo.writeline(io.stdout, 'Okay");
Okay

> io.writeline(io.stderr, 'Not okay");
not okay

6.26.5 Locking Files

Agena allows files to be locked so that only the current process can read or write
data to them. This feature prevents corruption to files during write operations or
reading invalid data when other programmes also try to access them. See io.lock
and io.unlock in Chapter 7.14 for further information.

184 6 Programming

6.26.6 Interaction with Applications

You can call another application, pass data to it and receive data from the
application with the io.popen function. The function retumns a file handle, so that
you can receive the information returned (from the stdout channel of the called
programme) for further processing.

To get a listing of all files in the current directory, enter:

> p :=io.popen(ls"):
file(77602960)

> io.readlines(p):
[ads.c, agena.c, etc.]

Finally, close the connection.

> io.close(p)

If you pass the 'w' option fo i0.popen as a second argument, you can send further
data to the external programme:

> p :=io.popen(‘cat’, 'w'")
> jo.write(p, 'Hello)
> io.write(p, "World\n')

> io.close(p)
Hello World

If you want to receive data from the stderr channel, or suppress output at the
Agena console, include the respective redirection instruction, which may vary
among operating systems, in the first argument to io.popen.

6.26.7 CSV Files

Comma-separated value files can be read and writtem conveniently by
utils.readcsv and utils.writecsv. This function provides various options to further
process the data being read. See Chapter 7.26 for further details.

6.26.8 XML Files

XML files are imported and converted 1o Agena data structures with utils.readxml or
xml.readxml. XML files can be created with utils.encodexml and io.write. Chapter
7.17 and 7.26 offers further information on how to do this.

6.26.9 dBASE Il Files

The xbase package can read and write dBASE lll-compatible files. See Chapter
7.16 for details.

agena >> 185

6.26.10 INI Files

The utils.readini and utils.writeini functions deal with traditional INI initialisation files.

6.27 Linked Lists

With large tables, sometimes it may be very costly to insert or delete an element
with the put and purge functions because all elements after the insert or deletion
position must either be shifted up- or downwards. This is also true with sequences.

Also iterating a table with the for/in statement does not ensure that the keys are
traversed in ascending order®,

In these cases you may use the llist package implementing linked lists which store
elements in a sequential order and where each value also links 1o its successor. Just
take a look at the examples at the end of this sulbbchapter.,

The benefit of using linked list in these situations is at least 600 %, but may be very
much larger.

To see how a linked list works, let us create one manually. First, establish a root
which indicates the end of the list.

> list := null;

Now we insert the numbers -2, -1 and O info this list, so that the list contains the
elements O, -1, -2, in this order.

> list := ['data’ ~ -2, 'next' ~ list];
> list := ['data’ ~ -1, 'next' ~ list];

> list := ['data’ ~ 0, 'next' ~ list];

To traverse the list, we use a new reference so that the original list is not changed:
> | = list;

> while | do

> print(l.data)
> |:=l.next
> od;

0

-1

-2

To insert an element somewhere in the list, we use:

> | = list;

20 See skycrane.iterate .

186 6 Programming

> while | do

> f l.data = -1 then
> l.next :=['data’ ~ -1.5, 'next' ~ l.next];
> break

> fi;

> |:=l.next

> od;

> | = list;

> while | do

> print(l.data)

> |:=l.next

> od;

o s ©

It may often be useful to add further information to a linked list to save unnecessary
fraversal, e.qg. the position of the element or the predecessor.

Instead of implementing linked lists yurself, use the llist package. First initialise it,

> import llist

and create an empty list.

> L := llist.list():
llist()

Now add O to it

> llist.append(L, 0);

and also put -2 to ifs beginning.

> llist.prepend(L, -2);
> L:
llist(-2, 0)

Insert -1 at position 2. As you see, the original element at this position is not deleted
but “shifted” to open space.

> llist.put(L, 2, -1):
> L:
llist(-2, -1, 0)

To delete an element at a position, enter:

> llist.purge(L, 2):

> L
llist(-2, 0)

agena >> 187

The size operator determines the numiber of all elements in a linked list.

> size L:
2

To determine a specific element, index it as usual:

> L[1]

-2

Passing an index that does not exist, simply results o null.

Finally, to replace an element, use a usual assignment statement.

>L[2]:=-1
> L
llist(-2, -1)

6.28 Numeric C Arrays

Agena numbers can alternatively be processed using numeric C arrays. The
numarray package supports C doubles, signed 4-byte integers (int32 1), and
unsigned chars. See Chapter 7.39 for further details.

While C numeric arrays consume less memory than Agenda's built-in structures,
operations are slower.

6.29 Userdata and Ligthuserdata

Some Agena packages such as linked lists and numarrays implement data
structures by so-called userdatq, i.e. C structures that are easily garbage-collected
by the interpreter provided that a _ gc metamethod exists.

Likewise, lightuserdata are pointers to any C objects but programmers writing C
libraries have 1o implement their own garbage collection procedures.

To the ordinary programmer writing code exclusively in the Agena language,
userdata and lightuserdata are irrelevant as this kind of data can only be accessed
through functions written in C.

188 6 Programming

6.30 The Registry

The registry is an interface between Agena and its C virtual machine which mainly
stores values needed by userdata, metatables of libraries written in C, open files,
and loaded libraries. It can also be used to exchange data between the C
environment and Agena.

debug.getregistry gives full access to the registry but should be used carefully. If
really necessary, It is recommended fo revert 1o the functions of the registry
package to read and add registry data or to modify C library metatables, and to
exclude the debug library from sandboxes (see Chapters 6.15 and 7.40).

Registry entries indexed by integral keys refer to data occupied by userdata objects,
which for example are used by the llist and numarray libraries. The registry library,
however, does not expose these values 1o Agena.

agena >> 189

Chapter Seven

Standard Libraries

190 7 Standard Libraries

agena >> 191

7 Standard Libraries

The standard libraries taken from the Lua 5. 1distribution provide useful functions that
are implemented directly through the C APl. Some of these functions provide
essential services fo the language (e.g., next and getmetatable; others provide
access fo “outside” sewvices (e.g.. 1/O); and others could be implemented in
Agena itself, but are quite useful or have critical performance requirements that
deserve an implementation in C (e.g., sort) .

The following text is based on Chapter 5 of the Lua 5.1 manual and includes all the
new operators, functions, and packages provided by Agena.

Lua functions which were deleted from the code are not described. References to
Lua were not deleted from the original text. If an explanation mentions Lua, then the
description also applies to Agena.

All libraries are implemented through the official C APl and are provided as
separate C modules. Currently, Agena has the following standard libraries:

* the basic library,

* package library,

o string library,

« table library,

« mathematical library,

» two input and output libraries,
» operating system library,

* debug facilities.

Except for the basic and the package libraries, each library provides all its functions

as fields of a global table or as methods of its objects. Agena operators have been
built into the kernel (the Virtual Machine), so they are not part of any library.

7.1 Basic Functions

The basic library provides some core functions to Agena. If you do not include this
library in your application, you should check carefully whether you need to provide
implementations for some of its facilities.

For logical operators, please see Chapter 4.8.

Summary of functions:

Checks

abs, assigned, assume, filled, has, isequal, rawequal, recurse, whereis.

192 7 Standard Libraries

Extraction

bottom, columns, descend, duplicates, getentry, left, max, min, next, ops,
rawget, recurse, right, top, unique, unpack, values.

Types
checkoptions, checktype, float, gettype, isboolean, iscomplex, isint,
isnegative, isnegint, isnonnegint, isnonposint, isnumber, isnumeric, ispair,
isposint, ispositive, isseq, isstring, isstructure, istable, nan, nonneg,
optboolean, optcomplex, optint, optnonnegative , optnonnegint,
optnumber, optposint, optpositive, optstring., settype, type, typeof.
Counting
countitems, size.

Data Manipulation

alternate, augment, getbit, map, purge, put, rawset, remove, select,
selectremove, setbit, sort, sorted, subs, toseq, toset, totable, zip.

Data Generation

nseq.
Error Handling

argerror, error, protect, xpcaill.
Libraries

readlib, with.
Files

read, save.
Output

print, printf, write, writeline.
Parsing

load., loadfile, loadstring.

agena >> 193

Cantor Operations

bintersect, bisequal, bminus.
Metatables

getmetatable, setmetatable.
Miscellaneous

bye, clear, restart, time.

abs (x)

If x is a number, the albs operator will return the absolute value of x. With complex
numbers, the magnitude is evaluated.

If x is a Boolean, it will return 1 for frue, O for false, and -1 for fail.
If x is null, abs will return -2.

If x is a string of only one character, abs will return the ASCII value of the character
as a number. If x is the empty string or longer than length 1, the function retumns fail.

alternate (x, y)

Returns x if y evaluates to null, else returns y. See also: or operator.

argerror (x, prochame, message)

Receives any value x, the name of procedure procname (A string) where x did not
satisfy anything, the error message text message, and appends the user-defined
type or if not defined the basic type of x. Thus it returns the error message: 'Error in
procname : message, Qof <type of x>.".

The function is written in Agena and included in the library.agn file.
See also: error.

assigned (obj)

This Boolean operator checks whether any value different from null is assigned to
the expression obj . If obj is dlready a constant, i.e. a number, boolean including
fail, or a string, the operator always returns true. If obj evaluates 1o a constant, the
operator also returns true.

See also: unassigned.

194 7 Standard Libraries

assume (obj [, message])

Issues an error when the value of its argument obj is false (i.e., null or false);
oftherwise, returns all its arguments. message is an error message; when absent, it
defaults to 'assumption failed'.

augment (obj1, obj2 [, ---])

Joins two or more tables, sequences, or registers objl , obj2 together horizontally.
The arguments must either be tables, sequences, or registers only. All structures
must be of the same size. The type of return is determined my the type of the
arguments.

The function is written in Agena and included in the library.agn file.

See also: columns, linalg.augment .

beta (x, y)

Computes the Beta function. x and y are numbers or complex values. The return
may be a number or complex value, even if x and y are numibers. The Beta

IxxIy
function is defined as: Betq(x, y) :ﬁ, with special treatment if x and y are
integers.

bintersect (obj1, obj2 [, option])

Returns all values of table, sequence, or register obj1 that are also values in table or
sequence obj2 . objl and obj2 must be of the same type. The function performs a
binary search in obj2 for each value in objl . If N0 opfion is given, obj2 is sorted
before starting the search. If you pass an option of any value then obj2 should
already have been sorted, for no correct results would be returned otherwise.

With larger structures, this function is much faster than the intersect operator.
The function is written in Agena and included in the library.agn file.

See also: bisequal, bminus.

bisequal (obj1, obj2 [, option])

Determines whether the tables objl and obj2 oOr sequences objl and obj2 oOr
reqgisters objl and obj2 contain the same values. The function performs a binary
search in obj2 for each value in objl . If N0 opfion is given (any value), obj2 is
sorted before starting the search. If you pass an option of any type then obj2
should already have been sorted, for no corect results would be retumned
otherwise.

With larger structures, this function is much faster than the = operator.

agena >> 195

The function is written in Agena and included in the library.agn file.

See also: bintersect, bminus.

bminus (obj1, obj2 [, option])

Returns all values of table, sequence, or register objl that are not values in table,
sequence, or register obj2 . objl and obj2 must be of the same type. The function
performs a binary search in obj2 for each value in objl . If N0 opftion is given, obj2

is sorted before starfing the search. If you pass the option then obj2 should already
have been sorted, for no correct results would be returned otherwise.

With larger structures, this function is much faster than the minus operator.
The function is written in Agena and included in the library.agn file.

See also: bintersect, bisequal.

bottom (obj)

With the table array, register, or sequence obj , the operator returns the element af
index 1. If obj is empty, it returns null.

See also: top.

bye

Quits the Agena session. No arguments or brackets are needed. If a procedure has
been assigned to the name environ.onexit, then this procedure is automatically run
before exiting the interpreter. The function also conducts a final garbage collection
fully closes the state of the inferpreter before leaving. An example:

> environ.onexit := proc() is print('Tschif? !') end

> bye
Tschiifd !

checkoptions (procname, obj, option [, ---] [, true)

Checks opftions passed to a given procedure, saving many lines of code in
procedures.

Since an option such like delimiter="; is actually passed as the pair
'delimiter":";’ you have to make sure that “real” pairs containing data (out not
options) are not included in the call to checkoptions. See Chapter 6.6.

Its first argument procname - @ string, not the function reference - is the name of the
procedure which will have to check its arguments obj .

196 7 Standard Libraries

Its second argument obj - a table - represents the arguments fo be checked
passed to procname .

The third to last arguments are pairs. The respective left operand (a string) will be
checked whether one of the right operands of the pairs in obj is of the type passed
as the right operand (a string or a basic type). See examples below.

The evaluation of obj works as follows: If an entry in obj is not a pair, it is not
evaluated, ignored and not returned in the resulting table. But if the entry is a pair, it
checks whether the left-hand side is a string, i.e. an option name. It then checks
whether its right hand side is of the given type in anything passed 1O option Or
further options of type pair. By default, If an option in obj cannot be found in option
or further options of type pair, an error is issued. But if the very last argument is the
Boolean value frue, no error is issued and the “unknown' opfion is part of the
resulting table.

If successful, the return is a table where the respective left-hand side in obj is the
key and the respective right-hand side in obj is the respective entry. Please play
around with this new function, or have a look at the skycrane.agn file in your local
Agena installation, function skycrane.scribe. User-defined types are properly
handled.

Thus:

> checkoptions('myproc’, [1, 'neil:'armstrong’], n eil=string):

> # 'neil' must be a string, number 1 will be skipp ed not being a pair
[neil ~ armstrong]

> checkoptions('myproc’, ['neil":'armstrong'], neil =boolean):

Error in ‘myproc’: boolean expected for neil option , got string.

> checkoptions('myproc’, ['neil":'armstrong’, ‘jame s"'lovell,

> neil=string, true):
[[ames ~ lovell, neil ~ armstrong]

checktype (obj, main, sub)

Checks whether the structure obj is a table, set, pair, register, or sequence, and
whether it is of the type given by main (a string), and whether all its elements are of
type sub (a string). It retumns true or false. User-defined types are supported.

The function is written in Agena and included in the library.agn file.

See also: type.

clear vl [, v2, -]

Deletes the values in variables vi, v2, --- , and performs a garbage collection
thereafter in order to clear the memory occupied by these values.

agena >> 197

columns (obj, p [, ---] [, 'structure’)

Extracts the given columns p (etc.) from the two-dimensional fable, sequence, or
reqgisters obj . The type of return is determined by the type of obj and is either a
structure of structure if the option 'structure’ is given, or a multiple return of
structures.

The function is written in Agena and included in the library.agn file.

See also: linalg.column, utils.readscv.

copy (obj [, option])

The operator copies the entire contents of a table, set, pair, or sequence obj iNfo a
new structure. If obj contains structures itself, those structures are also copied (by a
"deep copying' method). Structures included more than once are properly
aggregated to one single reference to save memory space. Metatables and
user-defined types are copied, 100.

With tables, if the 'array’ option is given, then the operator retumns just the array part
of obj . Likewise, the 'hash' option only extracts the hash part of obj . With any
option, metatables and user-defined types are not copied.

The type of return is determined by the type of obj .

The operator also treats cycles (structures that directly or indirectly reference to
themselves), correctly.

countitems (item, obj)
countitems (f, obj [, ---])

In the first form, counts the number of occurrences of an item in the structure (tfable,
set, register, or sequence) obj .

In the second form, by passing a function f with a Boolean relation as the first
argument, all elements in the structure obj that satisfy the given relation are
counted. If the function has more than one argument, then all arguments except
the first are passed right after the name of the object obj .

The return is a number. The function may invoke metamethods.

See also: select, bags package.

descend (f, obj, [, --*])

Returns all elements in the structure obj (a table, set, register, or sequence) that
satisfy a given condition expressed by function f. The function can be multivariate
and must return either true or false. The optional second and all further arguments
of f may be passed as the third, etc. argument.

198 7 Standard Libraries

With tables, all the entries and keys are scanned.
With sequences and registers, only the entries (not the keys) are scanned.

The function performs a recursive descent if it detects tables, sefs, reqisters, or
sequences in obj so that it can find elements in deeply nested structures. Pairs,
however, are ignored.

The function returns a structure with its type depending on the type of obj with all the
hits in no more than two levels, an example:

>s:=seq(l, 2, 3, [1, 2, 3], seq(1, 2, 2, 4, {2, 4, 5});

> descend(<< x -> x = 2 >>, s):
seq(2, [2], seq(2, 2), {2})

> # return all elements greater or equal 3

> ge = proc(x, y) is # x greater or equal y ?

> try

> return x >=y

> catch # avoid comparisons of numbers with oth er data types
> return false

>

>

yrt
end;

> descend(ge, s, 3):
seq(3, [3], seq(4), {4, 5})

descend issues an error if obj is unassigned.

See also: has, recurse, select.

duplicates (obj [, option])

Returns all the values that are stored more than once 1o the given table, register, or
sequence obj , and retumns them in a new table, reqgister, or sequence. Each
duplicate is returned only once. If option is not given, the structure is sorted before
evaluation since this is needed to determine all duplicates. The original structure is
left untfouched, however. If a value of any type is given for option , the function
assumes that the structure has been already sorted. The values in obj should either
e strings or numbers if No option is given, otherwise the function will fail.

The function is written in Agena and included in the library.agn file.

error (message [, level])

Terminates the last protected function called and retuns message as the error
message. error never returns.

agena >> 199

Usually, error adds some information about the error position af the beginning of the
message. The level argument specifies how to get the eror position. With level 1
(the default), the error position is where the error function was called. Level 2 points
the error to where the function that called error was called; and so on. Passing a
level O avoids the addition of error position information to the message.

See also: argerror.

everyth (obj, k)

Returns every given k-th element in the table, sequence, or register obj N a new
structure. The type of return is determined by the type of the first argument. With
tables, only the array part is tfraversed.

G

A global variable (not a function) that holds the global environment (that is, _G._G =
_G) . Agena itself does not use this variable; changing its value does not affect any
environment, nor vice-versa. (Use setfenv to change environments.)

filled (obj)

This Boolean operator checks whether a table, set, register, or sequence obj
contains at least one item and returns true if so; otherwise it returns false.

gethit (X, pos)

Checks for the bit at position pos € [1, 31] in the integer x, and either returns true or
false.

See also: getbits, setbit, setbits.

gethits (x [, any])

Returns all 32 bits in the infeger x, and refumns a reqister of size 32 with values true or
false. If any second argument is given, the register is filled with zeroes or ones
instead of Booleans.

See also: getbit, setbit, setbits.

getentry (obj [, k PREENN n])

Returns the entry objlk ., -+ ,k ,] from the table, register, or sequence obj without
issuing an error if one of the given indices k; (second to last argument) does not
exist. It conducts a raw access and thus does not invoke any metamethods.

If objlk ., - ,k o] does not exist, null is returned. If only obj is given, it is simply
returned.

200 7 Standard Libraries

getmetatable (obj)

If obj does not have a metatable, returns null. Otherwise, if the obj 's metatable has
A ' metatable' field, returns the associated value. Otherwise, returns the
metatable of the given obj .

See also: setmetatable .

gettype (obj)

Returns the type - set with seftype - of a function, sequence, set, pair, or userdata
obj as a string. If no user-defined fype has been set, or any other data type has
been passed, null is refurned.

See also: settype, typeof.

has (obj, x)

Checks whether the structure obj (a table, set, sequence, register, or pair) contains
element x.

With tables, all the entries are scanned. If x is not a number then the indices of the
table are searched, too.

With sequences and reqisters, only the entries (not the keys) are scanned. With pairs,
both the left and the right item is scanned. The function performs a deep scan so
that it can find elements in deeply nested structures.

The function return true if x could be found in obj , and false otherwise. If obj <> x
and if obj is a number, boolean, complex number, string, procedure, thread,
userdata, or lightuserdata, has returns fail.

See also: descend, in, recurse.

isboolean (---)

Checks whether the given arguments are all of type boolean and returns true or
false.

iscomplex (--)

Checks whether the given arguments are all of type complex and returns true or
false.

isequal (obj1, obj2)
Equivalent to obj1 = obj2 and returns true or false.

agena >> 201

The function is written in Agena and included in the library.agn file.

isint (---)

Checks whether all of the given arguments are infegers and returns true or false. If
at least one of its arguments is not a number, the function retumns fail.

isnegative (---)

Checks whether all of its arguments are negative numbers and retumns true or false.
If at least one of its arguments is Nnot a number, the function returns fail.

See also: isnegint, isposint, innonneg, ispositive .

isnegint (--)

Checks whether all of the given arguments are negative infegers and returns true or
false. If at least one of its arguments is not a number, the function returns fail.

isnonneg (---)

Checks whether all of its arguments are zero or positive numbers and returns true or
false. If at least one of its arguments is not a number, the function returns fail.

See also: isnegint, isposint, isnegative, ispositive .

isnonnegint (--)

Checks whether all of the given arguments are zeros or positive integers and returns
true or false. If at least one of its arguments is not a number, the function returns fail.

isnonposint (---)

Checks whether all of the given arguments are zeros or negative integers and
returns true or false. If af least one of its arguments is not a number, the function
returns fail.

isnumber (---)

Checks whether the given arguments are all of type number and returns true or
false.

isnumeric (---)

Checks whether the given arguments are all of type number or of type complex
and returns true or false.

ispair (--+)
Checks whether the given arguments are all type pair and returns true or false.

202 7 Standard Libraries

isposint (---)

Checks whether all of its arguments are positive integers and returns true or false. If
at least one of its arguments is not a number, the function returns fail.

See also: isnonposint.

ispositive (--)

Checks whether all of its arguments are positive numbers and retums true or false. If
at least one of its arguments is not a number, the function retumns fail.

See also: isnonposint, isposint, isnegative, isnonneg.

isreg (-+-)
Checks whether all of its arguments are of type register and returns true or false.

isseq (---)
Checks whether all of its arguments are of type sequence and retums true or false.

isstring (---)

Checks whether all of its arguments are of type string and returns true or false.

isstructure (---)

Checks whether all of its arguments are of type table, set, sequence, or pair and
returns true or false.

istable (--)
Checks whether all of its arguments are of type table and returns true or false.

left (obj)
With the pair obj , the operator returns its left operand. This is equals 1O obj[1]

See also: right.

load (f [, chunkname])

Loads a chunk using function f to get its pieces. Each call to f must return a string
that concatenates with previous results. A return of null (or no value) signals the end
of the chunk.

If there are no errors, retumns the compiled chunk as a function; otherwise, returns
null plus the error message. The environment of the returned function is the global
environment,

agena >> 203

chunkname is used as the chunk name for error messages and debug information.

loadfile ([filename])

Similar to load, but gets the chunk from file filename or from standard input, if no file
name is given.

loadstring (s [, chunkname])
Similar to load, but gets the chunk from the given string s. To load and run a given
string, use the idiom

assume(loadstring(s))()

See also: strings.dump.

map (f, obj [, ---])

This operator maps a function f to all the values in table, set, sequence, register,
string, or pair obj . f Must retfurn only one value. The type of return is the same as of
obj . If obj has metamethods or user-defined types, the return will also have them.

If obj is a string, f is applied on all of its characters from the left to right. The return is
a seguence of function values.

If function f has only one argument, then only the function and the structure obj
must be passed to map. If the function has more than one argument, then all
arguments except the first are passed right after the name of the table or set.

Examples:

> map(<< x->x"2>> 11,2, 3]):
[1, 4, 9]

>map(<< (X, y)->x>y>>1[-1,0,1,0): #0 fory
[false, false, true]

See also: @ operator, nreg, nseq, remove, select, subs, zip.

max (obj [, 'sorted")

Returns the maximum of all numeric values in table or sequence obj . If the option
'sorted' is passed than the function assumes that all values in obj are sorted in
ascending order and retumns the last entry. The function in general returns null if it
receives an empty table or sequence.

See also: min, math.max, stats.minmax.

204 7 Standard Libraries

min (obj [, 'sorted])

Returns the minimum of all numeric values in table or sequence obj . If the option
'sorted' is passed than the function assumes that all values in obj are sorted in
ascending order and returns the first entfry. The function in general returns null if it
receives an empty table or sequence.

See also: max, math.min, stats.minmax.

next (obj [, index])

Allows a programme to traverse all fields of a table or all items of a set, register, or
seqguence obj . With strings, it iterates all its characters. Its first argument is a table,
set, string, or sequence and its second argument is an index in the structure.

With tables, registers, or sequences, next returns the next index of the structure and
its associated value. When called with null as its second argument, next returns an
initial index and its associated value. When called with the last index, or with null in
an empty structure, next returns null.

With sets, next returns the next item of the set twice. When called with null as its
second argument, next retumns the initial item twice. When called with the last index,
or with null in an empty set, next returns null.

With strings, next returns the position of the respective character (a positive integer)
and the character. When called with null as its second argument, next returns the
first character. When called with the last index, next returns null.

If the second argument is absent, then it is interpreted as null. In particular, you can
use next(t) to check whether a table or set is empty. However, it is recommended
to use the filled operator for this purpose.

With tables, the order in which the indices are enumerated is not specified, even for
numeric indices. The same applies to set items.

The behaviour of next is undefined if, during the fraversal, you assign any value to a
non-existent field in the structure. With tables, you may however modify existing
fields. In particular, you may clear existing table fields.

See also: skycrane.iterate .

nreg (a, b [, step])
nreg (f,a, b [, step [, ---]])

In the first form, creates a reqister reg(a, a+step , --- , b-step , b), with a, b, and step
eing numbers. The step size is 1 if step - a numMber - is not given.

agena >> 205

In the second form, the function retuns a reqister seq(1~f (a), 2~f (a+step), - ,
((b-a)* 1/step +1)~f (b)), with f a function, a and b numbers. Thus, the function f is
applied to all numbers between and including a and b. If f requires two or more
arguments, the second, third, etc. argument must be passed after step .

The function uses the Kahan summation algorithm to prevent round-off errors in
case the step size is non-infegral.

Examples:

>nreg(<< x,y->x:x"2+y>> 1,51, 10):
reg(1:11, 2:14, 3:19, 4:26, 5:35)

>p:=reg(0.1,0.2,0.1,0.3,1)

> nreg(<< x -> x:p[x] >>, 1, size p):
reg(1:0.1, 2:0.2, 3:0.1, 4:0.3, 5:1)

See also: map, nseq.

nseq ([bool,] a, b [, K])
nseq ([bool, 1f,a,b [, k[, -]

In the first form, if no Boolean bool is given as the very first argument, the function
creafes a sequence sed(a, a+k, --- , b-k,), with a, b, and k being numbers. The
step size is 1 if k - a number - is not given. If any Boolean bool is given as the very
first argument, the function generates a linearly spaced sequence of k numibers in
the interval [a, b].

In the second form, if no Boolean bool is given as the very first argument, the
function returns a sequence seq(1~f (a), 2~f (a+k), === , ((b -a)* 1/k+1)~f (b)), with f
a function, a and b numbers. Thus, the function f is applied to all numibers between
and including a and b. If f requires two or more arguments, the second, third, etfc.
argument must be passed after k. If any Boolean bool is given as the very first
argument, the function generates a linearly spaced sequence of k numbers in the
interval [a, b] with f applied to all its members.

The function uses the Kahan summation algorithm to prevent round-off errors in
case the step size is non-infegral.

Examples:

>nseq(<< X,y ->x:xx"2+y>> 1,5, 1, 10):
seq(1:11, 2:14, 3:19, 4:26, 5:35)

>p:=seq(0.1,0.2,0.1,0.3,1)

> nseq(<< x -> x:p[x] >>, 1, size p):
seq(1:0.1, 2:0.2, 3:0.1, 4:0.3, 5:1)

206 7 Standard Libraries

> nseq(true, -4, 4, 6):
seq(-4, -2.4, -0.8, 0.8, 2.4, 4)

See also: map, nreg.

ops (index, ---)
ops (S,)

In the first form, if index is a numiber, refuns all arguments after argument number
index . Ofherwise, index must be the string '# , and ops returns the total number of
extra arguments it received. The function is useful for accessing multiple returns (e.g.

ops(n,?)).

In the second form, the index positions (infegers) in sequence s specify the values
to be returned after the first argument fo ops.

Example:

> f:=<< () -> 10, 20, 30, 40 >>

> ops(2, f()):
20 30 40

If you want to obtain only the element atf index , put the call to ops in brackets.

> (ops(2, f0)):
20

> ops(seq(2, 4), f()):
20 40

See also: unpack, values.

optboolean (x, y [, idx [, procname]])

The function checks whether x is a Boolean and in this case returns x. If x is null, it
returns the Boolean y. If the third argument idx , @ number, is given, then the
position idx is returned in error messages. If the fourth argument procname is given,
this name is printed as the function issuing the error.

optcomplex (x, y [, idx [, prochname]])

The function checks whether x is a numiber or complex numiber and in this case
returns x. If x is null it retumns the number or complex number y. If the third argument
idx , @ number, is given, then the position idx is retfurned in error messages. If the
fourth argument procname is given, this name is printed as the function issuing the
error.

agena >> 207

optint (X, y [, idx [, procname]])

The function checks whether x is an integer and in this case refumns x. If x is null it
returns the integer y. If the third argument idx , a number, is given, then the position
idx is returned in error messages. If the fourth argument procname is given, this
name is printed as the function issuing the error.

optnonnegative (x, y [, procname])

The function checks whether x is a non-negative number and in this case retumns x.
If x is null it returns the non-negative number y. If the third argument idx , a number,
is given, then the position idx is returned in error messages. If the fourth argument
procname is given, this name is printed as the function issuing the error.

See also: optpositive, optnumber.

optnonnegint (x, y [, procname])

The function checks whether x is a non-negative integer and in this case returns x. If
x is null it returns the non-negative infeger y. If the third argument idx , a number, is
given, then the position idx is returned in error messages. If the fourth argument
procname IS given, this name is printed as the function issuing the error.

See also: optint, optposint.

optnumber (x, y [, idx [, procname]])

The function checks whether x is a number and in this case returns x. If x is null it
returns the number y. If the third argument idx , a number, is given, then the position
idx is returned in error messages. If the fourth argument procname is given, this
name is printed as the function issuing the error.

See also: optpositive, optnonnegative .

optposint (x, y [, idx [, prochame]])

The function checks whether x is a positive integer and in this case retuns x. If x is
null it returns the positive integer y. If the third argument idx , a number, is given,
then the position idx is returned in error messages. If the fourth argument procname
is given, this name is printed as the function issuing the error.

See also: optint, optnonnegint.

optpositive (x, y [, idx [, prochame]])

The function checks whether x is a positive numibber and in this case returns x. If x is
null it returns the positive number y. If the third argument idx , a number, is given,
then the position idx is returned in error messages. If the fourth argument procname
is given, this name is printed as the function issuing the error.

208 7 Standard Libraries

See also: optnonnegative, optnumber.

optstring (x, y [, idx [, procname]])

The function checks whether x is a string and in this case returns x. If x is null it returns
the string y. If the third argument idx , a number, is given, then the position idx is
returned in error messages. If the fourth argument procname is given, this name is
printed as the function issuing the error.

print (--- [, option])

Receives any number of arguments, and prints their values o the console, using
the tostring function to convert them to strings. print is not intended for formatted
output, but only as a quick way to show a value, typically for debugging. For
formatted output, use strings.format.

In Agena, print also prints the confents of tables and nested tables to stdout if No
__tostring metamethods are assigned to them. The same applies to sets and
sequences.

If the option 'delim: <any sting> is given as the last argument, then print
separates multiple values with the given <string>, otherwise \t is used. If the
option 'nonewline":true is passed, then Agena does not print a final newline when
finishing output. Note that these two options cannot be used together.

If the kernel setting environ.kernel(longtable’) is set to true, then each
key~value pair is prinfed on a separate line, and Agena halfs after environ.more
numiber of lines for the user to press any key for further output. Press 'q’, 'Q', or the
Escape key to quit. The default for environ.more is 40 lines, but you may change
this value in the Agena session or in the Agena initialisation file.

You may change the way print formats objects by changing the respective
environ. print* functions in the library.agn file. See Appendix A5 for further details.

See also: printf, io.write, io.writeline, skycrane.scribe, skycrane.tee.

printf ([th,] template, --)

If the first argument fh is not given, prints the optional arguments under the control
of the template string template fO stdout, else it writes to the open file denoted by its
fle handle th . See strings.format for information on how to create the template
string.

Example:

> printf('%-10s %3d %210.2f\n', ‘Carbon’, 6, 12.0107);
Carbon 6 12.01

> th := io.open(file.txt', 'w");

agena >> 209

> printf(fh, '%-10s %3d %210.2f\n’, ‘Carbon’, 6, 12. 0107);

> close(fh);

See also: print, i0.write, i0.writeline, skycrane.scribe , skycrane.tee.

protect (f, argl, --)

Calls function f with the given arguments in profected mode. This means that any
error inside f is not propagated; instead, protect simply catches the error. Note that
protect does not work with operators.

The function either returns all results from the call in case there have been no errors,
or refuns the error message as a string as the only retun. In case of an error, the
error message is set to the globbal variable lasterror, otherwise lasterror is set to null.

lasterror is useful for checking the results of a call to protect as in the following:
if protect(.-+) = lasterror then e i

See also: xpcall, try/catch statement.

purge (obj [, pos])

Removes from table, register, or sequence obj the element at position pos, shifting
down other elements to close the space, if necessary. Retuns the value of the
removed element. The default value for pos is N, where n is the length of the table
seguence, or register, so that a call purge(obj) removes the last element of obj .

Use the delete element from tfable statement if you want to remove any
occurrence of the table value element from a table or sequence.

Note that with tables, the function only works if the table is an array, i.e. if it has
positive infegral and consecutive keys only. With registers, the top pointer is reduced
by one.

See also: put.

put (obj, [pos,] value)

Inserts element value af position pos in table, sequence, or register obj , shifting up
other elements to open space, if necessary. The default value for pos is N+ 1, where
n is the current length of the structure, so that a call put(obj, value) inserts value at
the end of obj .

Use the insert element into structure statement if you want to add an element at
the current end of a structure, for it is much faster.

210 7 Standard Libraries

The function returns nothing.

See also: purge.

gsadd (obj)

Raises all numeric values in table, sequence, or register obj to the power of 2 and
sums up these powers, using a precision-saving method. The return is a number. If
obj is empty or consists entirely of non-numbers, null is returned. If the structure
contains numbers and other objects, only the powers of the numbers are added.
Numeric entries with non-numeric keys are processed, as well.

See also: gmdeyv, sadd.

rawequal (objl, obj2)

Checks whether obj1 is equal to obj2 , without invoking any metamethod. Returns a
Boolean.

rawget (obj, index)

Gefts the real value of objlindex] , without invoking any metamethod. obj must be
a table, set, sequence, or pair; index MAYy be any value.

See also: getentry, rawset.

rawset (obj, index, value)

rawset (obj, value)

In the first form, sets the real value of objfindex] fo value , without invoking any
metamethod. obj must be a table, seft, register, sequence, or pair, index any value
different from null, and value any value. To delete a value from any structure, pass
null for value .

In the second form, the function inserts value into the next free position in the given
structure obj . obj can be a table, seft, register, or sequence.

This function returns obj .

See also: rawget.

read (filename)

Reads an object stored in the binary file denoted by file name filename and returns
it.

The function is written in Agena and included in the library.agn file.

agena >> 211

See also: save.

readlib (packagename [, packagename?2, ---] [, true])

Loads and runs packages stored to agn text files (with flename packagename .agn) or
binary C libraries (packagename .SO in UNIX, packagename .dll in Windows), or to both.

If frue is given as the last argument, the function prints the search path(s), and also
quits and prints some diagnostics if a corrupt C library has been found.

The function first fries to find the libraries in the current working directory, and
thereafter in the path in mainlioname. If it fails, it fraverses all paths in lioname until it
finds them. If it finds a library and the current user has at least read permissions for it,
it is initialised. On successful initialisation, the name of the package is entered into
the package.readlibbed set.

Nofte that if a package consists both of a C DLL and an Agena text file, they should
both be located in the very same folder as readlib does not search for them across
multiple paths and may thus initialise a package only partially.

Make sure that on the operating system level the environment variable AGENAPATH
has been set, that the individual paths are separated by semicolons and that they
do not end with slashes. In UNIX, if AGENAPATH has not been set, readlib by default
searches in /usr/agenallib

In eComStation - OS2 and Windows, the Agena installation programme
automatically sets AGENAPATH. If it failed, or you want to modify its contents, you
may manually set the variable like in the following examples, assuming that the
Agena libraries are located in the d:\agenallib folder and optionally in the
d:\agena\mypackage folder.

SET AGENAPATH=d:/agena/lib or
SET AGENAPATH=d:/agena/lib;d:/agena/mypackage

In UNIX, you may execute one of the following statements in your shell, assuming
that the Agena libraries are located in the /homelusr/agenallib folder and
opftionally in the /home/usr/agena/mypackage folder.

SET AGENAPATH=/home/usr/agena/lib or
SET AGENAPATH=/home/usr/agenal/lib;/home/usr/agen a/mypackage

In DOS, you have to set AGENAPATH in the autoexec.bat file:

SET AGENAPATH=d:/agena/lib or
SET AGENAPATH=d:/agena/lib;d:/agena/mypackage

Of course, packages may reside in other directories as well. Just enter further paths
fo libname as you need them.

212 7 Standard Libraries

The function returns true if all the packages have been successfully loaded and
executed, or fail if an error occurred.

Hint: the import statement is an interface to readlib (and initialise), but does not
require fo put the package names into quotes. For example,

> readlib('stats");

is equivalent to

> import stats;

See also: run, initialise, import statement.

recurse (obj, f [, ---])

Checks each element of the structure obj (a table, set, pair, register, or sequence)
by applying a function f on each of its elements. f can be a multivariate function
and must return either true or false. The optional second and all further arguments
of f may be passed as the third, etc. argument.

With tables, all the entries and keys are scanned.
With sequences and reqisters, only the entries (not the keys) are scanned.

The function performs a recursive descent if it detects tables, sets, pairs, registers, or
seguences in obj so that it can find elements in deeply nested structures.

The function immediately returns true if the function call to any element in obj
evaluates to true, and false otherwise. If obj is a number, boolean, complex
number, string, null, procedure, thread, userdata, or lightuserdata, recurse returns
fail. It issues an error if obj is unassigned.

See also: descend, has.

_RELEASE

A global variable that holds a string containing the language name, the current
inferpreter main version, the subversion, and the patch level. The format of this
variable is: '"AGENA >> <version>.<subversion>.<patchlevel>'

See also: global environment variable environ.release.

remove (f, obj [, --- [, newarray=true]])

Returns all values in table, set, register, or sequence obj that do not satisfy a
condition determined by function f, as a new table, set, reqister, or sequence. The
type of retun is determined by the type of second argument, depending on the
type of obj .

agena >> 213

If the funcfion has only one argument, then only the function and the
table/set/reqister/sequence are passed to remove.

>remove(<< x ->x>1>> 1, 2, 3]):

[1]

If the function has more than one argument, then all arguments except the first are
passed right after the name of the table or set obj .

>remove(<< X,y ->x>y>>1[1,2,3],1): #1 fory

[1]

If present, the function also copies the metatable and user-defined type of obj 10
the new structure.

Please note that if obj is a table, the return might include holes. If you pass the
newarray=true option as the last argument, however, the result is returned in a table
array with consecutive positive integral keys, not preserving the original keys of the
respective values determined, and not having holes; for example:

>remove(<< X ->x < 2>> 1, 2, 3]):
[2~2,3~73]

>remove(<< X -> x < 2 >>,[1, 2, 3], newarray = tr ue):
[2, 3]

With a register, all values up to the current top pointer are evaluated, and the size of
the retumned register is equal to the number of the elements in the retumn.

See also: countitems, map, select, selectremove, subs, unique, zip.

restart

Restarts an Agena session. No argument is needed.

If a procedure has been assigned to the name environ.onexit, then this procedure
is automatically run before re-initialising the interpreter. An example:

> environ.onexit := proc() is print('Tschdf3 !') end

> restart

Tschif3 !

During start-up, Agena stores all initial values, e.q. package tables assigned, in a
global variable called _origG. Tables are copied, too, so their contents cannot be
altered in a session.

If the Agena session is restarted with restart, all values in the Agena environment are
unassigned including the environment varioble G, but except of _origG,
mainlibname, environ.onexit, and libname (mainlibname and liboname are reset to
their original values if the kernel setting environ.kernel('libnamereset) results fo

214 7 Standard Libraries

frue, however.) Then all enfries in _orgG are read and assigned to the new
environment.

After this, the library base file agena.lib and thereafter the initialisation file agena.ini
- if present - are read and executed. Finally, restart runs a garbage collection.

right (obj)
With the pair obj , the operator returns its right operand. This is equals 10 obj[2]

See also: left.

run (filename)

Opens the named file and executes its contents as a chunk. When called without
arguments, run executes the contents of the standard input (stdin). Returns all
values returned by the chunk. In case of errors, run propagates the error to its caller
(that is, run does not run in protected mode).

See also: readlib, with.

sadd (obj)

Sums up all numeric values in table, sequence, or register obj . The return is a
number. If obj is empty or consists entirely of non-numbers, null is returned. If the
structure contains numbers and other objects, only the numbers are added.
Numeric entries with non-numeric keys are processed, as well. The operator uses
Kahan-Babuska Summation.

See also: gsadd, smul, calc.fsum, stats.sumdata.

save (obj, filename)

Saves an object obj of any type into a binary file denoted by file name filename

save returns an error if an object that cannot be stored to a file has been passed:
threads, userdata, for example. It also returns an error if the object to be written is
self-referencing (e.g. _G). If obj contfains one and the same structure multiple times,
e.g. n fimes, then save stores it n times.

The function locks the file when writing, avoiding file corruption if another application
fries to gain access 1o it.

Note that save overwrites existing files without warmning. Whereas numbers, strings,
and Booleans are stored in a portable fashion so that the data can e read both
on Big Endian (e.g SPARCs, PPCs) and Little Endian systems, procedures cannof.

The function is written in Agena and included in the library.agn file.

agena >> 215

See also: read, io.writefile .

select (f, obj [, --- [, newarray=true]])

Returns all values in table, seft, register, or sequence obj that satisfy a condition
determined by function f. The type of retun is determined by the type of the
second argument.

If f has only one argument, then only the function and the object are passed to
select.

> select(<< x->x>1>>[1, 2, 3)):
[2, 3]

If the function has more than one argument, then all arguments except the first are
passed right after the name of the object obj .

>select(<< x,y->x>y>>{1,2,3} 1) #1 fory
{3, 2}

If present, the function also copies the metatable and user-defined type of obj 10
the new structure.

Please note that if obj is a table, the return might include holes. If you pass the
newarray=true option as the last argument, however, the result is returned in a table
array with consecutive positive integral keys, not preserving the original keys of the
respective values determined, and not having holes. Thus,

> select(<< x -> x :: number >>, ['a', 10, 20, 30, 'z'], newarray=true);
returns

[10, 20, 30]

instead of

[2 ~ 10, 3 ~ 20, 4 ~ 30]

With a register, all values up to the current top pointer are evaluated, and the size of
the retumned register is equal to the number of the elements in the retumn.

See dalso: countitems, descend, map, remove, selectremove, subs, unique,
values, zip.

selectremove (f, obj [, --- [, newarray=true]])

Combines the functionality of select with the one of remove: The first result contains
all the elements of a structure obj (a table, set, register, or sequence) that satisfy a
given condition, the second result contains the elements of a structure not satisfying

216 7 Standard Libraries

the condition. This may speed up computations where you need both results,
maybe for post-processing, by around 33 %.

If obj is a table, the return might include holes. If you pass the newarray=true opftion
as the last argument, however, the result is returned in table arrays with consecutive
positive infegral keys, not preserving the original keys of the respective values
determined, and not having holes. Examples,

>a:=[4a/, 10, 20, 30, 'z7;

> selectremove(<< x -> X :: number >>, a):
[2 ~10,3~20, 4~ 30] [L~a,5~2Z;

> selectremove(<< x -> x :: number >>, a, newarray= true):
[10, 20, 30] [a, Z]

See also: remove, select.

setbit (x, pos, bit)

Sefs or unsets a bit in an infeger x at the given bit position pos .

Internally, x is first converted into its binary representation. Then bit is set to the
pos -th position from the right of this binary representation of x. bit may be either

true or false, or the numbers O or 1. E.g. if x is 2 = 00010, pos is 1, and bit is true,
then the result is 3 = 0b001T.

pos should be an integer in the range |pos | €[1 .. 31].

Please note that if x is negative, then the result is sign(x) * setbit(abs(x), pos, bit),
thus abstracting from the internal hardware representation of x.

The function is written in Agena and included in the library.agn file.

See also getbit, getbits, setbits.

setbits (x, r)

Setfs or unsets all 32 bits of an integer x with the bits given in register r . The register
must contain a minimum of one, and a maximum of 32 values, either the Booleans
true or false, or the integers 0 and 1. If the register contains less than 32 elements,
and has length n, the first 32 - n bits "to the left” are not set. Example:

> setbits(8, reg(1, 0, 0)):
12

See also getbit, getbits, setbit.

agena >> 217

setmetatable (obj, metatable)

Sets the metatable for the given table, set, sequence, or pair obj . (You cannot
change the metatable of other types from Agena, only from C.) If metatable is null,
removes the metatable of the given table. If the original metatable has a
' _metatable' field, raises an error.

This function returns obj .

See also: getmetatable.

settype (obj [, -], str)
settype (obj [, ---], null)

In the first form the function sets the type of one or more procedures, sequences,
tables, sefs, pairs, or userdata obj to the name denoted by string str . gettype and
typeof will then return this string when called with obj .

In the second form, by passing the null constant, the user-defined type is deleted,
and gettype thus will return null whereas typeof will return the basic type of obj .

If obj has NO _ tostring metamethod, then Agenad's pretty printer outputs the
object in the form str & '(' & <elements> & ')’ instead of the standard 'seq(' &
<elements> & ')’ Or '<element>:<element>' string.

See also: gettype.

size (obj)

With tables, the operator returns the number of key~value pairs in table obj .
With sefts, pairs, and sequences, the operator returns the number of items in obj .

With registers, the operator returns the number of elements up to the current top
pointer, but not the total number of elements in the reqisters.

With strings, the operator returns the number of characters in string obj , i.e. the
length of obj .

See also: environ.attrib, strings.utf8size, tables.getsize .

smul (obj)

Multiplies all numeric values in table, sequence, or reqister obj . The retun is a
number. If obj is empty or consists entirely of non-numbers, null is returned. If the
structure contains numbers and other objects, only the numbers are multiplied. In
tables, numeric entries with non-numeric keys are processed, as well.

218 7 Standard Libraries

See also: sadd, calc.fprod.

sort (obj [, f])

Sorts table, register, or sequence elements in a given order, in-place, from obj[1]
fo objin] ., where n is the length of the structure. If f is given, then it must be a
function that receives two structure elements, and returns true when the first is less
than the second (so that not f(obj[i+1], obj[i]) will be true after the sor). If £ is
not given, then the standard operator < (less than) is used instead.

The sort algorithm is not stable; that is, elements considered equal by the given
order may have their relative positions changed by the sort. Also, the function
cannot sort structures featuring values of different types (see skycrane.sorted for an
alternative).

See also: sorted, stats.issorted, skycrane.sorted, stats.sorfed.

Example:

>s:=11, 2, 3]
> s0rt(s, << X,y -> X >y >>)

>s:
[3. 2, 1]

>s:=seq(l:'a, 1.1:'b', 1.2:'c);
> sort(s, << X, y -> left(x) > left(y) >>)

>s:
seq(l.2:c, 1.1:b, 1:a)

sorted (obj [, f])

Sorts table, register, or sequence elements in obj iN A given order, but - unlike sort -
not in-place, and non-destructively. Depending on the type of obj , the retun is a
new table or sequence.

If £ is given, then it must be a function that receives two structure elements to
determine the sorfing order. See sort for further information.

The function cannot sort structures featuring values of different types (see
skycrane.sorted for an alternative).

See also: sort, skycrane.sorted, stats.issorted, stats.sorfed.

subs (x:v [, -], obj)

Substitutes all occurrences of the value x in the table, set, register, or sequence obj
with the value v. More than one substitution pair can be given. The substitutions are

agena >> 219

performed sequentially and simultaneously starting with the first pair. The type of
return is determined by the type of obj .

> subs(1:3, 2:4, [1, 2, -1]):
[3, 4, -1]

If present, the function also copies the metatable and user-defined type of obj 10
the new structure.

See also: countitems, map, remove, select, zip.

time ()

Returns the fime fill start-up in seconds as a number.

Calling time only once does not necessarily return a real amount of fime; instead
conduct a subtraction by calling time again fo get correct results.

See also: os.difffime, os.time.

top (obj)

With the table array, reqister, or sequence obj , the operator returns the element with
the largest index. If obj is empty, it returns null.

See also: bottom.

toreg (obj)

If obj is a string, the function will split it into its characters and return them in a
register with each character in obj as a register value, and in the same order as the
characters in obj .

If obj is a table, the function puts all its values - but not its keys - into a register.

If obj is a set, the function puts all its items into a register. The same applies to
seguences.

If obj contains structures, then only their references are copied. Map copy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toseq, toset, totable.

220 7 Standard Libraries

toseq (obj)

If obj is a string, the function will split it into its characters and return them in a
sequence with each character in obj as a sequence value, and in the same order
as the characters in obj .

If obj is a table, the function puts all its values - but not its keys - iNntfo a sequence.

If obj is a set, the function puts all its items info a sequence. The same applies 1o
reqisters.

If obj contains structures, then only their references are copied. Map copy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toreg, toset, fotable.

toset (obj)

If obj is a string, the function will split it info its characters and returns them in a set.
Note that there is no order in the resulting set.

If obj is a table, register, or sequence, the function puts all its values - but not its keys
- into a new set.

If obj contains structures, then only their references are copied. Map copy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toreg, toseq, totable.

totable (obj)

If obj is a string, the function splits it into its characters, and returns them in a table
with each character in obj as a table value in the same order as the characters in
obj .

If obj is @ sequence, reqister, or set, the function converts it into a table.

If obj contains structures, then only their references are copied. Map copy to
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toreq, toseq, toset.

agena >> 221

type (obj)

This operator returns the basic type of its only argument obj , coded as a string. The
possible results of this function are 'null’ (the string, not the value null), 'number'
'string’ , 'boolean' , ‘'table’ , ‘'set' , ‘'sequence' , ‘'register', ‘pair' ,
‘complex' , 'procedure’ , 'thread' , 'lightuserdata’ , and 'userdata’

If obj is a table, set, sequence, pair, or procedure with a user-defined type, then
type always returns the basic type, e.g. 'sequence’ Of 'procedure'

See also: checkiype, gettype, typeof.

typeof (obj)

This operator returns the user-defined type - if it exists - of its only argument obj ,
coded as a string.

A self-declared type can be defined for procedures, tables, pairs, sets, and
sequences with the setftype function. If there is no user-defined type for obj , then

the basic type is returned, i.e. 'nult (the string, not the value null), 'number' ,
'string’ , 'boolean’ , ‘'table’ , ‘'set’ , ‘'register , 'sequence' , 'pair' ,
‘complex’ , 'procedure’ , 'thread' , and 'userdata’

See also: type, gettype.

unassigned (obj)

This Boolean operator checks whether an expression obj evaluates to null. If obj is a
constant, i.e. a number, boolean including fail, or a string, the operator always
returns false.

See also: assigned.

unique (obj)

With a table obj , the unique operafor removes all holes (missing keys') and
removes multiple occurrences of the same value, if present. The return is a new
table with the original table unchanged.

With a reqister or sequence obj , the unique operator removes mulfiple occurrences
of the same value, if present. The return is a new sequence with the original
seguence unchanged.

See also: tables.entries .

222 7 Standard Libraries

unpack (obj, [, i [, jI])

Returns the elements from the given table, register, or sequence obj . This function is
equivalent 1o

return obij[i], obj[i+1], ---, obj[j]

except that the above code can be written only for a fixed number of elements. By
default, i is 1 andj is the length of the object, as defined by the size operator.

Please note that if you put a call to unpack intfo the argument list of a call to a
function or operator, or include a call to unpack into a structure, only the first return
of unpack is propagated if the call to unpack is not at the final position of the
argument list or the structure, for example:

> s := [unpack([1, 2, 3]), 4, 5]: #2and 3 are d iscarded
[1, 4, 5]

>s:=[-1, 0, unpack([1, 2, 3])]: #2and 3 arei ncluded
[1,0,1, 2, 3]

See also: ops, values.

values (obj, i L 2D

Retuns the elements i, from the given table, reqister, or sequence obj . This
operator is equivalent to

return [i 1~objli 4, i a~obji],] or
return seq(obji 1], obj[i oy)

The type of return is determined by the first argument obj .
See also: ops, select, unpack.

whereis (obj, x)

Returns the indices for a given value x in table, register, or sequence obj as a new
table, register, or sequence, respectively.

See also: tables.indices.

initialise (packagename [, false])

initialise (packagename , keyl, key2, --- [, false])

Assigns short names to package procedures such that:

name = packagename.name

agena >> 223

The function works as follows:

* In both forms, initialise first fries to load and run the respective Agena
package. The package may reside in a text file with file suffix .agn , orin a C
dynamic link library with file suffix .so in UNIX and .dil in Windows, or both in
a text file and in a dynamic link library. The function first tries to find the
package in the current working directory and if it failed, in the path pointed
to by mainlibname; if this fails, oo, it traverses all paths in liboname from left
to right until it finds af least the C DLL or the Agena fext file, or both. If a
package consists of both the C DLL and an Agena text file, then they both
must reside in the same folder.

» If the function does not find the package, an error is returned.

* Next, initialise fries to find a package inifialisation procedure. If a procedure
named " packagename .init" is present in your package then it is executed if the
package has been found successfully.

* In the first form, if only the string packagename is given, short names to all
functions residing in the global table packagename are created.

If you do not want initialise to assign short names for certain functions, their
names should be in the format packagename .QuUX.procedurename , €.Q.
mMath.aux.errormessage.

Note that if packagename.name is Not of type procedure, a short name is not
created for this object.

* If you would like to display a welcome message, put it into the string
packagename .initstring. It is displayed with an empty line before and after the
text. An example:

agenapackage.initstring := 'agenapackage v0.1 for A gena as of \
May 23, 1949\n’;

* In the second form, you may specify which short names are to be assigned
by passing them as further arguments in the form of strings. Contrary o the
first form, short names are also created for tables stored to table

packagename .

As opposed to the first version, initialise does not print any short names or
welcome messages on screen.

» Further information regarding both forms:
The function returns a table of all short names assigned.

If the global environment variable environ.withverbose is set to false, no

224

7 Standard Libraries

messages are displayed on screen except in case of errors. If it is set to any
other value or null, a list of all the short names loaded and a welcome
message is printed.

If a short name has already been assigned, a waming message is printed. If
a short name is protected (see table environ.withprotected), it cannot be
overwritften by initialise and a proper message is displayed on screen. You
can control which names are protected by modifying the contents of
environ. withprotected.

For information on which folders are checked and how to add new
directories to be searched by initialise, see readlib.

Note that initialise executes any statements (and thus also any assignment)
included in the file packagename .Qgn.

The function is written in Agena and included in the library.agn file.

If the last argument is the Boolean false, initialise does not print the assigned
shortcuts af the console.

Note: the import/alias statement is an interface to the initialise function but does
not require package names to be put into quotes. For example,

> initialise 'stats’;

is equivalent to

> import stats alias;

See also: readlib, run, register, and import/alias statement.

write ([fh,] v 1LV o2][, delim = <str>])

This function prints one or more numbers or strings v, to the file denoted by the
handle th , or to stdout (i.e. the console) if th is not given.

By default, no character is inserted between neighbouring values. This may be

changed by passing the option 'delim":<str> (e.g. 'delim| or delim="[") as
the last argument to the function with <str> being a string of any length.
Remember that in the function call, a shortcut to 'delim":<str> iS delim = <str>

The function is an interface to io.write.

See also: printf, skycrane.scribe, skycrane.tee.

agena >> 225

writeline ([fh,] v 1LV o2][, delim = <str>])

This function prints one or more numbers or strings v followed by a newline to the
file denoted by the handle th , or to stdout (i.e. the console) if fh is not given.

By default, no character is inserted between neighbouring values. This may be

changed by passing the option 'delim':.<str> (i.e. a pair, e.g. 'delim"|') as the
last argument to the function with <str> being a string of any length. Remember
that in the function call, a shortcut fo 'delim":<str> is delim = <str>

The function is an interface to io.writeline .

See also: printf, skycrane.scribe, skycrane.tee.

xpcall (f, err)

This function is similar to protect, except that you can set a new error handler.

xpcall calls function f in protected mode, using err as the error handler. Any error
inside f is not propagated; instead, xpcall catches the error, calls the err function
with the original error object, and returns a status code. Its first result is the status
code (a Boolean), which is true if the call succeeds without errors. In this case,
xpcall also returns all results from the call, after this first result. In case of any error,
xpcall returns false plus the result from err .

See also: protect.

zip (f, obj1, obj2 [, ---])

This function zips together either two sequences, two registers, or two tables obj1 |,
obj2 by applying the function f 10 each of its respective elements. Depending on
the type of obj1 , obj2 , the result is a new sequence, register, or table s where each
element s[k] is determined by s[k] := f(obj1 [K], obj2 [K]).

objl and obj2 must have the same number of elements. If you pass tables, they
must have the same keys.

If f has more than two arguments, then its third to last argument must be given right
after B.

If objl oOr obj2 have user-defined types or metatables, they are copied to the
resulting structure, as well. If objl has a metatable, then this metatable is copied,
else the metatable of obj2 is used if the latter exists. The same applies to
user-defined types.

See also: map, remove, select, subs.

226 7 Standard Libraries

7.2 Strings

Summary of Functions:

Search
atendof, in, instr, strings.find, strings.glob, strings.match, strings.mfind.
Insertion, Substitution, and Deletion
replace, strings.gsub, strings.include, strings.remove.
Extraction
split, strings.fields, strings.gmatch, strings.gmatches, strings.separate .
Queries
abs, strings.diffs, strings.dleven, strings.isabbrev, strings.isalpha,
strings.isalphanumeric , string.isalphaspace , string.isalphasp ec,
strings.isblank, strings.iscenumeric, strings.iscontrol, strings.isending .
strings.isfloat, strings.ishex, strings.islatin, strings.isisoalpha, strings.isiso lower,
strings.isisoprint , strings.isisospace , strings.isisoupper, strings.islatinnumeric ,
strings.isloweralpha , strings.islowerlatin, strings.ismagic , trings.isnumber,
strings.isnumeric , strings.isnumberspace , strings.isprintable , strings.isspace,
strings.isspec, strings.isupperalpha, strings.isupperiating, strings.isutfs .
Counting
size, strings.hits, strings.utf8size , strings.words .
Formatting
lower, tim, upper, strings.align, strings.capitalise , strings.format,
strings.isolower, strings.isoupper, strings.ljustify, strings.ltrim, strings.Irtrim,
strings.rjustify , strings.rtrim .

Conversion

&, join, tonumber, tostring, strings.diamap, strings.reverse, strings.tolatin,
strings.toutf8, strings.transform .

Manipulation

map, strings.repeat, strings.tobytes, strings.tochars .

agena >> 227

A note in advance: All operatfors and strings package functions know how fo handle
many diacritics properly. Thus, the lower and upper operators know how to convert
these diacritics, and various is* functions recognise diacritics as alphabetic
characters.

Diacritics in this context are the letters:

aAaAaAaAdalhae EEaA
EEEEeEEEE
irititiiyyy
000600080 6006O0
c0aovalau
cCANODpPPR

7.2.1 Kermnel Operators and B asic Library Functions

sl& s2

This binary operator concatenates two strings s1, s2 and refurns a new string. s1 or
s2 may also be a number. In this case the number is converted to a string and then
concatenated with the other operand.

See also: join.

sl atendof s2

This binary operator checks whether a string s2 ends in a substring s1. If true, the
position of the position of s1 in s2 is returned; otherwise null is returned. The operator
also returns null if the strings have the same length or af least one of them is the
empty string.

See also: in, instr, strings.isablrev, strings.isending .

slin__s2

This binary operator checks whether the string s2 includes s1 and retfurns its position
as a number, or null if s1 cannot be found. The operator also returns null if at least
one of the strings is the empty string.

See also: atendof, instr, strings.isabbrev, strings.isending .

s1 split s2

Splits the string s1 info words. The delimiter is given by string s2, which may consist of
one or more characters. The return of the operator is a sequence. If s1 = s2, or if s2
is the empty string, then an empty sequence is returned.

See also: strings.fields, strings.separate .

228 7 Standard Libraries

abs (s)

With strings, the operator returns the numeric ASCII value of the given character s (a
string of length 1).

instr (s, pattern [, init] [, plain] [, 'reverse’] [, 'borders")

Looks for the first match of pattern in the string s. If it finds a match, then instr returns
the index of s where this occurrence starts; otherwise, it returns null.

If the opfion 'reverse’ is given, then the search starts from the right end and always
runs fo its left beginning and the first occurrence of pattern with respect to the
beginning of s is returned. In the reverse search, pattern matching is not supported.

An optional numerical argument init passed anywhere after the second argument
specifies where to start the search; its default value is 1 and may be negative. In
the latter case, the search is started from the [init| 's position from the right end of
S.

The function by default supports pattern matching, almost similar to regular
expressions, see Chapter 7.2.3. instr is 45 % faster than strings.find. If the optional
Boolean argument plain is set to the Boolean true, paftern matching is switched off
and a much faster plain search is conducted instead (speed bonus around 40 %).

The optional argument 'borders' refurns the start and the end position of a match
in a pair. However, this mode is slow, use string.find instead which is twice as fast.

See also: atendof, in, strings.isabbrev, strings.isending , strings find.

join (obj [, sep [, i [, jlll)

Concatenates all string values in the table, sequence, or register obj N sequential
order and returns a string: objli] & sep & objli+1] - & sep & objj] . The default
value for sep is the empty string, the default for i is 1, and the default for j is the
length of the sequence. The function issues an error if obj contains non-strings.

See also: & operator.

lower (s)

Receives a string and returns a copy of this string with all uppercase letters (‘A' to 'Z'
plus the above mentioned diacritics) changed fo lowercase ('a' o 'Z' and the above
mentioned diacritics). The operator leaves all other characters unchanged.
Example:

> lower('Elektronika MK-61"):
elektronika mk-61

agena >> 229

See also: strings.isolower, upper.

map (f, s [, ---])

This operator maps a function f to all characters of string s from the left to right. The
retumn is a sequence of function values.

If function f has only one argument, then only the function and the string s must be
passed to map. If the function has more than one argument, then all arguments
except the first are passed right after argument s.

replace (s1, s2, s3)
replace (s1, obj)
replace (sl1, pos, s2)

In the first form, the operator replaces all occurrences of string s2 in string s1 by
string s3.

In the second form, the operator receives a string s1 and a table, sequence, or
reqgister obj of one or more string pairs of the form s2:s3 and replaces all
occurrences of s2 in string s1 with the corresponding string s3. Thus you can replace
multiple patterns simultaneously with only one call to replace.

In the third form, the operator inserts a new string s2 info the string s1 at the given
position pos, substituting the respective character in s1 with the new string s2 which
may consist of zero, one or more characters. The return is a new string. If s2 is the
empty string, the character in s1 is deleted.

The return is always a new string.

The operator does not support paftern matching, use strings.gsub instead.

size (s)

With a string s, the operator returns ifs length, i.e. the number of characters in s.

tonumber (e [, base])

Tries to convert its argument to a number or complex value. If the argument is
already a number, complex value, or a string convertible to a number or complex
value, then tonumber returns this value; otherwise, it returns e if e is a string, and fail
otherwise. The function recognises the strings 'undefined' and ‘infinity’ properly,
i.e. it converts them to the corresponding numeric values undefined and infinity,
respectively.

An optional argument specifies the base to interpret the numeral. The base may be
any integer between 2 and 36, inclusive. In bases above 10, the letter 'A' (in either
upper or lower case) represents 10, 'B' represents 11, and so forth, with 7'

230 7 Standard Libraries

representing 35. In base 10 (the defaulf), the number may have a decimal part, as
well as an optional exponent part. In other bases, only unsigned integers are
accepted. If an option is passed, 'undefined' and 'infinity’ are not converted
to numibers; and if e could not be converted, fail is returned.

tostring (e)

Receives an argument e of any type and converts it to a sting in a reasonable
format. For complete control of how numbers are converted, use strings.format.

If the metatable of e has a ' fostring' field, then the tfostring function calls the
corresponding value with e as argument, and uses the result of the call as ifs result.

With numbers, the number of digits in the resulting string is dependent on the
kemel/digits setting. See environ.kemel for further information.

trim (s)

Returns a new string with all leading, frailing and excess embedded white spaces
removed. trim is an operator. See also: strings.ltrim, strings.rrim .

upper (s)

Receives a string and returns a copy of this string with all lowercase letters (‘' to ‘2
plus the above mentioned diacritics) changed to uppercase (A' to 'Z' and the
above mentioned diacritics). The operator leaves all other characters unchanged.
Example:

> upper('Elektronika MK-61":
ELEKTRONIKA MK-61

See also: lower, strings.capitalise , strings.isoupper .

7.2.2 The strings Library

The strings liorary provides generic functions for string manipulation, such as finding
and extracting substrings, and pattern matching. When indexing a string in Agena,
the first character is at position 1 (not af 0, as in C). Indices are allowed to be
negative and are interpreted as indexing backwards, from the end of the string.
Thus, the last character is at position -1, and so on.

The strings library provides all its functions inside the table strings

strings.align (s [, n])

Inserts newlines into a string s after each n character. By default n is 79, so a newline
is inserted at position 80, 160, and so forth. The retumn is a string. The function helps
with correctly outputting formatted text at the console.

agena >> 231

strings.capitalise (s)

Converts the first character in string s to upper case - if possible - and retumns the
capitalised string. If s is the empty string, it is simply retfumned. It also converts
ligatures if the Western European character set is being used.

See also: upper.

strings.diffs (s, t[, n [, option]])

Counts the differences between the two strings s and t : substitutions, franspositions,
deletions, and insertions.

By default, both strings must contains at least three characters. You may change
this by passing any other positive number as the optional third argument n. The
function returns fail if af least one of the strings consists of less characters.

If any fourth argument is given, the return is a sequence of strings describing the
respective difference found, otherwise the retumns is the number of the differences
encountered.

The function is thrice as fast as strings.dleven, but may count differently in odd
situations.

strings.dleven (s, t)

Returns the Damerau-Levenshtein distance between two strings s and t . It is a count
of the minimum numiber of insertions, deletions, substitutions of a single character,
or transpositions of two neighbouring characters to convert s into t. The retumn is a
number. If af least one of the strings is empty, undefined is retumned.

See also: strings.diffs.

strings.diamap (s [, option])

The function corrects problems in the Solaris, Linux, eComStation - OS/2, Windows,
and DOS consoles running codepage 850 with diacritics and ligatures read in from
the keyboard or a text file by mapping them to codepage 1252. It takes a strings s,
applies the mapping, and returns a new string. All other characters are returned
unchanged.

If any option is given, the function transforms a string from codepage 1252 to 850.

Example:

> strings.diamap('AEIOU-I_&+1"):
AEIOUAOUAAD

Note that the function does not convert all existing special tokens.

232 7 Standard Libraries

Agena is shipped with substitution tables for codepage 1252. If you want fo use
another codepage, edit the _c2f and _f2c tables in the library.agn file
accordingly.

strings.dump (f)

Returns a string containing a binary representation of the given function f, so that a
later loadstring on this string returns a copy of the function. f must be an Agena
function without upvalues.

strings.fields (s, i 11 2][delim])

strings.fields (s, o [, delim])

Extracts the given fields (columns) in string s. In the first form, the field positions i ., i 2,
etc. are non-zero integers. The field positions may be negative, denoting fields
counted from the right end of s. In the second form, the field positions are given in
the sequence o.

An opftional string delim may be passed as the last argument o denote the
character or character sequence that separates the individual fields. The default for
delim is the white space.

The return is a sequence of the fields (strings).

See also: split, especially if you want to retrieve all fields in a string.

strings.find (s, pattern [, init [, plain]])

Looks for the first match of pattern in the string s. If it finds a match, then find returns
the indices of s where this occurrence starts and ends; otherwise, it returns null. The
function does support pattern matching facilities (which you can fumn off, see
below).

A third, optional numerical argument init specifies where fo start the search; ifs
default value is 1 and may be negative. A value of frue as a fourth, optional
argument plain tumns off the pattern matching facilities (see Chapter 7.2.3), so the
function does a plain “find substring™ operation, with no characters in pattem being
considered "magic . Note that if plain is given, then init must be given as well.

If the pattern has captures, then in a successful match the captured values are also
returned, after the two indices.

See also: in, atendof, and instr operator, strings.mfind.

strings.format (formatstring, ---)

Returns a formatted version of its variable number of arguments following the
descriptfion given in its first argument (which must be a string). The format string

agena >> 233

follows the same rules as the printf family of standard C functions. The only
differences are that the options/modifiers *, I, L, n, p, and h are not supported and
that there are four extra options, a, g, D, and F. The g option formats a string in a
form suitable to be safely read back by the Agena interpreter. All double quotes,
newlines, emibedded zeros, and backslashes in the string are correctly escaped
when written. The a modifier works the same like the g modifier but does not include
frailing or leading double quotes. For instance, the calll

strings.format('%q’, ‘a string with \"quotes\" and \n new line")

will produce the string:

"a string with \"quotes\" and \
new line"

The modifiers D and F prevent quarrels with numerical functions that can return
non-numbers in case of errors: D formats an integer like the d modifier if the
argument is a number, and the C double representation of undefined otherwise. F
likewise either formats a float, or the C double pendant of undefined.

The options ¢, d, E, e, f, g, G, i, 0, u, X, and x all expect a number as argument,
whereas a, g. and s expect a string, and D and F expect anything.

This function does not accepf string values containing emibedded zeros.

strings.glob (s, pattern [, true])

Compares a sting s with a string pattern , the latter optionally including the
wildcards ? and *, where 2 represents exactly one unknown character, and *
represents zero or more unknown characters. Other pattern matching facilities are
Nnot supported.

The return is true if the pattern could be found, and false otherwise. If the optional
third argument is true, then the strings are compared case-insensitively.

See also: strings.find.

strings.gmatch (s, pattern)

Returns an iterator function that, each time it is called, returns the next captures
from pattern over string s. The function supports pattern matching facilities
described in Chapter 7.2.3.

If pattern specifies no captures, then the whole match is produced in each call.

As an example, the following loop

s := 'hello world from Lua'

234 7 Standard Libraries

for w in strings.gmatch(s, '%a+") do
print(w)
od

will iterate over all the words from string s, printing one per line. The next example
collects all pairs key~value from the given string into a table:

create table t;
s := 'from=world, to=Lua'

for k, v in strings.gmatch(s, '(%w+)=(%w+)") do
tk] == v
od

See also: strings.match, strings.gmatches .

strings.gmatches (s, pattern)

Wrapper around strings.gmatch which returns all occurrences of a substring pattern
in string s a in a new sequence.

The function is written in Agena and included in the library.agn file.

strings.gsub (s, pattern, repl [, n])

Returns a copy of s in which all occurrences of the pattern have been replaced
by a replacement string specified by repl , which may be a string, a table, or a
function. gsub also returns, as ifs second value, the total number of sulbstitutions
made.

If repl is a string, then its value is used for replacement. The character % works as
an escape character: any sequence in repl of the form %n, with n between 1 and
9, stands for the value of the n-th captured substring (see below). The sequence %0
stands for the whole match. The sequence %% stands for a single %.

If repl is @ table, then the table is queried for every match, using the first capture as
the key; if the pattern specifies no captures, then the whole match is used as the
key.

If repl is a function, then this function is called every time a match occurs, with all
captured substrings passed as arguments, in order; if the patftern specifies no
captures, then the whole match is passed as a sole argument.

If the value retuned by the table query or by the function call is a sting or a
number, then it is used as the replacement string; otherwise, if it is false or null, then
there is no replacement (that is, the original match is kept in the string).

The optional last parameter n limits the maximum numlber of substitutions to occur.
For instance, when n is 1 only the first occurrence of pattern is replaced.

agena >> 235

Here are some examples:

X := strings.gsub(‘hello world', '(%w+)', '%1 %1")
--> x = 'hello hello world world'

X := strings.gsub(‘hello world', "%w+'", '%0 %0', 1)

-->x = 'hello hello world'

X := strings.gsub(‘hello world from Lua’, '(%w+)%s *(%w+)", '%2 %1")
--> x ='world hello Lua from'

X := strings.gsub(‘home = $HOME, user = $USER’, ‘% $(%w+)', 0s.getenv)
--> x = 'home = /home/roberto, user = roberto’

X 1= strings.gsub('4+5 = $return 4+5%', '%$(.-)%$' , proc (s)

return loadstring(s)()

end)

~->Xx='4+5=9'

local t := [name~'lua’, version~'5.1"]
X = strings.gsub(‘$name%-$version.tar.gz', '%$(Yow+), 1)
-->x = 'lua-5.1.tar.gz'

See also: replace.

strings.hits (s, pattern [, true])

Returns the number of occurrences of substring pattern in string s.

If only two arguments are passed, pattern matching facilities (see Chapter 7.2.3)
are supported. If the Boolean constant true is passed as a third argument, pattern
matching is switched off for faster execution.

See also: strings.words.

strings.include (s, pos, p)

Inserts the string p into the string s at position pos .

If pos < size s, the character at position pos is Mmoved size p places to the right.

If pos = size s + 1, p is just appended to s, equal to the Agena expression s & p.

The function returns the new string and issues an error, if the index pos is invalid. p
may be the empty string, in this case, p is returned.

See also: strings.remove.

strings.isabbrev (s, pattern [, true])

Detfermines whether a string s is beginning with the substring pattern , i.e. whether
pattern fits entirely to the beginning of the string s in case the length of pattern s
less than that of s. The function returns true or false.

236 7 Standard Libraries

If only two arguments are passed, pattern matching facilities (see Chapter 7.2.3)
are supported. If the Boolean constant true is passed as a third argument, pattern
matching is switched off for faster execution.

If s or pattern are empty strings, the function returns false.

The function can be useful in linguistics if you want to check whether a word has a
given prefix.

See also: strings.isending, atendof.

strings.isalpha (s)

Checks whether the string s consists enfirely of alphabetic lefters (including
diacritics) and returns frue or false.

See also: strings.isisoalpha, strings.islatin, strings.ismagic .

strings.isalphanumeric (s)

Checks whether the string s consists entirely of numbers or alphabetic letters
(including diacritics) and returns true or false.

See also: strings.islatinnumeric.

strings.isalphaspace (s)

Checks whether the string s consists enfirely of alphabetic lefters (including
diacritics) and/or a white space and returns true or false.

strings.isalphaspec (s)

Checks whether the string s consists entirely of the Latin lefters a to z, A to Z, or all
characters that are not blanks or alphanumeric, and returns true or false.

See also: strings.isspec, strings.isalphaspace .

strings.isblank (s [, true])

Checks whether the string s consists entirely white spaces or tabulators (\t) and
returns true or false. If the option true is given, the function checks for tabs,
linefeeds, carriage retums, white spaces, vertical tabs, and formfeeds.

See also: strings.isisospace , strings.isspace .

agena >> 237

strings.iscenumeric (S)

Checks whether the string s consists entirely of the digits 0 fo 9 or digits and
optionally exactly one decimal comma at any position, and returns true or false.

See also: strings.isfloat, strings.isnumber, strings.isnumeric, os.setlocale.

strings.iscontrol (s)

Checks whether the string s consists entirely of control characters and returns true or
false. Control characters are: \O', bell, backspace, tab, linefeed, cariage retumn,
and all other characters between ASCIl code 0 and 31.

See also: strings.isblank, strings.isprintable, strings.isspec.

strings.isending (s, pattern [, true])

Defermines whether a string s is ending in the substing pattern , i.e. whether
pattern fits enfirely to the end of the string s in case the length oOf pattern is less
than that of s. The function returns true or false.

If only two arguments are passed, pattern matching facilities (see Chapter 7.2.3)
are supported. If the Boolean constant true is passed as a third argument, pattern
matching is switched off for faster execution.

If s or pattern are empty strings, the function returns false.

The function can be useful in linguistics if you want to check whether a word has a
given inflectional ending.

See also: strings.isabbrev, atendof.

strings.isfloat (s)

Checks whether the string s consists entirely of the digits O to 9 and exactly one
decimal point (or the decimal-point separator at your locale) at any position, and
returns true or false.

See also: strings.isnumber, strings.isnumeric , os.setlocale .

strings.ishex (s)

Checks whether the string s represents a hexadecimal number which consists of the
digits 0 fo 9 and or the lefters 'a' to 'f' or ‘A" to 'F', and returns true or false.

See also: strings.isnumber.

238 7 Standard Libraries

strings.isisoalpha (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 alphabetic lower
and upper-case characters (including diacritics) and returns frue or false. The
function only correctly recognises strings read from a file. Mostly, it cannot process
ligatures input in a shell, e.g. the Windows NT or Mac console.

See also: strings.isalpha.

strings.isisolower (s)

Checks whether the string s consists entirely of ISO 8859/1 Lafin-1 alphabetic
lower-case characters (including diacritics) and returns true or false. The function
only correctly recognises strings read from a file. Mostly, it cannot process ligatures
input in a shell, e.g. the Windows NT or Mac console.

See also: strings.isalpha, strings.isloweralpha .

strings.isisoprint (s)

Checks whether the string s consists entirely of printable ISO 8859/1 Latin-1 letters
and returns true or false.

strings.isisospace (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 white spaces and
retuns true or false.

See also: strings.isspace.

strings.isisoupper (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 alphabetic
upper-case characters (including diacritics) and returns true or false. The function
only correctly recognises strings read from a file. Mostly, it cannot process ligatures
input in a shell, e.g. the Windows NT or Mac console.

See also: strings.isalpha, strings.isupperalpha.

strings.islatin (s)

Checks whether the string s entirely consists of the characters 'a' to 'z, and A'to 'Z'. It
returns true or false. If s is the empty string, the result is always false.

See also: strings.isalpha.

agena >> 239

strings.islatinnumeric (s)

Checks whether the string s consists entirely of numibers or Latin letters 'a' to 'z' and ‘A’
to 'Z', and returns true or false.

See also: strings.isalphanumeric.

strings.isloweralpha (s)

Checks whether the string s consists entirely of the characters a to z and lower-case
diacritics, and retumns true or false. If s is the empty string, the result is always false.

See also: strings.isisolower , strings.isupperalpha.

strings.islowerlatin (s)

Checks whether the string s consists entirely of the characters 'a' to 'z, and returns
true or false. If s is the empty string, the result is always false.

See also: strings.isupperlatin.

strings.ismagic (s)

Checks whether the string s contains one or more magic characters and returns
true or false. In this function, magic characters are anything unlike the letters 'A' to
'Z','d' to 'Z', and the diacritics listed at the top of this chapter.

See also: strings.isalpha.

strings.isnumber (s)

Checks whether the string s consists entirely of the digits O to 9 and returns true or
false.

See also: strings.isfloat, strings.ishex, strings.isnumeric .

strings.isnumberspace (s)

Checks whether the string s consists entirely of the digits O to 9 or white spaces and
returns true or false.

strings.isnumeric (s)

Checks whether the string s consists entirely of the digits O to 9 or digits and
optionally exactly one decimal point (or the decimal-point separator at your locale)
at any position, and returns true or false.

See also: strings.iscenumeric, strings.isfloat, strings.isnumber, os.setiocale.

240 7 Standard Libraries

strings.isolower (s)

Receives an ISO 8859/1 Latin-1 string s and returns a copy of this string with all
upper-case letters changed to lower-case. The operator leaves all other characters
unchanged.

See also: lower, strings.isoupper .

strings.isoupper (s)

Receives an ISO 8859/1 Latin-1 string s and returns a copy of this string with all
lower-case letters changed o upper-case. The operator leaves all other characters
unchanged.

See also: lower, strings.isoupper .

strings.isprintable (s)

Checks whether the string s consists entirely of characters that can be output at the
console (characters with ASCIl codes 32 to 255 except the backspace) and returns
frue or false.

See also: strings.iscontrol.

strings.isspace (s)

Checks whether the string s consists entirely white spaces and returns true or false.
See also: strings.isblank, strings.isisospace .

strings.isspec (s)

Checks whether the string s consists entirely of punctuation characters (any printing
character that is not a white space or alphanumeric), including

white space ¢?i!"#$@8% &' */+-., ;()[1{ POV
~=<>

and returns frue or false.
See also: strings.isalphaspec , strings.isspace, strings.ismagic.

strings.isupperalpha (s)

Checks whether the string s consists entirely of the capital letters 'A' to 'Z' and
upper-case diacritics, and returns true or false. If s is the empty string, the result is
always false.

agena >> 241

See also: strings.isisoupper , strings.isloweralpha.

strings.isupperlatin (s)

Checks whether the string s consists entirely of the capital letters 'A' to 'Z', and returns
true or false. If s is the empty string, the result is always false.

See also: strings.islowerlatin.

strings.isutf8 (s)

Detects that the given string s is in UTF-8 encoding and returns two Booleans (frue or
false): The first Boolean indicates that s is compliant to the UTF-8 standard.
Remember that a string in ASCIl or ISO 8859 encoding is also a valid UTF-8 string.
The second Boolean indicates that s contains at least one multi-byte UTF-8
character, i.e. that at least one character is part of the UTF-8 but not of the ASCII or
ISO 8859 standard.

Please note that the function may not produce correct results with text input in a
console. The function can only retun correct results if the string to be checked has
been read from a file.

See also: strings.isisoalpha .

strings.ljustify (s, width [, filler])

Adds filling characters to the right end of string s, as necessary to return a new stfring
of the given width . If s is a number, it is automatically converted to a string before
padding starts. The filling characters may be denoted by the third optional
argument filler , otherwise filler is a white space by default. If the resulting string
is longer than the given width , it is fruncated to the first width characters.

See also: strings.rjustify .

strings.Irtrim (s [, c])

Returns a new string with all leading and trailing white spaces removed from s. If a
single character is passed for ¢ as an optional second argument, then all leading
and frailing characters given by ¢ are removed.

It does not remove spaces or the given character within the “actual’ part of the
string.

See also: tim operator, strings.ttrim, strings. frim.

242 7 Standard Libraries

strings.Itrim (s [, c])

Returns a new string with all leading white spaces removed from s. If a single
character is passed for ¢ as an optional second argument, then all leading
characters given by ¢ are removed.

See also: tim operator, strings.Itrim , strings. frim.

strings.match (s, pattern [, init])

Looks for the first match of pattern in the string s. If it finds one, then match returns
the captures from the pattemn; otherwise it returns null. If pattern specifies no
captures, then the whole match is returned. A third, optional numerical argument
init specifies where fo start the search; its default value is T and may be negative.
The function supports pattern matching facilities. For examples, see Chapter 4.7.8.

See also: strings.gmatch.

strings.mfind (s, pattern [, init [, plain]])

Like strings.find, but looks for all the matches of pattern in the string s. If it finds af
least one match, it returns a sequence with atf least one pair indicating where the
respective match starts and ends, otherwise, it returns null.

A third, optional numerical argument init specifies where fo start the search; ifs
default value is 1 and may be negative. A value of frue as a fourth, optional
argument plain tumns off the pattern matching facilities (see Chapter 7.2.3), so the
function does a plain "find substring”™ operation, with no characters in pattern
being considered "magic . Note that if plain is given, then init must be given as
well.

Conftrary fo strings.find, if the pattern has captures, then in a successful match the
captured values are not returned.

See also: in, atendof, and instr operator, strings.find, strings. mfind.

strings.remove (s, pos [, len])

Starting from string position pos, the function removes len characters from string s.
The return is a new string. If len is not given, it defaults fo one character to be
deleted.

It is not an eror if len is greater than the actual length of s. In this case all
characters starting at position pos are deleted.

See also: replace, strings.include .

agena >> 243

strings.repeat (s, n)

Returns a string that is the concatenation of n copies of the string s.

strings.reverse (s)

Returns a string that is the string s reversed.

strings.rjustify (s, width [, filler])

Adds filing characters to the beginning of string s, as necessary fo return a new
string of the given width . If s is a number, it is automatically converted to a string
before padding begins. The filing characters may be denoted by the third optional
argument filler , otherwise filler is a white space by default. If the resulting string
is longer than the given width , it is fruncafed fo the last width characters.

See also: strings. ljustify.

strings.rtrim (s [, c])

Returns a new string with all trailing white spaces removed from s. If a single
character is passed for ¢ as an optional second argument, then all trailing
characters given by ¢ are removed.

See also: tim operator, strings.Ifrim , strings.ltrim .

strings.separate (s, d)

Splits a string s info its fokens. d is a string that specifies a set of delimiters that may
surround the token to be extracted. Thus, the delimiter in front of a token may be
different from the delimiter at its end. All the tokens or returned in a sequence in
sequential order. If s only includes one or more characters given in d, orif s or d are
empty strings, the function retums fail.

> a := strings.separate(‘a word, another word.', ' L)
seq(a, word, another, word)

See also: split operator.

strings.tobytes (s)

Converts a string s into a sequence of its numeric ASCII codes. If the string is empty,
an empty sequence is refurned.

Note that numerical codes are not necessarily portable across platforms.

244 7 Standard Libraries

strings.tochars (---)

strings.tochars (s)

In the first form, receives zero or more integers and returns a string with length equal
to the number of arguments, in which each character has the internal numerical
code equal fo ifs corresponding argument.

In the second form, converts all the infegers in sequence s to a string.

Note that numerical codes are not necessarily portable across platforms.

strings.tolatin (s)

Creates a dynamically allocated copy of string s, changing the encoding from
UTF-8 to 1ISO-8859-15. Unsupported code points are ignored. The return is a string.
ISO-8859-15 is ISO-8859-1 plus the Euro symbol.

See also: strings.toutf8.

strings.toutf8 (s)

Creates a dynamically allocated copy of string s, changing the encoding from
ISO-8859-15 to UTF-8. The return is a string. ISO-8859-15 is ISO-8859-1 plus the Euro
symbol.

See also: strings.isutf8, strings.tolatin, strings.utf8size .

strings.transform (f, s)

Applies a function f to the ASCIl value of each character in string s and retuns a
new string. f must refurn an integer in the range [0, 255], otherwise an error is issued.

Note that numerical codes are not necessarily portable across platforms.

strings.utf8size (s)

Determines the size of the string s in UTF-8 encoding and returns a non-negative
infeger. The return is not the number of bytes used to represent a UTF-8 string, but
the number of single- and mulfi-byte "UTF-8 characters”. Thus, for example, while
size strings.toutf8('a’) retfurns 2, strings.utf8size(strings.toutf8('a’))

returns 1.

Please note that the function may not produce correct results with text input in a
console. The function can only return correct results if the string to be checked has
been read from a file.

See also: size, strings.isutf8 .

agena >> 245

strings.words (s [, delim [, true]])

Counts the number of words in a string s. A word is any sequence of characters
surrounded by white spaces or its left and/or right borders. The user can define any
other delimiter by passing an optional character delim (of type string) as a second
argument. If the third argument is true, then succeeding delimiters are ignored. The
retun is a number.

See also: strings. hits.

246

7 Standard Libraries

7.2.3 Patterns

Character Class:

A character class is used to represent a set of characters. The following
combinations are allowed in describing a character class:

X: (Where x is not one of the magic characters 2$()%.[1*+-?) represents the
character x itself.

.. (0 dot) represents all characters.

%d represents all letters.

%c represents all control characters.

%a represents all digifs.

%l; represents all lowercase letters.

%k represents all upper and lower-case consonants, y and Y are not
considered consonants.

%p represents all punctuation characters.

%s represents all space characters, e.g. white spaces, newlines, tabulators,
and carriage retums,

%U represents all uppercase letters.

%v. represents all upper and lower-case vowels including the letters y and Y.
%w represents all alphanumeric characters.

%x represents all hexadecimal digits.

%z represents the character with representation O.

%<y>: (Where <y> is any non-alphanumeric character) represents the
character y. This is the standard way to escape the magic characters. Any
punctuation character (even the non magic) can be preceded by a '%
when used to represent itself in a pattern.

[set]: represents the class which is the union of all characters in setf. A range
of characters may be specified by separating the end characters of the
range with a . All classes % described above may also be used as
components in set. All other characters in set represent themselves. For
example, [%w] (or [_%wW) represents all alphanumeric characters plus the
underscore, [0-7] represents the octal digits, and [0-7%lI%- | represents the
ocftal digits plus the lowercase lefters plus the '-' character.

The interaction between ranges and classes is not defined. Therefore,
pattermns like [%a-z] or [a-%% have no meaning.

[* set] : represents the complement of set, where set is interpreted as above.

For all classes represented by single lefters (%a %c %v etc.), the corresponding
uppercase letter represents the complement of the class. For instance, %S
represents all non-space characters.

The definitions of letter, space, and other character groups depend on the current
locale. In particular, the class [a-z | may not be equivalent to %l.

agena >> 247

Pattern ltem:
A pattern item may be

* asingle character class, which matches any single character in the class;

* asingle character class followed by *', which matches O or more repetitions
of characters in the class. These repetition items will always match the
longest possible sequence;

* asingle character class followed by '+, which matches 1 or more repetitions
of characters in the class. These repetition items will always match the
longest possible sequence;

* a single character class followed by '-', which also matches O or more
repetitions of characters in the class. Unlike *', these repetition items will
always match the shortest possible sequence;

* asingle character class followed by 2!, which matches O or 1 occurrence of
a character in the class;

* o, for n between 1 and 9; such item matches a substring equal to the n-th
captured string (see below);

* %Xy, where x and y are two distinct characters; such itemn matches strings
that start with x, end with y, and where the x and y are balanced. This means
that, if one reads the string from left to right, counting +1 for an x and -1 for a
y. the ending vy is the first y where the count reaches 0. For instance, the item
%b() matches expressions with balanced parentheses.

Pattern:

A pattern is a sequence of pattern items. A '»' at the beginning of a pattern anchors
the match at the beginning of the subject string. A '$' at the end of a pattemn
anchors the match at the end of the subject string. At other positions, ' and '$'
have no special meaning and represent themselves.

Captures:

A patftern may contain sub-patterns enclosed in parentheses; they describe
captures. When a match succeeds, the substrings of the subject string that match
captures are stored (captured) for future use. Captures are numbered according to
their left parentheses. For instance, in the patftern '(a*(.)%w(%s*) ', the part of the
sting matching 'a*(.)%w(%s*) ' is stored as the first capture (and therefore has
number 1); the character matching ' is captured with number 2, and the part
matching '%s* has number 3.

As a special case, the empty capture () captures the current string position (a
numiber). For instance, if we apply the pattern '(Jaa()' on the string 'flaaap', there will
be two captures: 3 and 5.

A pattern cannot contain embedded zeros. Use %zinstead.

248 7 Standard Libraries

7.3 Tables

Summary of Functions:
Queries

countitems, filled, in, size, tables.getsize, tables.maxn, type, typeof.
Retrieving Values

getentry, unique, unpack, values, tables.entries, tables.indices .
Operations

copy, map, gsadd, sadd, remove, select, selectremove, sort, sorted, subs,
Zip.

Relational Operators

=, ==, ~=, <>, ~<>,
Cantor Operations

intersect, minus, subset, union, xsubset.
Miscellaneous

tables.dimension, tables.allocate, tables.newtable .

7.3.1 Kemel O perators

Most of the following functions have been built info the kernel as unary operators,
with the exception of map and zip.

copy (1)

The operator copies the entire contents of a table t into a new table. See Chapter
7.1 for more information.

countitems (item, t)
countitems (f, t [, --])

In the first form, counts the number of occurrences of an item in the table t.

In the second form, by passing a function f with a Boolean relation as the first
argument, all elements in the structure t that safisfy the given relatfion are counted.

agena >> 249

If the function has more than one argument, then all arguments except the first are
passed right after the name of tfable t .

The return is a number. The function may invoke metamethods.

See also: select.

filled (t)

Checks whether table t contains atf least one element. The return is frue or false.
The operator works with dictionaries, as well.

getentry (t [, k PPRTE nl)

Returns the entry tkk ., -+ , k ,] from the table t without issuing an error if one of
the given indices k; (second to last argument) does not exist. See also rawget.

join (t[,sep [, i[)

Concatenates all string values in the table t in sequential order and returns a string:
ti] & sep &tli+1] - & sep &[] . The default value for sep is the empty string,
the default for i is 1, and the default for j is the length of the table. The function
issues an error if t contains non-strings.

Use the tostring function if you want to concatenate other values than strings, e.Q.:

> join(map(tostring, [1, 2, 3])):
123

map (f, t[, --])

Maps the function f on all elements of a table t. See map in Chapter 7.1 for more
information. See also: countitems, remove, select, selectremove, subs, and zip.

gsadd (t)

Raises all numeric values in table t 1o the power of 2 and sums up these powers.
See gsadd in Chapter 7.1 for more information. See also: sadd.

remove (f, t [, --- [, newarray=true]])

Returns all values in table t that do not satisfy a condition determined by function
f. See remove in Chapter 7.1 for more information. See also: map, select,
selectremove, subs, zip.

sadd (1)

Sums up all numeric values in table t. See sadd in Chapter 7.1 for more
information. See also: gsadd.

250 7 Standard Libraries

select (f, t [, --- [, newarray=true]])

Returns all values in table t that safisfy a condition determined by function . See
select in Chapter 7.1 for more information. See also: map, remove, selectremove,
subs, zip.

selectremove (f, t [, --- [, newarray=true]])

Returns all values in table t that satisfy and do not satisfy a condition determined
by function f, in two tables. See selectremove in Chapter 7.1 for more information.

See also: map, remove, select, subs, zip.

size (1)

Returns the number of actual entries in the array and hash parts of table t. The
operator returns a number and conducts a linear fraversal.

See also: environ.attrib, tables.getsize .

sort (t [, comp])

Sorts table t in a given order, and in-place. See sort in Chapter 7.1 for more
information.

See also: sorted, skycrane.sorted, stats.issorted, stats.sorted.

sorted (t [, comp])

Sorts table elements in t in a given order, but - unlike sort - not in-place, and
non-destructively. See sorted in Chapter 7.1 for more information.

See also: sort, skycrane.sorted, stats.issorted, stats.sorted.

subs (x:v [, --:], 1)

Substitutes all occurrences of value x in table t with value v. See subs in Chapter
7.1 for more information.

See also: map, remove, select, zip.

unique (t)

The unique operator removes all holes (" missing keys) in a table t and removes
multiple occurrences of the same value, if present. See unique in Chapter 7.1 for
more information.

agena >> 251

values (t, i ' P |)|
Returns the elements from the given table t in a new table. This operator is
equivalent 1o

return [i ok Y A P 1 [P AR

See also: ops, select, unpack.

zip (f, t1, t2)

This function zips together two tables t1 , t2 by applying the function f to each of its
respective elements. See Chapter 7.1 for more information. See also: map,
remove, select, subs, zip.

The following functions have been built intfo the kernel as binary operators.

Please note that the operators retuning a Boolean work in the Cantor way, i.e. {1,
1}={1} - true, {1, 2} xsubset {1, 1, 2,2, 3,3 } - true.

tl=_t2

This equality check of two tables t1, t2 first tests whether t1 and t2 point to the
same table reference in memory. If so, it returns true and quits.

If not, the operator then checks whether t1 and t2 contain the same values without
regard to their keys, and returns true or false. In this case, the search is quadratic.

tl==_12

This strict equality check of two tables t1 , t2 first tests whether t1 and t2 point to the
same table reference in memory. If so, it returns true and quits.

If not, the operator then checks whether t1 and t2 contain the same number of
elements and whether all key~value pairs in the tables are the same. In this case,
the search is linear.

tl~=_ t2

This approximate equality check of two tables t1, t2 first tests whether t1 and t2
point to the same table reference in memory. If so, it returns true and quits.

If not, the operator then checks whether t1 and t2 contain the same number of
elements and whether all key~value pairs in the tables are approximately equal
(please see approx for further details). In this case, the search is linear.

252 7 Standard Libraries

tl<> t2

This inequality check of two tables t1 , t2 first tests whether t1 and t2 do not point to
the same table reference in memory. If so, it returns frue and quits.

If not, the operator then checks whether t1 and t2 do not contain the same values,
and returns true or false. In this case, the search is quadratic.

t1~<> t2
Approximate inequality check, the negation of the ~= operator.

cin__t

Checks whether the table t contains the value ¢ and returns true or false. The
search is linear.

tl intersect 2

Searches all values in t1 that are also values in t2 and returns them in a new table.
The search is quadratic, so you may use bintersect instead if you want 1o compare
large tables since bintersect performs a binary search.

tl minus__ t2

Searches all values in table t1 that are not values in table t2 and returns them as a
new table. The search is quadratic, so you may use bminus instead if you want to
compare large tables since bminus performs a binary search,

tl subset t2

Checks whether all values in table t1 are included in table t2 and returns true or
false. The operator also returns true if t1 = t2 . The search is quadratic.

tl union t2

Concatenates two tables t1 and t2 simply by copying all its elements - even if they
occur multiple times - 1o a new table.

tl X _subset t2

Checks whether all values in table t1 are included in table t2 and whether t2
contains at least one further element, so that the result is always false if t1 = t2 . The
search is quadratic.

See also: bintersect, bisequal, bminus, purge, put in Chapter 7.1 Basic Functions.

agena >> 253

7.3.2 tables Library

This library provides generic functions for table manipulation. It provides all its
functions inside the table tables .

Most functions in the table library assume that the table represents an array or a list.
For these functions, when we talk about the length’ of a table we mean the result of
the length operator.

tables.allocate (t, key 1, value [, key , value ,, -, key . value 1))

Sets the specified keys and values to table t, i.e. tkey (] := value . Note that if a
key is given multiple times, then only the first occurrence of the key in the argument
sequence is processed. The function returns nothing.

tables.dimension (a:b [, c:d, ---] [, init])

Creates a table of any dimension with arbitrary index ranges a:b efc. with a, b, efc.
infegers, and an optional default init for all its entries. init Must not be a pair.

If the initialiser is a structure, i.e. table, set, sequence or register, then individual
copies of the initialiser are created o avoid referencing to the same structure.

See also: tables.newtable, create table/dict statements.

tables.entries (t)

Returns all entries of table t (not its keys) in a new table array.

See also: tables.indices, unique, whereis.

tables.getsize (t [, option])

Returns a guess on the number of elements in a fable t . If any option is given, the
function additionally returns a Boolean indicator on whether a table contains an
dllocated hash part, and a Boolean indicator on whether null has been assigned o
a table. The lafter return is not foolproof, especially if a table value has been
deleted with a raw assignment, e.g. 1[2] := null;

The function is useful 1o determine the size of a table much more quickly than the
size operator does, using a logarithmic instead of linear method, but may refun
incorrect results if the array part of a table has holes. It also does not count the
numiber of elements in the hash part of a table.

See also: size.

254 7 Standard Libraries

tables.indices (t)

Returns all keys of table t in an unsorted new table.

See also: tables.entries, whereis.

tables.maxn (t)

Returns the largest positive numerical index of the given table t, or zero if the table
has no positive numerical indices. (To do its job this function does a linear traversal
of the whole table.)

tables.newtable (a, b)

Returns a table with a pre-allocated array slots and b pre-allocated hash slots. a
and b should be non-negatfive integers. If a or b is negative, zero slots are
pre-allocated and no error is issued.

See also: tables.dimension, create table/dict statements.

agena >> 255

7.4 Sets

Summary of Functions:
Queries
filled, in, size, type, typeof.
Retrieving Values
unpack.
Operations
copy, map, remove, select, selectremove.
Relational Operators
=, ==, ~=, <>,
Cantor Operations

infersect, minus, subset, union, xsubset.

The following functions have been built into the kernel as unary operators.

copy (s)

The operator copies the entire contents of a set s into a new set. See Chapter 7.1
for more information.

filled (s)

The operator checks whether a set s contains at least one element. The return is
frue or false.

map (f! S [1])

Maps the function f on all elements of a set s. See map in Chapter 7.1 for more
information. See also: countitems, remove, select, selectremove, subs, and zip.

remove (f,s [, ---])

Returns all values in set s that do not satisfy a condition determined by function f .
See remove in Chapter 7.1 for more information. See also: map, select,
selectremove, subs, zip.

256 7 Standard Libraries

select (f, s [, ---])

Returns all values in set s that satisfy a condition determined by function . See
select in Chapter 7.1 for more information. See also: map, remove, selectremove,
subs, zip.

selectremove (f, s [, -+-])

Returns all values in set s that satisfy and do not satisfy a condition determined by
function f, in two sefts. See selectremove in Chapter 7.1 for more information. See
also: map, remove, select, subs, zip.

size (s)

Returns the number of items in a set s.

typeof (s)
Returns the user-defined type assigned to seft s.

The following functions have been built intfo the kernel as binary operators.

The following functions have been built info the kernel as binary operators.

Please note that the operators retumning a Boolean work in a Cantor way, i.e. {1, 1}
={1} - frue, {1, 2} xsubset {1, 1, 2,2, 3,3 } - true.

sl=_s2

This equality check of two sets s1, s2 first tests whether s1 and s2 point o the same
set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 contain the same items, and
retuns true or false. In this case, the search is linear.

sl==_s2

With sefts, the == operator acts exactly as the = operator.

sl~= s2

With sets, the ~= operator compares each element in s1 and s2 for approximate
equality. See approx for further details. The return is either true or false.

agena >> 257

sl<> s2

This inequality check of two sets s1, s2 first tests whether s1 and s2 do not point to
the same set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 do not contain the same items,
and returns true or false. In this case, the search is linear.

cin_s

Checks whether the set s contains the item ¢ and returns true or false. The search is
constant.

sl intersect s2

Searches all items in set s1 that are also items in set s2 and returns them in a set.
The search is linear.

sl minus s2

Searches all items in set s1 that are not items in set s2 and refurns them as a set.
The search is linear.

sl subset s2

Checks whether all items in set s1 are included in set s2 and returns true or false.
The operator also returns frue if s1 = s2. The search is linear.

sl union s2

Concatenates two sets s1 and s2 simply by copying all its items to a new set.

sl x_subset s2

Checks whether all items in set s1 are included in set s2 and whether s2 contains at
least one further item, so that the result is always false if s1 = s2. The search is linear.

258 7 Standard Libraries

7.5 Sequences

Summary of Functions:
Queries

countitems, filled, in, size, typeof.
Retrieving Values

getentry, unique, unpack, values.
Operations

copy, join, map, gsadd, remove, select, selectremove, sadd, smul, sort,
sorted, subs, zip.

Relational Operators
=, ==, ~=, <>,
Cantor Operations
intersect, minus, subset, union, xsubset.

With the excepftion of getentry, map and zip, the following functions have been
built into the kernel as unary operators.

copy (s)

The operator copies the entire contents of a sequence s into a new sequence. See
Chapter 7.1 for more information.

countitems (item, s)
countitems (f, s [, ---])

Counts the number of occurrences of an item in the sequence s. For further
information, see Chapter 7.1.

filled (s)

The operator checks whether the sequence s contains at least one element. The
return is true or false.

agena >> 259

getentry (s [, k Lok)

Returns the entry sik ., -+ , k 4] from the sequence s without issuing an error if one
of the given indices k; (second to last argument) does not exist.

join(s[, sep[,i[, il

Concatenates all string values in sequence s in sequential order and returns a
string: sli] & sep & s[i+1] - & sep & s[jj . The default value for sep is the empty
string, the default fori is 1, and the default for j is the length of the sequence. The
function issues an error if s contains non-strings.

Use the tostring function if you want to concatenate other values than strings, e.Q.:

> join(map(tostring, seq(1, 2, 3))):
123

map (f, s [, ---])

Maps the function f on all elements of a sequence s. See map in Chapter 7.1 for
more information. See also: remove, select, subs, zip.

gsadd (s)

Raises all numeric values in sequence s to the power of 2 and sums up these
powers. See gsadd in Chapter 7.1 for more information. See also: sadd.

remove (f,s [, ---])

Retuns all values in sequence s that do not satisfy a condition determined by
function f . See remove in Chapter 7.1 for more information. See also: map, select,
subs, zip.

sadd (s)

Sums up all numeric values in sequence s. See sadd in Chapter 7.1 for more
information. See also: gsadd.

select (f,s [, ---])

Returns all values in sequence s that satisfy a condition determined by function f .
See select in Chapter 7.1 for more information. See also: map, remove, subs, zip.

selectremove (f, s [, -+-])

Retuns all values in sequence s that safisfy and do not safisfy a condition
determined by function f, in two resquences. See selectremove in Chapter 7.1 for
more information. See also: map, remove, select, subs, zip.

260 7 Standard Libraries

size (s)

Returns the number of items in a sequence s.

smul (s)

Multiplies all numeric values in sequence s. See smul in Chapter 7.1 for more
information. See also: sadd.

sort (s [, comp])

Sorts sequence s in a given order, and in-place. See sort in Chapter 7.1 for more
information. See also: sorted, skycrane.sorted, stats.issorted, stats.sorted.

sorted (s [, comp))

Sorts sequence elements in s in a given order, but - unlike sort - not in-place, and
non-destructively. See sorted in Chapter 7.1 for more information. See also: sort,
skycrane.sorted, stats.issorted, stats.sorted.

subs (x:v [, ---], S)

Substitutes all occurrences of the value x in sequence s with the value v. See subs
in Chapter 7.1 for more information. See also: map, remove, select, zip.

typeof (s)
Returns the user-defined type assigned o sequence s.

unique (s)

With a sequence s, the unigue operator removes multiple occurrences of the same
item, if present in s. See unique in Chapter 7.1 for more information.

values (s, i ' P |)|
Returns the elements from the given sequence s in a new sequence. This operator
is equivalent to

return seq(s[i sl 2],)

See also: ops, select, unpack.

zip (f, s1, s2)

This function zips together two sequences s1, s2 by applying the function f to each
of its respective elements. See Chapter 7.1 for more information. See also: map,
remove, select, subs.

agena >> 261

See also: bintersect, bisequal, bminus, purge, put in Chapter 7.1 Basic Functions.

The following functions have been built info the kernel as binary operators.

Please note that the operators returning a Boolean work in a Cantor way, i.e. seq(l,
1) =seq(1) — true, seq(l, 2) xsubset seq(1, 1, 2, 2, 3, 3) - true.

sl=_s2

This equality check of two sequences s1, s2 first tests whether s1 and s2 point to the
same sequence reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 contain the same values without
regard to their keys, and returns true or false. In this case, the search is quadratic.

sl== s2

This strict equality check of two sequences s1, s2 first tests whether s1 and s2 point
to the same sequence reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 contain the same number of
elements and whether all entries in the sequences are the same and are in the
same order, and returns true or false. In this case, the search is linear.

sl~= s2

This approximate equality check of two sequences s1, s2 first tests whether s1 and
s2 point o the same sequence reference in memory. If so, it returns frue and quits.

If not, the operator then checks whether s1 and s2 contain the same number of
elements and whether all entries in the sequences are approximately equal and
are in the same order, and returns frue or false. In this case, the search is linear. See
approx for further information on the approximation check.

sl<> s2

This inequality check of two sequences s1, s2 first tests whether s1 and s2 do not
point to the same sequence reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 do not contain the same values,
and returns true or false. In this case, the search is quadratic.

cin_s

Checks whether the sequence s contains the value ¢ and returns true or false. The
search is linear.

262 7 Standard Libraries

sl intersect s2

Searches all values in sequence s1 that are also values in sequence s2 and returns
them in a sequence. The search is quadratic.

sl minus _s2

Searches all values in sequence s1 that are not values in sequence s2 and returns
them as a sequence. The search is quadratic.

sl subset s2

Checks whether all values in sequence s1 are included in sequence s2 and returns
frue or false. The operator also returns true if s1 = s2. The search is quadratic.

sl union _ s2

Concatenates two sequences s1 and s2 simply by copying all its elements - even if
they occur multiple times - 10 a new sequence.

sl x_subset s2

Checks whether all values in sequence s1 are included in sequence s2 and
whether s2 contains at least one further element, so that the result is always false if
sl = s2. The search is quadratic.

The following functions in the base library also support sequences:

Function Meaning
: Same as the intersect operator but much faster with very
bintersect
large sequences.
: Same as the = operator but much faster with very large
bisequal
sequences.
brMinUs Same as the minus operator but much faster with very large
seguences.
duplicates Retumns all the values that are stored more than once in the
P given sequence.

agena >> 263

7.6 Pairs

Summary of Functions:
Queries
in, left, right, size, type, typeof.
Operations
copy, map.
Relational Operators

=, ==, ~=, <>,

The following functionalities have been built into the kernel as unary operators.

copy (p)
The operator deep-copies the entire contents of a pair p into a nerw pair.

map (f! p [1])

Maps the function f on both elements of a pair p and returns a new pair. See Map
in Chapter 7.1 for more information.

size (p)
Returns the numiber of items in a pair p, i.e. always returns 2.

type (p)
Returns the type of a pair p, i.e. the string 'pair'.

typeof (p)
Returns either the user-defined type of the pair p, or the basic type 'pair'.

The following functionalities have been built into the kernel as binary operators.

pl=_p2

This equality check of two pairs p1, p2 first tests whether p1 and p2 point to the same
pair reference in memory. If so, it returns true and quits.

264 7 Standard Libraries

If not, the operator then checks whether the left-hnand side of p1 and the left-hand
side of p2 are equal, and the same with both right-hand sides, and returns true or
false.

pl== p2
With pairs, the == operator acts exactly as the = operator.

pl~= p2

With pairs, the ~= operator compares the left-hand side of p1 and the left-hand
side of p2 for approximate equality, and the same with both right-hand sides. The
return is either frue or false. See approx for further details.

pL <> p2

This inequality check of two pairs p1, p2 first tests whether p1 and p2 do not point to
the same set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether p1 and p2 do not contain the same items,
and returns true or false.

cin_p

Checks whether the number ¢ fits into the closed interval with borders denoted by
the numeric elements of pair p.

agena >> 265

7.7 llist - Linked Lists

As a plus package, the llist package is not part of the standard distrioution and
must be activated with the import statement, e.g. import llist

7.7.1 Introduction and an Example

Tables and sequences are quite slow if you have to insert or delete a lot of
elements during an operation, for with each insertion or deletion, objects have fo
be shifted upward or downward physically.

To avoid these costly operations, data can also be represented in containers, or
‘nodes’, where "[eJach node contains two fields: a "data" field to store whatever
element [...], and a "next" field which is a pointer used to link one node to the next
node.?" For example, if you would like to insert a new element at position n, the
address of the "next entry” of node n - 1 is changed to the address of the new
node confaining the element to be inserted, and the "next entry” in the new node
is assigned the address of the node containing the original value at position n.

This speeds up write operations by dimensions; read operations, however, are
slower, for the linked list has to be fraversed linearly. However, linked lists Qs
implemented in this package are around fiffeen times faster even when
conducting a read operation with each write operation.

Metamethods exist to support printing, indexing, and indexed assignments; the size,
in, =, and ~= operators are also supported.

Linked lists can contain nulls, i.e. putting null info the data field of a node does not
delete this node from the chain.

For an example of how to use linked lists, see Chapter 6.25.

7.7.2 Functions

llist.append (I, obj [, ---])

Appends one or more elements obj which may be of any type, to the linked list 1, in
sequential order. There is no return.,

See also: llist.prepend., llist.put.

21 For an excellent infroduction on implementing linked lists, see "Linked List Basics', Copyright ©
1998-2001, Nick Parlante. This quote has been taken from his manual, page 4.

266 7 Standard Libraries

llist.iterate (I [, n [, p]])

Returns an iterator function that when called returns the next value in the linked list I,
which might also be null if one or more nulls are included in the linked list, or null if
there are no more entries in the list. Also returns null if the linked list is empty.

If an index n is passed, the first call to the iterator function returns the n-th element in
the list and with subsequent calls, the respective elements after index n.

You may also pass a non-negative integer p to the iterator function: In this case, the
next p elements in the list are skipped before determining and refurning a value.

Example: Since the iterator can return null even if the end of the list has not yet
been reached, we use a counter:

> L := llist.list(2); llist.append(L, null); llist. append(L, 2);

> f .= llist.iterate(L);

>c:=0;

> while ¢c < size L do
> incc;

> print(f()

> od;

1

null

2

llist.list ([-+-])

The function creates a new linked list and optionally stores all of the given elements
in it. The return is a userdata of user-type 'llist'

llist.listtotable (1)

The function creates a new table and copies all elements in the linked list | into it, in
sequential order. The retumn is the table. If there are no elements in I, an empty
table is returned. If the list includes nulls, the resulting table will contain holes.

The function is written in Agena and included in the liist.agn file.

llist.prepend (I, obj [, ---])

Prepends an element obj , and optionally further elements, which may be of any
type, 1o the linked list | . There is no return.,

See also: llist.append, llist.put.

agena >> 267

llist.purge (1, n)

The function removes the element at position n from the linked list 1. All the
successors of the element to be deleted are “shifted’ downwards. The function
returns nothing, but issues an error if there is no element (i.e. node) at index n.

llist.put (I, n, obj)

The function insers the given element obj at position n into linked list | . The original
element at position n is not deleted - it and all of its successors are “shifted” to
open space. The function returns nothing, or issues an error if the index is
out-of-range.

See also: llist.append, llist.prepend.

llist.replicate (1)

The function creates a copy of the linked list I and returns a new linked list. If an
elementin | is a sfructure, however, it is not deep-copied.

268 7 Standard Libraries

7.8 bags - Mulitsets

As a plus package, the bags package is not part of the standard distribution and
must be activated with the import statement, e.qQ. import bags

7.8.1 Introduction and Examples

A bag, also called a multiset, is a kind of Cantor set that also stores the number of
occurrence of each unigue element.

Consider a bulk of orders of books where each order is reported individually. You
may only want to know how many times a book has been sold, instead of storing
each individual order (and maybe all its data) to finally count them. You may want
to save space and perform the count immediately as soon as the order has been
committed.

The package uses tables of the user-defined type 'oag' to implement multisets.

A sequence of orders might look like this:

> import bags;

> orders := seq(

> 'Programming in Lua', 'Moon Lander’, 'Lost Moon !
> 'Programming in Lua', 'Moon Lander’, 'Lost Moon !
> 'Cvon A his ZY;

> books := bags.bag(unpack(orders));

> books['Lost Moon']:
2

For a further order, just enter

> bags.include(books, 'Agena’);
> books:

bag(Agena ~ 1, C von A bis Z ~ 1, Lost Moon ~ 2, Mo on Lander ~ 2,
Programming in Lua ~ 2)

A customer has cancelled his previous orders:

> bags.remove(books, '‘Agena’):

> books:
bag(C von A bis Z ~ 1, Lost Moon ~ 2, Moon Lander ~ 2, Programming in Lua ~
2

)

agena >> 269

7.8.2 Functions

bags.attrib (b)

Returns the number of occurrence of all unique elements in the bag b and also the
accumulated numiber of all occurrences of these elements in it. For example, the
multiset bag('Curiosity' ~ 2, 'Skycrane' ~ 1) results to 2, 3.

bags.bag ([--])
The function creates a new bag and opftionally stores all of the given elements in it.

See also: sykcrane.bagtable .

bags.bagtoset (b)
The function returns all of the unigue elements in b as a set.

bags.include (b, obj [, ---])
The function inserts all of the given elements obj , efc. into bag b.

The function returns nothing.

See also: bags.minclude.

bags.minclude (b, obj)

The function inserts all of the given elements in the sequence obj info bag b. The
function should be used instead of bags.include if the number of elements fo be
inserfed exceeds Agend's argument stack.

The function returns nothing.

See also: bags.include .

bags.remove (b, obj [, ---])

The function removes all of the given elements obj , etc. from bag b. If the number
of counts of the removed element reaches O, the element will be deleted from the
bag.

The function returns nothing.

270 7 Standard Libraries

There are metamethods for conducting some sort of arbitrary Cantor set operations
on bags. Try out the binary operators union (for union), minus for difference sef,
intersect for intersection, and in for searching an object.

If you would like to iterate a bag, you can use conventional for/in loops, for
example, using the bag in the previous chapter:

> for i, j in books do print(i, j) od
Programming in Lua 2
CvonAbiszZz 1

Lost Moon 2

Moon Lander 2

agena >> 271

7.9 Mathematical Functions

The mathematical operators and functions explained in this chapter work on both
real numbers as well as complex numbers, except if indicated otherwise.

For the sake of speed, basic arithmetic functions have been implemented as
operators, whereas all other mathematical functions are implemented as Agena
library functions (implemented either in C or Agena). While functions can be
overwritten with self-defined versions, operators cannot be overwritten.
Summary of Operators and Functions:
Basic Arithmetic Operators

+/ = */ /l /*l meh.kOGdd.
Integer Division

\, %, drem, irem, igr, modf.

Exponentiation

7, **, antilog2, antilog10, exp, expx2, frexp, Idexp, math.expminusone,
math.tworagised .

RoOOfs

cbrt, hypot, proot, root, sart.
Logarithms

log2, In, log, log2, log10, math.ceillog2, math.Inplusone .
Trigonometric Functions

cos, cot, csc, math.quadrant, math.wrap, sec, sin, tan.
Inverse Trigonometric Functions

arccos, arccsc, arccot, arcsec, arcsin, arctan, arctan2, math.arccosh.
Hyperbolic Functions

cosh, coth, csch, sech, sinh, tanh.

272 7 Standard Libraries

Inverse Hyperbolic Functions
arccosh, arccsch, arccoth, arcsech, arcsinh, arctanh.

Miscellaneous
abs, erf, erfc, fma, heaviside, sign, signum, sinc, tanc, math.copysign,
math.fpbtoint, math.fdim, math.gcd. math.inttofpb, math.lcm, math.max,
math.min, math.signbit, ++, --

Miscellaneous Complex Functions
argument, beaq, conjugate, cosxx, flip, polar.

GammaQ, efc.
beta, binomial, fact, gamma, Ingamma.

Bessel Functions
besselj, bessely.

Rounding Functions
cell, entier, int, mdf, roundf, xdf, math.rint.

Relational Operators
=, ==,<, >, <=, >=, <>, |, Qpprox.

Numbers
even, finite, float, frac, in, inrange, isint, isnegative, isnegint, isnonneg,
isnonnegint, isnonposint, isnumiber, isnumeric, isposint, ispositive,
math.gethigh, math.getlow, math.sethigh, math.setlow, math.eps,
math.fraction, math.isinfinity, math.isminuszero, math.isordered,
math.ndigits, math.nthdigit, math.nextafter, math.symtrunc, math.tobytes,
math.tonumber, odd, nan.

Random Numbers
math.random, math.randomseed .

Bases and Conversion

math.convertbase , math.decompose , math.norm, math.tobinary,
math.todecimal, math.toradians, math.tosgesim, math.wrap.

agena >> 273

Primes
math.isprime, math.nextprime , math.prevprime .
Bitwise Operators

&& ~~. |]|. 7. <<<, >>>, <<<<, >>>>, getbit, setbit, shift.

7.9.1 Operators and Basic Functions

X+_y

The operator adds two numbers; returns a number. Complex numbers are
supported.

X-_Yy
The operator subtracts two numbers; returns a number. Complex numbers are
supported. See also: math.fdim.

X*_y
The operator multiplies two numbers; returns a number. Complex numbers are
supported.

x/_y

The operator divides two numbers; returns a number. Complex numbers are
supported.

See also: recip.

X*%_ y

The operator multiplies two numibbers and divides the result by 100; retuns a
number, the percentage.

x/1%_y

The operator divides two numbers and multiplies the result by 100; returns a
number, the ratio.

X +% y

The operator adds the given percentage y 1o x.

x-% vy
The operator subtracts the given percentage y from x.

274 7 Standard Libraries

xX_y

The operator performs an integer division of two numbers, and returns a number.
The integer division is defined as: x \ y = sign(x) * sign(y) * entier(| %).

X%y

The modulus operator conducts the operation X % y = X - enTier(%)*y. See also:
irem.

X/\

The operator performs an exponentiation of real or complex x with a rational power
y. With numbers, if x is negative and y non-integral, it refumns undefined.

See also: antilog2, antilog10, proot, root.

X**
The operator exponentiates the real or complex number x with the integer power y.

This operator is at least 50 % faster than the ~ operator with small y. If y is
undefined or +infinity, undefined is returned.

X&& y

Bitwise "and’ operation on two numbers x and y. By default, the operator intermnally
calculates with signed 32-bit integers. You can change this to unsigned integers by
using the kernel function with the signedbits option. See also: environ.kemnel in
Chapter 7.21.

++ X

Returns the next representable number larger than x. If given a variable, the
operator does not change its value. See also: --, math.nextafter.

- X

Retuns the next representable number smaller than x. If given a variable, the
operator does not change its value. See also: ++, math.nextafter.

~~ X

Bitwise complementary operation on the numiber x. By default, the operator
infernally calculates with signed 32-bit integers. You can change this to unsigned
infegers by using the environ.kernel function with the signedbits option. See also:
environ.kernel in Chapter 7.21.

agena >> 275

X|_y

Bitwise "or operation on two numbers x and y. By default, the operator intemailly
calculates with signed 32-bit integers. You can change this to unsigned integers by
using the environ.kernel function with the signedbits option. See also: environ.kernel
in Chapter 7.21.

X/\/\

Bitwise "exclusive-or® operation on two numbers x and y. By default, the operator
infernally calculates with signed 32-bit integers. You can change this to unsigned
infegers by using the environ.kernel function with the signedbits option. See also:
environ.kerel in Chapter 7.21.

X<<< Yy

Bitwise left-shift operation (multiplication with 2). By default, the operator internally
calculates with signed 32-bit integers. You can change this to unsigned integers by
using the environ.kernel function with the signedbits option. See also:
environ.kernel, shift.

X>>> vy

Bitwise right-shift operatfion (division by 2). By default, the operator internally
calculates with signed 32-bit integers. You can change this to unsigned integers by
using the environ.kernel function with the signedbits option. See also:
environ.kernel, shift.

X<<<< Y

Returns the number x rotated a given amount of bits y fo the left.

X >>>> vy

Returns the number x rotafed a given amount of bits y fo the right.

xshift y

Bitwise shift operation. If the right-hand side y is a positive integer, the bits in x are
shiffed to the left (multiplication with 2), else they are shiffed to the right (division by
2). By default, the operator intermnally calculates with signed 32-bit infegers. You can
change this to unsigned integers by using the environ.kernel function with the
signedbits option. See also: environ.kemel, <<<, >>>.

276 7 Standard Libraries

Xin_y

Checks whether the number x is part of the interval defined by the pair y consisting
of two numbers. The operator returns true or false. For a much faster check, see
inrange operator.

X|_y

The operator compares two finite numbers x, y, determines whether x is less than vy,
x is exactly equal toy, or x is greater than y, and returns -1, O, or 1 respectively.

if at least one of the operators is infinite or undefined, the function retumns
undefined.

The operator is twice as fast as sign. See also: signum.

agena >> 277

abs (2)

If z is a number, the abs operator returns the absolute value of z. With a complex
number z = x + |*y, it returns the distance between it and the origin as a number,

e [x2+y?.

See also: argument, cabs, polar.

antilog2 (z)
The operator computes 2 raised to the power of the number or complex number z.

See also: ™ and ** operators, antilog10, log2.

antilog10 (z)

The operator computes 10 raised to the power of the number or complex number
Z.

See also: ™ and ** operators, antilog2, log10.

approx (x, y [, eps])

Compares the two numbers or complex values x and y and checks whether they
are approximately equal. If eps is omitted, Eps is used.

The algorithm uses a combination of simple distance measurement (x-y| eps)
suited for values ‘near’ 0 and a simplified relative approximation algorithm
developed by Donald H. Knuth suited for larger values (x-y| egs * max(|x|,

YD)), that checks whether the relative error is bound to a given folerance eps.

The function returns true if x and y are considered equal or false otherwise. If both a
and b are infinity, the function retumns true. The same applies to a and b being
-infinity or undefined.

arccos (X)

Returns the inverse cosine operator (x in radians). Complex numibers are supported.

arccosh (x)

Returns the inverse hyperbolic cosine of x (in radians). The function is implemented
in Agena and included in the library.agn file. The function works on both numbers
and complex values.

arccsc (x)

Returns the inverse cosecant of x (in radians). The function works on both numbers
and complex values. The function is implemented in Agena and included in the
library.agn file.

278 7 Standard Libraries

arccsch (x)

Retuns the inverse hyperbolic cosecant of x (in radians). The function works on
both numbers and complex values. The function is implemented in Agena and
included in the library.agn file.

arccot (X)

Returns the inverse cotangent of x (in radians). The function works on both numbers
and complex values. The function is implemented in Agena and included in the
library.agn file.

arccoth (x)

Returns the inverse hyperbolic cotangent of x (in radians). The function works on
both numbers and complex values.

arcsec (X)

Returns the inverse secant of x (in radians). The operator works on both numbers
and complex values.

arcsech (x)

Returns the inverse hyperbolic secant of x (in radians). The function works on both
numbers and complex values. The function is implemented in Agena and included
in the library.agn file.

arcsin (x)

Computes the inverse sine operator (in radians). Complex numbers are supported.

arcsinh (x)

Returns the inverse hyperbolic sine of x (in radians). The function is implemented in
Agena and included in the library.agn file. The function works on both numibers
and complex values.

arctan (x)

Computes the inverse tangent operator (in radians). Complex numbers are
supported.

See also: arctan2.

arctan2 (y, x)

Returns the arc tangent of yix (in radians), but uses the signs of both parameters to
find the quadrant of the result. (It also handles correctly the case of y being zero.) x
and y must be numbers or complex numbers.

See also: arctan.

agena >> 279

arctanh (x)

Returns the inverse hyperbolic tangent of x (in radians). The function works on both
numbers and complex values. The function is implemented in Agena and
included in the library.agn file.

argument (z)

Returns the argument (the phase angle) of the complex value z in radians as a
number. If z is a number, the function returns O if z > O, and # otherwise.

See also: abs, cabs, polar.

bea (2)

The operator takes the complex number z = xly and returns the complex number
sin(x)*sinh(y) + I*cos(x)*cosh(y). This function may be mathematically useless, but it
creates beautiful fractals. With numbers, it returns undefined.

See also: cosxx, flip.

beta (x, y)

Computes the Beta function. x and y are numbers or complex values. The return

may be a number or complex value. The Beta function is defined as: Betq(x, y) =
IxxI"
F(XL‘FV»;’ with special treatment if x and y are integers.

binomial (n, k)

Returns the binomial coefficient (E) as a number. The function returns undefined, if
n Or k are negative, or if at least one of itfs arguments is not an infeger.

besselj (n, x)

Returns the Bessel function of the first kind. The order is n given as the first argument,
the argument x as the second argument. The return is a number. The function works
on both numbers and complex values.

bessely (n, x)

Retuns the Bessel function of the second kind. The order n is given as the first
argument, the argument x as the second argument. The refurn is a number. The
function works on both numbers and complex values.

cabs (z2)

If z is a numiber, the calbs function returns the absolute value of z. If z is a complex
number z = x + I*y, contrary to the abs operator, it returns the real and imaginary
absolute value, i.e. x| + 1 * |yl.

280 7 Standard Libraries

See also: abs, argument, polar.

cbrt (x)

Returns the cubic root of the number or complex number x. With complex x, it is
equal to x ~ (1/3), but not to root(x, 3).

See also: © operator, roof.

ceil (x)

Rounds upwards fo the nearest infeger larger than or equal to the number or
complex number x. See the entier operator for a function that rounds downwards to
the nearest integer. The function is implemented in Agena and included in the
library.agn file. For the definition of ceil, see entier.

See also: entier, int, roundf, math.rint.

cis (X)

Retumns the complex exponential function exp(l*x) = cos(x) + I*sin(x) for any real or
complex argument x. It is around 33 % faster than the equivalent expression
exp(I*x).

conjugate (2)

The operator returns the conjugate x-I*y of the complex value z=x+I*y. If z is of
type number, it is simply returned.

See also: flip.

cos (x)

The operator retumns the cosine of x (in radians). Complex numibers are supported.

cosh (x)

The operator retumns the hyperbolic cosine of x (in radians). Complex numbers are
supported.

Cosxx (z)

The operator takes the complex number z = xly and returns the complex number
cos(x)*cosh(y)+I1*sin(x)*sinh(y), i.e. the imaginary part of the result had the wrong
sign. It represents FRACTINT's buggy cos function ftill v16. This function may be
mathematically useless, but it creates beautiful fractals. With the number z, it returns
Cos(z).

See also: cos, beq, flip.

agena >> 281

cot (X)

Retumns the cotangent -tan(4+x) as a number (in radians). The function is
implemented in Agena and included in the library.agn file. The function works on
both numbers and complex values.

coth (x)

Returns the hyperbolic cotangent ’ronlw as a number (in radians). The function is

implemented in Agena and included in the library.agn file. The function works on
both numbers and complex values.

csc (X)

Returns the cosecant sin(x) 9 d number (in radians). The function is implemented in

Agena and included in the library.agn file. The function works on both numibers
and complex values.

csch (x)

Returns the hyperbolic cosecant as a number (in radians). The function is
implemented in Agena and included in the library.agn file. The function works on
both numbers and complex values.

drem (X, y)

Evaluates the remainder of an integer division x/y (with x, y two Agena numlbers),
but confrary fo irem, rounds the internal quotient x/y to the nearest integer instead
of towards zero.

See also: \, %, irem.

entier (x)

The operator rounds the number x downwards to the nearest integer. For complex
x, the return is:

re = real(x) - entier(real(x)) and im = imag(x) - entier(imag(x)).
then entier(x) = floor(Re(x)) + I*floor(Im(x)) + X, where

0 if a+b < 1
X=3 1lifatbs1 Aa>=D
| ifa+b s1T Aa<b

Also: ceill(x) = -entier(-x).

See also: cell, int, mdf, roundf, math.rint.

282 7 Standard Libraries

erf (x)

X
Retuns the eror function of x. It is defined by erf(x) = % fe‘*“Q. The function
=0

works on both numbers and complex values.

See adlso: erfc.

erfc (x)

Returns the complementary error function of x, a number or complex value. It is
defined by erfc(x) = 1 - erf(x). The retumn is a number or complex value.

See also: eff.

even (X)

Checks whether the number x is even. The operator retuns frue if x is even, and
false otherwise. With non-integral numbers, the operator returns false. With the
complex value x, the operator returns fail. See also: odd.

exp ()
Exponential function; the operator returns the value € Complex numbers are
supported. See also: cis.

expx2 (x, sign)

Computes either e*"2 if sign > 0, or e*"? if sign < 0 while suppressing error
amplification that would occur from the in-exactness of the exponential argument
X2, x May be a number or complex number, while sign must be a number.

fact (n)

Returns the factorial of n, i.e. the product of the values from 1 to n. If n is Nnot an
infeger or if n is negative, the function returns undefined. The function is
implemented in Agena and included in the library.agn file. It features a defaults
remember table (rofable) which you may extend by adding new defaulfs fo your
agena.ini file (see rtable.defaults and Appendix Ab).

finite (x)

Checks whether the numibber or complex number x is neither +infinity nor undefined
(C NaN). The operator returns true or false.

See also: even, float, math.isinfinity, nan, odd.

agena >> 283

flip (2)

The operator takes the complex number z and retumns the new complex number
imag(z)!real(z), i.e. the real and imaginary parts are swapped. With numbers, it
always returns 0.

See also: beaq, conjugate, cosxx.

float (x)

Checks whether the number x is a float, i.e. not an integer, and returns true or false.
If x is not a number, the operator returns fail.

See also: finite, isint.

fma (%, y, 2)

Performs the fused multiply-add operation (x *y) + z , with the infermediate result
not rounded to the destination type, to improve the precision of a calculation. x, vy,
and z must be numbers.

frac (X)

Returns the fractional part of the number x, i.e. x - int(x) . The function is
implemented in Agena and included in the library.agn file.

See also: modf.

frexp (x)

Returns two numbers m and e such that x = m2°, e is an infeger and the absolute
value of mis in the range [0.5, 1) (or zero when x is zero).

See also: Idexp.

gamma (X)

The gamma function I'" x. x may be a number or complex value.

See also: Ingamma.

heaviside (x)

The Heaviside function. Returns O if x < 0, undefined if x = 0, and 1 if x > 0. The
function is implemented in Agena and included in the library.agn file.

284 7 Standard Libraries

hypot (x, y)
Retuns /x2+y? with x, y numbers. This is the length of the hypotenuse of a right
friangle with sides of length x and y, or the distance of the point (x, y) from the

origin. The function is slower but more precise than using sqrt. The refun is a
number.

See also: hypot2, root, sart.
hypot2 (x)

Retuns v 1 +x2 with x a number.
See also: hypot, root, sart.

ilog2 (x)

Extracts the exponent of the number or complex number x (i.e. the integer part of
the base-2 logarithm of the positive number x) and retumns it as the number
entier(log2(x)).

See also: In, log, log2, log10, math.ceillog2.

inrange (X, a, b)

Checks whether x is part of the closed interval [a, b] and retumns true or false. All
arguments must be numbers.

See also: in operator.

int (x)

Rounds x to the nearest integer towards zero. The operator also supports complex
numibers.

See also: ceil, entier, float, mdf, roundf, math.rint.

igr (x, y)

Computes both the integer quotient and the integer remainder of the number x
divided by the number y and returns them. If x or y are not intfegers, the function
retuns undefined twice.

The function is equivalent to the Agena representation:

agena >> 285

igr := proc(x :: number, y :: number) is
if float(x) or float(y) then
return undefined, undefined
else
return x \'y, irem(x, y)
fi
end;

See also: modf.

irem (x, y)

Evaluates the remainder of an infeger division x/y (with x, y two Agena numbers).
The return is a number. The remainder r has the same sign as the numerator. If x
and y are integers and g the infeger quotient of x and y, then the function returns
the remainder such that x = y*g + 1, |r| < |y| and x*r> 0.

See also: \,%, drem.

iscomplex (--)

Checks whether the given arguments are all of type complex and returns true or
false.

isint (---)
Checks whether all of the given arguments are integers and returns true or false. If
at least one of its arguments is not a number, the function returns fail.

See also: float.

isnegative (---)

Checks whether all of its arguments are negative numbers and retumns true or false.
If at least one of its arguments is Nnot a number, the function returns fail.

See also: isnegint, isnegative, innonneg, ispositive .

isnegint (---)

Checks whether all of the given arguments are negative infegers and returns true or
false. If at least one of its arguments is not a number, the function returns fail.

See also: isnonnegint, isposint, isnegative, ispositive..

286 7 Standard Libraries

isnonneg (---)

Checks whether all of its arguments are zero or positive numbers and retumns true or
false. If at least one of its arguments is not a number, the function returns fail.

See also: isnegint, isposint, isnegative, ispositive .

isnonnegint (---)

Checks whether all of the given arguments are zeros or positive integers and returns
true or false. If at least one of its arguments is not a number, the function returns fail.

isnonposint (---)

Checks whether all of the given arguments are zeros or negative integers and
returns true or false. If af least one of its arguments is not a number, the function
returns fail.

isnumber (---)

Checks whether the given arguments are all of type number and returns true or
false.

isnumeric (---)

Checks whether the given arguments are all of type number or of type complex
and returns true or false.

See also: numeric.

isposint (---)

Checks whether all of its arguments are positive integers and returns true or false. If
at least one of its arguments is not a number, the function returns fail.

See also: isnonposint.

ispositive (--)

Checks whether all of its arguments are positive numbers and retums true or false. If
at least one of its arguments is not a number, the function retumns fail.

See also: isposint, isnegative, isnonneg.

agena >> 287

Idexp (m, €)
Returns m2° (e should be an infeger, and mmust be number).

See also: frexp.

In (X)

Natural logarithm of x with the base e'. If x is non-positive, the operator returns
undefined. Complex numibers are supported.

See also: exp, log, log2, log10.

Ingamma (x)

Computes In IT" x. If x is a non-positive number, the operator returns undefined.
Complex numbers are supported.

See also: gamma.

log (x, b)

The operator returns the logarithm of the numiber or complex number x o the base
b, with b @ numiber or a complex number.

See also: In, log2, 1og10.

log2 (x)

Retumns the base-2 logarithm of the number or complex number x.
See also: antilog2, ilog2, In, log. log10, math.ceillog?2.

log10 (x)

Retumns the base-10 logarithm of the number or complex number x.

See also: antilog2, In, log. log2.

mdf (x, n)
Rounds up the number x at its n-th decimal place and returns a number.

See also: entier, int, roundf, xdf.

288 7 Standard Libraries

modf (x)

Returns two numbers, the integral part of the number x and its fractional part. The
infegral part is rounded towards zero. Both the infegral and fractional part of the
return have the same sign as x. The sum of the two values returned equals x.

See also: \, %, frac, int, irem, mod assignment statement.

nan (x)

Checks whether the number or complex number x evaluates to undefined (NaN).
The operator returns true or false.

See also: finite, float.

odd (x)

Checks whether the number x is odd. The operator returns true if x is odd, and false
otherwise. With non-infegral numbers, the operator returns false. With the complex
value x, the operator returns fail.

See also: even.

polar (z)

Transforms the complex number z in Caresian notation or the number z to polar
form. If z is a number and is zero, or if z is complex and its real and imaginary parts
equal zero, the function returns zero twice.

See also: abs, argument, cabs.

proot (x, n)

Returns the principal n-th root of the number or complex value x. n must be a
positive integer. The principal n-th root in the complex domain is the first root found
staring from the positive real axis going counter-clockwise.

See also: cbrt, hypot, root, sqrt.

gmdev (0)

The operator computes the sum of the squared deviations of each observation o; in
the sequence, register, or table o, from its arithmetic mean u, i.e.

n
2,0

i=1

agena >> 289

The return should be divided either by the number of elements n in the distribution o
to calculate its population variance, or by n - 1 to compute its sample variance.

See also: stats.sd, stats.var.

recip (x)

Returns the inverse 1/x of a number or complex numiber x.

See also: /.

rect (x)

For number x, the rectangular function returns

1 if|x <0.5
rect(x) = ¢ 0.5 if|x] = 0.5
0 if|x >0.5

See also: sinc.

root (X, n)

Returns the non-principal n-th root of the numibber or complex value x. n must be an
intfeger. Note, that since the function computes the non-principal root, with
complex x, root(x, n) # x ™ (1/n). In the complex domain, the function returns the
n-th root of x whose argument is nearest fo the argument of x.

See also: argument, cbrt, hypot, proot, sart.

rot (z, r)

Rotates a two-dimensional vector, represented by the complex number z, through
the angel r (given in radians) counterclockwise and retuns the new complex
numiber z*exp(I*r). To convert degrees to radians, multiply by Pi/180. If z is just a
number, it is internally converted to the complex number z + 0*l.

See also: conjugate, flip.

roundf (x [, d])

Rounds the number x fo its d-th digit. The return is a number. If d is omitted, the
number is rounded fo the nearest integer. The following Agena code explains the
algorithm used:

290 7 Standard Libraries

roundf := proc(x, d) is

d :=dor O; # assign zero ifd is null

return int((10~d)*x + sign(x)*0.5) * (10/(-d))
end;

See also: ceil, entier, int, mdf, xdf, math.rint.

sec(x)

Returns the secant #S(X) as a number (in radians). The function is implemented in

Agena and included in the library.agn file. The function works on both numibers
and complex values.

sech(x)

Retuns the hyperbolic secant as a number (in radians). The function is
implemented in Agena and included in the library.agn file. The function works on
both numbers and complex values.

sign (x)
Determines the sign of the number or complex value x. If x is a complex value, the
result of the operator is determined as follows:
e 1,ifredl(x) > 0 orredl(x) = 0 and imag(x) > O
e -1, ifredl(x) < 0 orreal(x) = 0 and imag(x) < 0
* 0O otherwise, even for -0.
If x is undefined, sign returns undefined.
See also: math.copysign, signum, | operator.

signum (x)

Determines the sign of the numlber or complex value x. If x is a number, the result of
the operator is determined as follows:

e 1,ifx>0
e -1 otherwise.

With complex x, the operator returns x/|x | .
If x is undefined, signum returns undefined.

See also: sign, | operator.

agena >> 291

sin (x)

The operator returns the sine of x (in radians). Complex numbers are supported.

sinc (X)

The operator returns the un-normalised cardinal sine of x (in radians), i.e. sin(x)/x,
with sinc(0) = 1. Complex numbers are supported.

See also: rect, tanc.

sinh (x)

The operator returns the hyperbolic sine of x (in radians). Complex numbers are
supported.

sqrt (X)
Returns the square root of x.

If x is @ number and negative, the operator retuns undefined.

With complex numbers, the operator returns the complex square root, in the range
of the right halfplane including the imaginary axis.

See also: hypot, proot, root.

tan (x)

The operator returns the tangent of x (in radians). Complex numbers are supported.

tanc (x)

The operator returns the un-normalised cardinal tangent of x (in radians), i.e.
tan(x)/x, with tfanc(0) = 1. Complex numbers are supported.

See also: rect, sinc.

tanh (x)

The operator returns the hyperbolic tangent of x (in radians). Complex numbers are
supported.

xdf (x, n)
Rounds down the number x at its n-th decimal place and returns a number.

See also: entier, int, roundf, mdf.

292 7 Standard Libraries

7.9.2 math Library

This library is an interface to the standard C math library. It provides all
miscellaneous functions inside the table math .

math.arccosh (x)

Retuns the inverse hyperbolic cosine of the number x and returns a number. It
works in the real domain only.

See also: arccosh.

math.ceillog2 (x)

Returns the smallest exponent to 2 equals or greater than x, i.e. ilog2(x - 1) + 1,
where x is a positive infeger. If x= 1, the result is O; if x < 1, undefined is returned.

See also: math.ceilpower2.

math.ceilpow2 (x)

Rounds x up to the next highest power of 2, where x is a non-negative integer. If x=
0, the result is 1; if x < 0, undefined is returned. Examples: math.ceilpow2(3) = 4,
and math.ceilpow2(8) = 8.

See also: math.ceillog2.

math.convertbase (s, a, b)

Converts a numiber s or a number represented as a string s from base a to base b.
a and b must be integers in the range 1 to 36. The numiber in s must be an integer
of any sign. Floats are not allowed. The refurn is a string. The function is
implemented in Agena and included in the library.agn file.

math.copysign (X, y)

Returns a number with the magnitude of x and the sign of y, i.e. abs(x) * sign(y). If y
is O, then its sign is considered to be 1. It is a plain binding to C's copysign function
and does not post-process its result.

See also: math.signbit.

math.dd (x)

Converts a number x representing a sexagesimal number in TI-30 DMS format info
its decimal representation, and retuns a number. For example: 10.3045
representing 10°30'45" returns 10.5125.

agena >> 293

The function is implemented in Agena and included in the library.agn file.

See also: math.dms, math.splitdms, math.todecimal, math.tosgesim.

math.decompose (x [, b])

Splits an integer x to the base b into its digits and returns them in a sequence, with
the highest-order digit as the first element and the lowest-order digit as the last
element. Any sign of x is ignored. By default, the base is 10, but you may choose
any other positive base.

Example:

> b = 256;

> math.decompose(15*b"2 + 7 *b + 1, 256):
seq(15,7,1)

See also: math.convertbase .

math.dms (x)

Converts a number representing a decimal number x info its TI-30 sexagesimal DMS
representation and returns a number. For example: 10.5125 retuns 10.3045,
representing 10°30'45".

See also: math.dd, math.splitdms, math.todecimal, math.tosgesim.

math.eps ([x [, option]])

The function returns the machine epsilon, the relative spacing between the number
x| and its next larger number in the machine’s floating point system. If no
argument is given, x is set to 1.

On x86 machines and with Agena numbers, i.e. C doubles, eps(1) and eps() retumn
2.2204460492503e-016 = 2%, and eps(2) returns 4.4408920985006e-016 = 2°7,

When given any second argument, the function computes a “mathematical’
epsilon value that is also dependent on the value respectively magnitude of its
argument x. It can be used in difference quotients, etc., for it prevents huge
precision erors with computations on very small or very large numibers. The
mathematical epsilon with respect to x is equal to x* sqarf(math.eps(x)).

See also: math.nextafter.

294 7 Standard Libraries

math.expminusone (x)

Returns a value equivalent 1o exp(x) - 1, with x a number. It is computed in a way
that is accurate even if x is near O, since exp(~0) and 1 are nearly equal.

The function can be used, for example, in financial mathematics, to calculate
small daily interest rates, among other things.

See also: math.Inplusone.

math.fdim (x, y)

The function returns x -y if ifs argument x, a number, is greater than y, else it retuns
0.

math.fdima (x, y [, a])

The function retumns x -y if its argument x, a number, is greater than or equal y, else
it returns a, which is O by default.

math.fpbtoint (x)

Converts a floating point byte™ generated by math.inttofpb back. This function is
used to evaluate numbers fransported to the Lua/Agena virtual machine. Please
note that math.inttofpb(math.fpbtoint(x)) does not return x.

math.fraction (x [, err])

Given a number x, this function outfputs two integers and a number: the numerator
n, the denominator d, and the accuracy epsilon, such that x := n / d o the
accuracy epsilon := | (x -n/d)/x | <err .

The eror err should be a non-negative number, and by default is O.

The function is implemented in Agena and included in the library.agn file.

See also: div package.

math.gcd (X, y)

Returns the greatest common divisor of the numbers x andy as a number. If x ory
is not an infegral, 1 is returned. The function is implemented in Agena and included
in the library.agn file.

See also: math.lcm.

agena >> 295

math.gethigh (x)

Returns the higher bytes of a number x as an integer. The function does not support
complex numbers. See also: math.getlow, math.sethigh.

math.getlow (x)

Returns the lower bytes of a number x as an integer. The function does not support
complex numbers. See also: math.gethigh, math.setlow.

math.inttofpb (x)

Converts the integer x to a “floatfing point byte ', represented as (eeeeexxx), where
the real value is (1xxx) * 2" (eeeee - 1) if eeeee <> 0 and (xxx) otherwise. This
function is used to fransport numbers to the Lua/Agena virtual machine.

See also: math.fpbtoint.

math.isinfinity (x)

Returns -1 if its numeric argument x is -infinity, +1 if its numeric argument x is
+infinity, or O if neither.

See also: finite.

math.isminuszero (x)

Returns true if x is -0 (Minus zero) and false otherwise. See also: math.signbit .

math.isordered (X, y)

Returns false if at least one of its arguments x and y - two numbers - is undefined,
and true ofherwise.

math.isprime (x)

Returns true, if the integral number x is a prime number, and false otherwise. Note
that you have to take care yourself that x is an integer and is less than the largest
integer representable on your system.

See also: math.nextprime, math.prevprime.

math.koadd (x, y [, q])

The function adds x and y using Kahan-Ozawa round-off error prevention and
returns two numbers: the sum of x and y plus the updated value of the correction
variable. The optional correction variable g should be 0 at first invocation - if q is not
given, it defaults to 0.

296 7 Standard Libraries

The algorithm used is:

math.koadd := proc(s :: number, x :: number, q) is
local sold, u, v, w, t;
q := optnumber(q, 0);

Vi=X-0;
sold = s;
Si=s+v;

if abs(x) < abs(q) then
t:=x;x:=-g;q:=t

fi;

u:=(v-x)+q;

if abs(sold) < abs(v) then
t:=sold; sold :=v; v:=t

fi;

w = (s -sold) -v;

g:=u+w;

return s, q

end;

A typical usage should ook like:

y:=0.1;
while x <1 do
X, q := math.koadd(x, y, q)
od;
print(s, q);

See also: stats.sumdata.

math.largest

This constant represents the largest positive number representable in Agena. It is
computed during start-up and may be different fromm the setting returned by
environ.system, the latter statically compiled into the Agena binary. The smallest
negative number (nearest o —w) is the negative of this constant, i.e. - math.largest.

See also: math.smallest.

math.lcm (x, y)

Returns the least common multiple of to numbers x and y as a number. The
function is implemented in Agena and included in the library.agn file.

See also: math.gcd.

math.Ilnplusone (x)

Returns a value equivalent to In(1 + x), with x a number. It is computed in a way
that is accurate even if x is near zero.

It can be used for example in financial calculations, when computing small daily
interest rates.

agena >> 297

Example: In(1.0000000000000001) =0, math.Inplus1(0.0000000000000001) =
1e-016.

See also: math.expminusone .

math.max (x [, ---])

Returns the maximum value among its arguments of tfype number.

math.min (x [, ---])

Returns the minimum value among its arguments of type number.

math.morton (X, y)

Interleaves the bits of integers x and y, so that all of the bits of x are in the even
positions and y in the odd; the function can be used fo linearising 2D integer
co-ordinates, combining x and y into a single integer that can be compared easily
has the property that a numibber is usually close 1o another if their x and y values are
close.

math.ndigits (x)
Retuns the number of digits in the intfegral part of the number x.

math.nthdigit (x, n)

Returns the n-th digit of the number x, with n an integer. To evaluate an integer digit,
n should be positive; for a decimal place, n should be negative.

The function is written in Agena and included in the library.agn file.

math.nextafter (x, y)

Returns the next machine floating-point number of x in the direction toward y.

See also: ++ and -- operators, math.eps.

math.nextprime (X)

Returns the smallest prime greater than the given number x.

See also: math.prevprime, math.isprime.

298 7 Standard Libraries

math.norm (x, al:a2 [, b1:b2])

Converts the number x in the scale [a1, a2] to one in the scale [bl, b2]. The second
and third arguments must be pairs of numbers. If the third argument is missing, then
x is converted to a number in [0, 1]. The return is a number.

See also: linalg.scale, math.wrap, stats.scale.
math.prevprime (x)
Returns the largest prime less than the given number x.

See also: math.nextprime, math.isprime.

math.Phi

o 1+/5
The golden number, Phi:= —5—.

math.quadrant (x)

This function returns the quadrant of an angle x given in radians and retuns an
integerin [1, 4].

math.random ([m [, n]] [, option])

This function creates random numbers.

When called without arguments, retuns a pseudo-random real number in the
range [0,1). It can generate up to 2 * environ.maxlong unique random numlbers in
this interval.

When called with a number m math.random returns a pseudo-random infeger in
the range [1, m.

When called with two numibers m and n, math.random returns a pseudo-random
infeger in the range [m n].

If option , any Boolean, is given, then the sequence of values returned should be
arbitrary, otherwise it is always the same unless math.randomseed is called with
other values.

See also: math.randomseed, skycrane.dice.

agena >> 299

math.randomseed (x, y)

Sets x and y as the “seeds for the pseudo-random generator: equal seeds
produce equal sequences of numbers. x and y must both be positive integers. It
returns fwo new settings.

See also: math.random.

math.rint (x)

Rounds a float 1o an integer according to the current rounding method which you
can query and set with environ.kernel/rounding .

See also: ceil, entier, int, mdf, roundf.

math.sethigh (x, i)

The function setfs the higher bytes of the number x to the integer i, and returns the
new number. It does not support complex numibers.

See also: math.setlow, math.gethigh.

math.setlow (x, i)

The function sets the lower bytes of the number x to the integer i, and returns the
new number. It does not support complex numibers.

See also: math.sethigh, math.getiow.

math.signbit (x)

Checks whether the number x has its sign bit set and returns true or false. It is a plain
binding to C's copysign function. For example, although -0 = 0, math.signbit(-0) =
tfrue and math.signbit(0) = false.

See also: math.copysign, math.isminuszero .

math.smallest

This constant represents the smallest positive number representable in Agena. It is
computed during start-up and is different from the sefting returned by
environ.system, the |atter statically compiled into the Agena binary.

See also: math.largest.

300 7 Standard Libraries

math.splitdms (x)

Splits the numiber x representing a sexagesimal number in TI-30 DMS format info its
parts and returns three numbers: the degrees, minutes, and seconds. For example:
-10.3045 represents -10°30'45".

The function is implemented in Agena and included in the library.agn file.

See also: math.dd, math.dms, math.todecimal, math.tosgesim.

math.symtrunc (x, t)

Returns its argument x if -t < x <t |, else returns sign(x) * |t |.

math.tobinary (x)

Converts a non-negative integer into its binary representation, a sequence of zeros
and ones.

See also: math.converbase.

math.tobytes (x [, nbytes])

If given no option, returns a sequence of eight bytes representing the number x in
Little Endian order. If nbytes is the number 4, a sequence of four bytes representing
x as a Little Endian four-byte unsigned integer is returned.

See also: math.tonumber.

math.todecimal (h [, m [, s]])

Converts a sexagesimal time value given in hours h, minutes mand seconds s info
its decimal representation. The opftional arguments m and s default to 0. If a
sexagesimal value is negative, then h should be negative, while mand s should be
non-negative.

See also: clock.todec, math.tosgesim.

math.tonumber (Ss)

Takes a sequence s of four our eight numbers representing bytes and converts it
info an Agena number. Regardiess of your platform, the order of bytes in s is
assumed to be Liftle Endian.

If s contains eight bytes, it is assumed to represent a C unsigned double. If it
contains four bytes, an unsigned four-byte infeger is assumed.

See also: math.tobytes.

agena >> 301

math.toradians (d [, m [, s]])

Returns the angle given in degrees d, minutes m and seconds s, in radians. The
optional arguments mand s default to 0.

math.tosgesim (d)

Converts a decimal time value given by the number d into its sexagesimal
representation and returns three numbers: the hours, minutes, and seconds.

The function is written in Agena and included in the library.agn file.

See also: math.todecimal.

302 7 Standard Libraries

math.wrap (x, a, b)

math.wrap (x [, a])

Conducts a range reduction of the number x to the interval [a, b) and refumns a
number. If already x € [a, b], x is simply retumned.

In the second form, if a is not given, a is set to -Pi and b o +Pi. If a is given, a is set to
-a and b to +a, SO a should e positive.

The result is equivalent to:
>dec x, a;

>dech, a;
>a +irem(b + irem(x, b), b):

See also: math.norm, zx.range.

agena >> 303

7.10 mapm - Arbitrary Precision Library

As a plus package, in Solaris, Linux, Mac OS X, and Windows, this library is not part of
the standard distrioution and must be activated with the import statement, e.Q.
import mapm .

In eComStation - OS/2, Haiku, and DOS, the package is built into the binary
executable and does not need to be activated with import.

The package provides functions to conduct arbitrary precision mathematics with
real numibers. It uses Mike's Arbitrary Precision Math Library, written by Michael C.
RiNQ.

Standard operators like +, -, *, /. %, <, =, >, and unary minus are supported.

All function names in this library begin with the lefter x.

The package uses its own kind of numbers which are different from Agena
numbers: use mapm.xnumber and mapm.xtonumiber to convert between them.

By default, the precision is set to 17 digits, but you can change this any fime with
the mapm.xdigits function, e.g.:

> mapm.xdigits(100);

The mathematical functions are:

Function Meaning Function Meaning
mapm.xabs absolute value mapm.xfactorial | factorial
MAapM.XArccos | arc cosine mapm.xidiv integer division
mapm. inverse hyperoolic mapm.xin natural logarithm
xarccosh cosine '

mapm.xadd addition mapm.xiog10 common logarithm
mapm.xarcsin | inverse sine mapm.xmul multiplication
mapm.xarcsinh Lriw%/grse hyperobolic MApM.XPowW power
mapm.xarctan | inverse tangent mapm.xsign sign

mapm. 4 quadrant inverse mapm.xsin sine

xarctan2(x, y) tangent '

mapm. hyperbolic —inverse mMapm.xsincos sine and cosine
xarctanh tangent ‘

mapm.xcbrt cubic root mapm.xsinh hyperbolic sine
MAPM.XCOSs cosine mapm.xsqrt square roof
MAapmM.xcosh hyperbolic cosine mapm.xsub subtraction
mapm.xdiv division mapm.xtan fangent
mapm.xexp exponential function | mapm.xtanh hyperbolic tangent

304 7 Standard Libraries

Most of the mapm functions accept a second argument - a non-negative integer -
giving the individual precision.

The package provides the following metamethods:

Operator | Name Description

+ '__add’ addition

- __sub’ subtraction

* '__mul multiplication

/ __div’ division

% '__mod' modulus

~ __pow' power

- __unm’ unary minus

< I less-than

= __eq equals

n/a __gc garbage collection
n/a '__tostring’ conversion to a string, e.g. for the pretty printer

Ofther functions are:

Function Meaning Function Meaning
, . . mapm.
mapm.xceil ceil function exponent
xexponent
mapm.xfloor floor function mapm.xinv reciprocal
mapm.xiseven | test for even number | mapm.xisint check for an integral
mapm.xisodd | fest for odd number | mapm.xmod modulus

rounds downwards 1o

the nearest integer mapm.xneg negates a number

mapm.xround

converts an Agena
number or a string
representing a
number to an
arbitrary precision
number

comparison, returns
-lifx <y, Oifx =y, | mapm.xnumber
and 1 ifx >y

mapm.
xcompare(x, y)

sets the number of
digits used in all sub-
seguent calcula- converts an arbitrary

mapm.xdigits | tions. With no argu- Qgrﬁjr:;ber precision number to
ment, returns the an Agena number
current setting
(default is 17)

converts an arbitrary
mapm.xdigitsin | significant digits mapm.xtostring | precision number to
a sfring

agena >> 305

7.11 calc - Calculus Package

This package contains mathematical routines to perform basic calculus
numerically. Since the functions do not work symbolically, please beware of
round-off errors. As a plus package, it is not part of the standard distribution and
must be activated with the import statement, e.g. import calc

A typical example might look like this:

> import calc;

Define a function f :=x - sin(x):

> f = << x ->sin(x) >>

Determine all its zeros over [-5, 5]

> calc.zero(f, -5, 5):
seq(-3.1415926535898, 0, 3.1415926535898)

Differentiate it at point O and also return an error estimate:

> calc.diff(f, 0):
0.99999999999963 1.8503717573394e-010

Compare it

> cos(0):
1

Integrate it over [O, x]:

> calc.gtrap(f, 0, Pi):
1.9999999938721
Summary of functions:
General Calculus:
calc.iscont, calc.limit, calc.sections, calc.zero.
Differentiation:
cale.diff, calc.maximum, calc.minimum, calc.symdiff, calc.xpdiff.
Integration:

calc.gtrap., calc.intde, calc.intdei, calc.intdeo, calc.integral,
calc.simaptive .

306 7 Standard Libraries

Integrals:
calc.Ci, calc.Chi, calc.dawson, calc.Ei, calc.En, calc.fresnelc,
cdlc.fresnels, calc.ibeta, calc.igamma, calc.igammc, calc.invibeta,
calc.Shi, calc.Si, calc.Ssi.

Sums & Products:
calc.prod, calc.fsum.

Interpolation:
calc.clampedspline , calc.clampedsplinecoeffs , calc.interp, calc.linterp,
calc.nakspline, calc.naksplinecoeffs , calc.neville, calc.newtoncoeffs ,
calc.polyfit, calc.polygen.

Distances
calc.arclen, calc.eucliddist, calc.sinuosity .

Miscellaneous:

calc.Ai, calc.Bi, calc.dilog, calc.polylog, calc.Psi, calc.zeta.

The functions:

calc.Ai (x)

The Airy wave function returns both the first independent solution to the differential
equation y'(x) = x*y and its first derivative, for any real x.

See also: calc.Bi.

calc.arclen (f, a, b)

The function retumns the arc length (curvilinear length) of a function f in one real
between the points a and b.

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.eucliddist.

agena >> 307

calc.Bi (x)

The Airy wave function returns both the second independent solution to the
differential equation y"(x) = x*y and its first derivative, for any real x.

See adlso: calc.Ai.

calc.Ci (x)

Computes the cosine integral and returns it as a number. x must be a number.

See also: cale.Si, cale.Chi, calec.Shi, calc.Ssi.

calc.Chi (x)

Computes the hyperbolic cosine integral and retums it as a number. x must be a
number.

See also: cale.Si, cale.Ci, cale.Shi, calc.Ssi.

calc.clampedspline (obj, da:db)
calc.clampedspline (obj, da:db, a)

calc.clampedspline (obj, da:db, a, coeffs)

Evaluates the clamped cubic spline for a given table or sequence obj of pairs
representing the points x.y «, af a single value a (@ number) of the independent
variable x.

The boundary conditions are passed as a pair of numbers da:db, where da is the
derivative of the function at the left border, and db is the derivative of the function
at the right border.

In the first form, returns a univariate function which can be called with a numiber to
obtain the value of the interpolating polynomial. For best performance, use this first
form.

In the second form, the function computes the coefficients of the linear, quadratic,
and cubic terms itself in each call.

In the third form, the function expects the coefficients coeffs of the linear,
quadratic, and cubic terms as a sequence of three sequences, in this order, and
each containing numbers. The fourth argument may be obtained by calling
calc.clampedsplinecoeffs.

In the second and third form, the function retumns the value of the interpolating
polynomial, a number, at the specified value a of the independent variable x.

In general, the function returns fail if the structure contains less than two pairs.

308 7 Standard Libraries

See also: calc.interp, calc.clampedsplinecoeffs, calc.nakspline, calc.neville.

calc.clampedsplinecoeffs (obj, da:db)

Determines the coefficients for the clamped cubic spline for a given table or
sequence obj oOf pairs representing the points x.y «. The return can be used to
speed up execution of calc.clampedspline.

The boundary conditions are passed as a pair of numioers da:db, where da is the
derivative of the function atf the left border, and db is the derivative of the function
at the right border.

The function returns fail if the structure less than two pairs.

See also: calc.clampedspline.

calc.dawson (x)

Computes Dawson's infegral for a number x. The return is a number.

See also: expx2.

calc.dilog (x)

Computes the dilogarithm function for a numiber x. The return is a number.

calc.diff (f, x [, eps])

Computes the value of the first differentiation of a function f at a point x. If eps is
not passed, the function uses an accuracy of the constant Eps. You may pass
another numeric value for eps if necessary.

The algorithm is based on Conte and de Boor's " Coefficients of Newton form of
polynomial of degree 3.

See also: calc.symdiff, calc.xpdiff.

calc.Ei (x)

Computes the exponential integral
o0

l
Ei(x) = - jer’r
—X

for a number x. The return is a number??, and undefined if x = 0.

22 plegse note that for -5 < x < 0, the result is an approximation.

agena >> 309

calc.En (n, x)

Evaluates the exponential integral

o0
o~
En(X) = - j\T_ndT
1
for non-negative n (an integer) and real x. The return is a number.

calc.eucliddist (f, a, b)

Computes the Euclidian distance, i.e. the straight-line distance, of two points (a,
f (a)) and (b, f(b)) on a curve defined by a function f in one real, in the Euclidean
plane. a, b must be numbers.

calc.fprod (f, a, b)

Computes the product of f (a), --- , f(b), with f a function, a and b numbers. If a > b,
then the result is 1.

See also: calc.fsum.

calc.fresnelc (x)

X
Computes the Fresnel integral C(x) :j cos(5 t2) dt and retumns it as a number.
0

calc.fresnels (x)

X
Computes the Fresnel integral S(x) zf sin(% t2) dt and returns it as a number.
0

calc.fsum (f,a, b [, ---])

Computes the sum of f (a), --- , f(b), with f a function, a and b numbers. If f requires
two or more arguments, the second, third, etc. argument must be passed after b. If
a > b, then the result is 0. The function uses Kahan-Ozawa round-off error
prevention. Examples:

> calc.fsum(<< n, x -> (x**n)/fact(n) >>, 0, 100, 1):
2.718281828459

> calc.fsum(<< x, n -> (x**n)/fact(n) >>, 0, 100, 1):
5050

See also: calc.fprod.

310 7 Standard Libraries

calc.gtrap (f, a, b [, eps])

Integrates the function f on the interval [a, b] using a bisection method based on
the frapezoid rule and returns a number. By default the function quits after an
accuracy of eps = Eps has been reached. You may pass another numeric value
for eps if necessary.

See also: cdalc.intde, calc.intdei, calc.intdeo, calc.integral, calc.simaptive .

calc.ibeta (%, a, b)

Evaluates the incomplete beta integral defined by

[(o+0) h -1 b-1
WO#’ (1 -f-'at

from O to x. Both a and x must be positive numbers. See also: calc.invibeta.

calc.igamma (x, a)

Evaluates the incomplete gamma integral defined by

X
1
ﬁje" to1at
0
Both a and x must be positive numbers. See also: calc.igammac.

calc.igammac (X, a)

Evaluates the complemented incomplete gamma integral defined by

o0
1
mje" oot
X
Both a and x must be positive numbers. See also: calc.igamma.

calc.intde (f, a, b [, eps])

Integrates the function f on the interval [a, b], with a and b numbers, using Double
Exponential (DE) Transformation, also known as Tanh-sinh quadratfure.

f needs to be analytic over [a, b]. eps is the relative error requested excluding
cancellation of significant digits, and by default is equal o 1e-15. Specifically, eps

agena >> 311

b
means: (absolute eror) / ([f(x)|dx).

The retun is 1) the approximation to the integral, or fail if evaluation failed, and 2)
an estimate err of the absolute error, where

* ern>0: normal termination,

* err < 0: donormal termination, i.e. an convergent eror has been detfected: 1)
f(x) or %” f(x) has discontinuous points or sharp peaks over [a, b] (you must divide
the interval [a, b] at these points). 2) The relative error of f(x) is greater than eps. 3)
f(x) has an oscillatory factor and the frequency of the oscillation is very high.

This function is four times faster than calc.gtrap and also much more accurate. It
can be applied on any polynomial, exponential or tfrigonometric function,
logarithm, power function, and most special functions.

See also: calc.gtrap, calc.intdei, calc.intdeo, calc.integral, calc.simaptive .

calc.intdei (f, a, [, eps])

Integrates the non-oscillatory function f on the interval [a, «], with a a number, using
Double Exponential (DE) Transformation, also known as Tanh-sinh quadrature.

f needs to be analytic over [a, «]. eps is the relative eror requested excluding
cancellation of significant digits, and by default is equal o 1e-15. Specifically, eps
b

means: (absolute error) / (ff(x)|dx).

The return is either the approximation to the integral, or fail if evaluation failed, and
an estimate err of the absolute error. For further information see calc.intde.

See also: calc.gtrap, calc.intde, calc.integral, calc.simaptive .

calc.intdeo (f, a, [, omega [, eps])

Integrates the oscillatory function f on the interval [a, «], with a a number, using
Double Exponential (DE) Transformation, also known as Tanh-sinh quadrature.

f needs to be analytic over [a, «]. omega is the oscillatory factor of f and by default
is 1. eps is the relative eror requested excluding cancellation of significant digits,
b

and by default is equal to 1e-15. Specifically, eps means: (absolute error)/(jf[x)|dx).
a

The return is either the approximation to the integral, or fail if evaluation failed, and
an estimate err of the absolute error. For further information see calc.intde.

See also: calc.gtrap, calc.intde, calc.intdei, calc.integral, calc.simaptive .

312 7 Standard Libraries

calc.integral (f, a, b [, omega [, eps])

This function is a wrapper around calc.intde, calc.intdei, and calc.intdeo. If eps is
not given, it is 1e-15 by default. If omega is not given, it is 1. The return is the integral
value and the error margin, both are numbers.

If b is not infinity, the function calls calc.intde and returns its results.

If b is infinity, the function first calls calc.intdei and returns its results, if intdei does not
evaluate to fail. Otherwise, calc.intdeo is called.

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.gtrap, calc.intde, calc.intdei, calc.intdeo, calc.simaptive .

calc.interp (obj)

calc.interp (obj, a)

calc.interp (obj, a, coeffs)

In the first form, computes a Newton interpolating polynomial and returns it as a

univariate function. The interpolation points are passed in a table obj , with each
point being represented by the pair xq:y «.

Example:

> f:= calc.interp([0:0, 1:3, 2:1, 3:3]);

Call f at point 10:

> f(10):
885

In the second and third form, evaluates the Newton form of the polynomial which
interpolates a given table or sequence obj of pairs representing the points x,:y «, at
a single value a (@ number) of the independent variable.

In the second form, the function computes the coefficients itself in each call.

In the third form, by passing a sequence coeffs oOf coefficients (numbers), the
function uses the coefficients passed, avoiding their (re-Jcomputation. The third
argument may be obtained by calling calc.newtoncoeffs.

Both in second and third form, the function returns the value of the interpolating
polynomial, a numiber, at the specified value a of the independent variable. It is
advised to use the first form to benefit fromn maximum speed.

agena >> 313

Example:

> calc.interp([0:0, 1:3, 2:1, 3:3], 10):
885

See dalso: calc.clampedspline, calc.nakspline, calc.neville, calc.newtoncoeffs,
calc.polyfit, calc.linterp.

calc.invibeta (y, a, b)

Evaluates the inverse of the incomplete beta integral such that
y = calc.ibeta(x, a, b).

See also: calc.ibeta.

calc.iscont (f, x [, eps])

The function returns true if a real function f is continuous at the given point x (a
number), and false otherwise. If eps is given, the epsilon for the approximate
equality check of the left and right limit is used with this value; otherwise it is
automatically determined, see math.eps with any option given.

calc.limit (f, x [, eps])

The function returns the limit of a real function f af the given point x (@ number). If
the limit does not exist, undefined is returned. If eps is given, the epsilon for the left
and right limit and the approximate equality check of them is used with this value;
otherwise it is automatically determined, see math.eps with any option given.

calc.linterp (obj)

Retuns a function that conducts a Lagrange interpolation for a given sequence or
table obj of numeric pairs x:y where x and y denote a point in the plane. It is often
said that Lagrange interpolation is suited for theoretical purposes only, since it is also
very slow.

See also: calc.interp, calc.polyfit.

calc.maximum (f, a, b, [step [, eps]])

Returns all possible maximum locations of the univariate function f on the interval
[a, b]. The function divides the interval [a, b] into smaller intervals [a, a+step],
[a+step , a+2*step |, --- , [b-step , b], with step =0.1 if step is Nnot given. It then looks
for possible maximum locations x in these smaller intervals and checks whether the
first derivative of f at x is 0.

f must be differentiable on [a, b]. The procedure returns two sequences.

314 7 Standard Libraries

The accuracy of the procedure is determined by eps, with eps = Eps as a default. If
a possible extreme location x matches the condition f(x) = 0 with this accuracy,
it is included in the first sequence that the procedure returns. If the test fails and eps
< Eps, then an accuracy of 1e-5 is used for a second ftest. If it succeeds, x is
included info both the first and the second sequence, indicating to the user that
the first test failed.

The function is implemented in Agena and included in the calc.agn file.

See also: calc.minimum.

calc.minimum (f, a, b, [step [, eps]])

Returns all possible minimum locations of the univariate function f on the interval [a,
b]. The function divides the interval [a, b] into smaller intervals [a, a+step], [a+step |,
a+2*step |, -+ , [b-step , b], with step =0.1 if step is not given. It then looks for
possible minimum locations x in these smaller intervals and checks whether the first
derivative of f at x is O.

f must be differentiable on [a, b]. The procedure retumns two sequences.

The accuracy of the procedure is determined by eps, with eps = Eps as a default. If
a possible extreme location x matches the condition f(x) = 0 with this accuracy,
it is included in the first sequence that the procedure returns. If the test fails and eps
< Eps, then an accuracy of 1e-5 is used for a second test. If it succeeds, x is
included info both the first and the second sequence, indicating fo the user that
the first test failed.

The function is implemented in Agena and included in the calc.agn file.

See also: calc.maximum.

calc.nakspline (obj)

calc.nakspline (obj, a)

calc.nakspline (obj, a, coeffs)

Evaluates the "not-a-knot™ cubic spline for a given table or sequence obj of pairs

representing the points x.y «, af a single value a (@ number) of the independent
variable.

In the first form, returns a univariate function which can be called with a number 1o
obtain the value of the interpolating polynomial. This is the recommended usage
due 1o its run-time behaviour.

In the second form, the function computes the coefficients of the linear, quadratic,
and cubic terms itself in each call.

agena >> 315

In the third form, the function expects the coefficients coeffs of the linear,
quadratic, and cubic terms as a sequence of three sequences, in this order, and
each contfaining numbers. The third argument may be obtained by calling
calc.naksplinecoeffs .

In the second and third form, the function returns the value of the interpolating
polynomial, a numiber, at the specified value a of the independent variable.

In general, the function returns fail if the sfructure contains less than four pairs.

See also: calc.clampedspline , calc.interp, calc.naksplinecoeffs , calc.neville.

calc.naksplinecoeffs (obj)

Determines the coefficients for the "not-a-knot™ cubic spline for a given table or
sequence obj oOf pairs representing the points x.y «. The return can be used to
speed up execution of calc.nakspline.

The function returns fail if the structure contains less than four pairs.

See also: calc.nakspline .

calc.neville (obj)

calc.neville (obj, a)

In the first form, returns a function that conducts an Aitken-Neville interpolation for a
given seguence or table obj of numeric pairs x.:y « where x, and y, denote a point
in the plane.

In the second form, evaluates the polynomial which interpolates a given sequence
or table obj of points represented by pairs of the form x,:y « at a single value a (a
number) of the independent variable, using Aitken-Neville interpolatfion, and returns
a number.

Example:

> calc.neville([1:1, 2:2, 3:3], 2):
2

See also: calc.clampedspline, calc.interp, calc.nakspline .

calc.newtoncoeffs (obj)

Returns a sequence of the coefficients of type numibber of the Newton form of the
polynomial which interpolates a given table or sequence obj of pairs representing
the points x.:y «. The return can be used 1o speed up execution of calc.interp.

See also: calc.interp.

316 7 Standard Libraries

calc.polyfit (obj, n)

Returns a sequence of coefficients of an n-th-degree polynomial of a sample, in
order of descending degree fitting the input sequence or sequence obj oOf pairs
XY, With X and yi being numbers, and using polynomial regression. The degree n
must be a positive infeger.

The retfurn may be passed to calc.polygen to generate a polynomial function (use
unpack when passing the coefficient vector), e.g. calc.polygen(unpack(
calc.polyfit(seq(1:0, 2:3, 3:1), 2)))

There is no limit on the degree, but a degree of 7 or more is not regarded
appropriate.

The function tries to reproduce polynomial frend lines known from spreadsheet
applications.

See also: calc.interp, calc.linterp, calc.polygen.

calc.polygen (c mC n1, o C 2,C 1)
Creates a polynomial p(x) = c,*X"" + ¢ *X™ + ...+ ¢,*X + ¢, from the
coefficients c,, ¢, -+, o coAN retums it as a new function p 1= << x-> p(x) >>,

where x and the return p(x) represent numbers.

See also: calc.polyfit.

calc.polylog (n, x)

Retumns the polylogarithm of order n (an integer greater or equals -1) at a real point
x. The return is a numiber, or fail if n < -1 for this situation is not implemented. The
polylogarithm of order n is defined by the series:

© K
. X
) = DX T
K=1

calc.Psi (x)

Computes the Psi (digamma) function, the logarithmic derivative of the gamma
function, for a number x. The retumn is a number.

calc.sections (f, a, b, step)

Returns all intervals where a function has a change in sign. f must be a function, a
the left border of the main interval, b its right border, and step the step size. The
return is a sequence of pairs denoting the found subintervals.

See also: calc.zero.

agena >> 317

calc.Shi (x)

Computes the hyperbolic sine infegral and returns it as a number. x must be a
number.

See also: cale.Ci, cale.Chi, calc.Si, calc.Ssi.

calc.Si (x)

Computes the sine integral and returns it as a number. x must be a number.
See also: calc.Ci, calc.Chi, calc.Shi, calc.Ssi.

calc.simaptive (f, a, b [, h_min [, eps]])

Integrates the function f on the interval [a, b] using Simpson-Simpson Adaptive
Quadrature and returns a number. The function returns fail, if no suitable subinterval
of length greater than min_h could be found for which the estimated error falls
below eps.

The function is thrice as fast as calc.integral, but is not suited with singularities atf or
within the borders.

By default, h_min is 1e-7, and eps is Eps/2, where Eps is the global system variable
Eps.

See also: calc.gtrap, calc.intde, calc.intdei, calc.intdeo, calc.integral.

calc.sinuosity (f, a, b)

Computes the ratio of the curvilinear length (along the curve) and the Euclidean
distance (straight line) between the end points a and b, of the curve defined by a
function f in one real. a, b must be numbers.

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.arclen, calc.eucliddist.

calc.Ssi (x)

Computes the shifted sine integral and returns it as a number. x must be a number.

See also: cale.Ci, cale.Chi, calc.Shi, calc.Si.

318 7 Standard Libraries

calc.symdiff (f, x)

Computes the symmmetric derivative of a function in one real f at a point x. The
function is three times faster than calc.xpdiff, but a little less accurate.

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.diff, calc.xpdiff.

calc.xpdiff (f, x, [, eps [, delta]])

Like calc.diff, but uses Richardson's extrapolation method. f is the function to be
iterated at point x (Q number). eps and delta Are accuracy values (numbers, as
well). The return of the procedure are the derivative of f at x - a number - and the
eror.

xpdiff produces better results with powers and trigonometric functions than calc.diff.

See also: calc.symdiff.

calc.zero (f, a, b, [step [, eps]])

Returns all roofs of a function f in one variable on the interval [a, b].

The function divides the interval [a, b] info smaller intervals [a, a+step |, [a+step ,
a+2*step], -+ , [b-step , b], with step =0.1 if step is not given. It then looks for
changes in sign in these smaller intervals and if it finds them, determines the roots
using a modified regula falsi method.

The accuracy of the regula falsi method is determined by eps, with eps = Eps as a
default. f must be differentiable on [a, b].

The function is implemented in Agena and included in the lib/calc.agn file.

See also: calc.sections.

calc.zeta (X)

Computes the Riemann Zeta function for real x > 1 and returns the number:

o0
DK+
k=2

agena >> 319

7.12 linalg - Linear Algebra Package

This package provides basic functions for Linear Algebra. As a plus package, it is
not part of the standard distribution and must be activated with the import
statement, e.qg. import linalg

There are two constructors available to define vectors and matrices, linalg.vector
and linalg.matrix. Except of these two procedures, the package functions assume
that the geometric objects passed have been created with the above mentioned
constructors.

The package includes a metatable linalg.vmt defined in the linalg.agn file with
metamethods for vector addition, vector subfraction, and scalar vector
multiplication. Further functions are provided to compute the length of a vector with
the abs operator and to apply unary minus 1o a vector.

The tfable linalg.mmt defines metamethods for matrix addition, subtraction and
multiplication with a scalar. It is assigned via the linalg.agn file, as well.

The vector function allows to define sparse vectors, i.e. if the component n of a
vector v has not been physically set, and if v[n] is called, the return is 0 and not null.

The dimension of the vector and the dimensions of the matrix are indexed with the
'dim' key of the respective object. You should not change this setting to avoid
errors. Existing vector and matrix values can be overwritten but you should take care
to save the correct new values.

Equality checks of vectors or matrices should always be conducted with the
strict equality operator == or the ~= qpproximate equality operator
instead of the Cantor-like = equality operator?. For inequality use the

not operator combined with == or ~=.

A sample session:

> import linalg alias

Define two vectors in two fashions: In the simple form, just pass all components
explicitly:

2B The = operator just checks whether an element in one structure is residing at any position in the
other structure, whereas the == and ~= operators check elements place-by-place. Developers
who would like to extend the linalg package may also have a look at the eeqg and _ aeq
metamethod. to influence the behaviour of the == and ~= operators, respectively.

320

7 Standard Libraries

> a :=vector(l, 2, 3):
[1,2,3]

In a more elaborate form, indicate the dimension of the vector to be created and
only pass the vector components that are not zero in a table:

> b := vector(3, [1~2]):
[2,0,0]

Check whether a and b are parallel and have the same direction:

> abs(a+b) = abs(a) + abs(b):
false

Addition:

>a+b:
[3,2,3]

Subtraction:

>a-b:
[-1,2,3]

Scalar multiplication:

>2*a:
[2,4,6]

> crossprod(a, b):
[0,6,-4]

Find the vector x which satisfies the matrix equation A x = b. In this example, we will

1 2 -4
solve the equation 21 3 |*x=
-3 1 6

row vectors.

= matrix([1, 2, -4], [2, 1, 3], [-3, 1, 6]):

>A:
[1,2, -
[2,
[-3,

:= vector(-6, 5, -2):
-6, 5, -2]

> backsubs(A, b):
[2,-2,1]

The linalg operators and functions are:

sl+ s2

-6

-2

. The linalg.matrix constructor expects

Adds two vectors or matrices s1, s2. The return is a new vector or matrix. This
operation is done by applying the __add metamethod.

agena >> 321

sl-_s2

Subtracts two vectors or matrices s1, s2. The refurn is a new vector or matrix. This
operation is done by applying the __sub metamethod.

k*_s
s* k
ml* m2

Multiplies a number k with each element in vector or matrix s, or multiplies the
matrix m1 with matrix m2. The return is a new vector or matrix. This operation is done
by applying the __mul metamethod.

s/_k

Divides each element in the vector s by the numiber k The return is a new vector.
This operation is done by applying the __divmetamethod.

abs (v)

Determines the length of vector v. This operation is done by applying the _ abs
metamethod o v.

gsadd (v)

Raises all elements in vector v to the power of 2. The return is the sum of these
powers, i.e. a number. This operation is done by applying the __gsadd metamethod
fov.

linalg.add (v, w)
Determines the vector sum of vector v and vector w. The return is a vector.

See also: linalg.sub.

linalg.augment (---)

Joins two or more matrices or vectors together horizontally. Vectors are supposed to
e column vectors. The matrices and vectors must have the same number of rows.

The return is a new matrix.

See also: linalg.stack.

linalg.backsub (A)
linalg.backsub (A, v)

Performs lbbackward substitution on a system of linear equations.

322 7 Standard Libraries

In the first form, A must be an augmented m x n lower triangular matrix with m+1 =
n. In the second form, A is an lower triangular square matrix and v a right-nand side
vector.

The return is the solution vector.
The function issues an eror if A is not upper tfriangular. You may change the
tolerance o detect "zeros' by setting the global system variable Eps o another

value.

See also: linalg.gsolve, linalg.rref.

linalg.backsubs (A, b)
The function has been deprectated. Please use linalg.gsolve instead.

linalg.checkmatrix (A [, B, ---] [, true])

Issues an error if at least one of its arguments is not a matrix. If the last argument is
frue, then the matrix dimensions are returned as a pair, else the function returns
nothing.

Contrary to linalg.checkvector, the dimensions will not be checked if you pass
more than one mairix.

linalg.checksquare (A)

Issues an error if A is not a square matrix. It refurns nothing. See linalg.issquare for
information on how this check is being done.

linalg.checkvector (v [, w, --:])

Issues an error if at least one of its arguments is not a vector. In case of two or more
vectors it also checks their dimensions and returns an error if they are different.

If everything goes fine, the function will return the dimensions of all vectors passed.

See linalg.isvector for information on how the check is being done.

linalg.coldim (A [, ---])

Determines the column dimension of the matrix A, The return is a numier.

If you pass more than one argument, then a fime-consuming check whether A is a
maitrix, is skipped.

A more direct way of determining the column dimension is right(A.dim)

See also: linalg.rowdim.

linalg.column (A, n)

agena >> 323

Returns the n-th column of the matrix or row vector A as a new vector.
See also: linalg.submatrix .

linalg.crossprod (v, w)

Computes the cross-product of two vectors v, w of dimension 3. The return is a
vector,

linalg.det (A)

Computes the determinant of the square matrix A. The return is a number. With
singular matrices, it returns O.

linalg.diagonal (v)

Creates a square matrix A with all vector components in v put on the main
diagonal. The first element in v is assigned A[1][1] . the second element in v is
assigned A[2][2] , etc. Thus the result is a dim(v) x dim(v)-matrix.

See also: linalg.getdiagonal .

linalg.dim (A)

Determines the dimension of a matrix or a vector A. If A is a matrix, the result is a pair
with the left-hand side representing the number of rows and the right-hand side
representing the numiber of columns. If A is a vector, the size of the vector is
determined.

linalg.dotprod (v, w)

Computes the vector dot product of two vectors v, w of same dimension. The
vectors must consist of Agena numbers. The return is a number.

linalg.forsub (A)
linalg.forsub (A, v)

Performs forward substitution on a system of linear equations.

In the first form, A must be an augmented m x n upper triangular matrix with m+1 =
n. In the second form, A is an upper triangular square matrix and v a right-hand side
vector.

The return is the solution vector.

The function issues an eror if A is not upper friangular. You may change the
tolerance to detect “zeros™ by sefting the global system variable Eps to another

value.

See also: linalg.backsub, linalg.rref.

324 7 Standard Libraries

linalg.getdiagonal (A)
Returns the diagonal of the square matrix A as a vector.

See also: linalg.diagonal .

linalg.gsolve (A [, true])
linalg.gsolve (A, v [, true])

Performs Gaussian elimination on a system of linear equations.

In the first form, A must be an augmented m x n matrix with m+1 = n. In the second
form, Ais a square matrix and v a right-hnand side vector.

The return is the solution vector. It returns infinity if an infinite numiber of solutions has
been found, and undefined if no solutions exists. It returns fail if it could not
determine whether no or an infinite number of solutions exist.

If the Boolean value true is given as the last argument, the reduced linear system is
also returned as an (augmented) upper triangular matrix.

See also: linalg.backsub, linalg.forsub, linalg.rmref.

linalg.hilbert (n [, X])

Creates a generalised n x n Hibert matrix H, with H[i, j] := 1/(i+j-x). If x is not
specified, then x is 1. (n and x must be numibers.)

linalg.identity (n)

Creates an identity matrix of dimension n with all components on the main
diagonal set to 1T and all other components set to 0.

linalg.inverse (A)

Returns the inverse of the square matrix A.

linalg.isantisymmetric (A)

Checks whether the matrix A is an antisyrnmetric matrix. If so, it returns frue and false
otherwise.

linalg.isdiagonal (A)

Checks whether the matrix A is a diagonal matrix. If so, it returns true and false
otherwise.

agena >> 325

linalg.isidentity (A)

Checks whether the matrix A is an identity matrix. If so, it returns true and false
otherwise.

linalg.ismatrix (A)

Returns true if A is a matrix, and false otherwise. To avoid costly checks of the
passed object, the function only checks whether A is a sequence with the
user-defined type ‘matrix’.

linalg.issquare (A)

Retuns true if A is a square matrix, i.e. a matrix with equal column and row
dimensions, and false otherwise.

linalg.issymmetric (A)

Checks whether the matrix A is a symmetric matrix. If so, it returns true and false
otherwise.

linalg.isvector (A)

Returns true if A is a vector, and false otherwise. To avoid costly checks of the
passed object, the function only checks whether A is a sequence with the
user-defined type ‘vector’,

linalg.ludecomp (A [, n])

Computes the LU decomposition of the square, non-singular matrix A of order n. If n
is missing, it is determined automatically, i.e. n := left(A.dim)

The return is the resulting matrix, the permutation vector as a vector, and a number
where this number is either 1 for an even number of row interchanges done during
the computation, or -1 if the number of row interchanges was odd. If the matrix is
singular, an error is issued.

linalg.matrix (obj 1, 0bj 5, -+, Obj n)
linalg.matrix (m, n [, Iv])

In the first form, creates a matrix from the given structures obj . The structures are
considered 1o be row vectors. Valid structures are vectors created with linalg.vector,
tables or sequences.

In the second form, with m and n integers, creates a mx n matrix and optionally fills
it row by row with the elements in the table or sequence v . v must not include
structures. If Iv is not given, the matrix is filed with zeros.

The return is a table of the user-defined type 'matrix’ and a metatable linalg.mmt
assigned to the matrix. The table key 'dim' contains a pair with the dimensions of

326 7 Standard Libraries

the matrix: the left-hand side specifies the number of rows, the right-nand side the
numiber of columns.

See also: linalg.vector, utils.readcsv.

linalg.maeq (A, B)

This function checks matrix A and matrix B for approximate equality. The return is
either true or false. The function uses Donald Knuth's approximation method to
compare matrix elements (see the approx function for information on how this
Wworks).

You can change the accuracy threshold epsilon with the environ.kernel/eps
function.

See also: ~= and ~<> metamethods, approx, linalg.meeq, linalg.vaeq.

linalg.meeq (A, B)

This function checks matrix A and matrix B for strict equality. The return is either frue or
false.

See also: == metamethod, linalg.maeq, linalg.veeq.

linalg.mmap (f, A[, ---])

This function mayps a function f to all the components in the matrix A and returns a
new matrix. The function must return only one value. See linalg.vmap for further
information.

linalg.mmul (A, B)

This function multiplies an m x n matrix A with an n x p matrix B. The returnisan m x p
matrix. See also: * metamethod.

linalg.mulrow (A, i, S)

Multiplies each element of row i in matrix A with the scalar s and returns a new
matrix.

See also: linalg.swapcoal, linalg.swaprow, linalg.mulrowadd .

linalg.mulrowadd (A, i, j, S)

Returns a copy of matrix A with each element in row j exchanged by the sum of this
element and the respective element in row i multiplied by the number s.

See also: linalg.swapcoal, linalg.swaprow, linalg.mulrowadd .

agena >> 327

linalg.mzip (f, A, B[, --*])

This function zips together two matrices A, B by applying the function f to each of its
respective components. The result is a new matrix m where each element m[i, j] is
determined by ml[i, j] := f (A[i, j]. B[i, j]). If the f has more than two arguments, then its
third to last argument must be given right after B.

A and B must have the same dimension.

See also: linalg.vzip, linalg.mmap, linalg.mzip .

linalg.norm (A)

linalg.norm (v [, n])

The function returns the norm of a matrix or vector.

In the first form, the function returns the infinity norm of a matrix A. It is the maximum
row sum, where the row sum is the sum of the absolute values of the elements in a
given row.

In the second form, it returns the n-norm of a vector v, where n is a positive integer.
(The n-norm of a vector is the nth root of the sum of the magnitudes (absolute
values) of each element in v raised to the nth power.) If n is infinity, the return is the
infinity norm, i.e. the maximum magnitude of all elements v.

linalg.reshape (A, m [, n])
Returns an mx n matrix whose elements are taken from the matrix A. The elements of
the matrix are accessed in column-major order. If n is omitted, it is set to 1.

Example:
a := linalg.matrix(3, 2, [1, 2, 3, 4, 5, 6]):

>
[12]
[3.4]
[5.6]

g1w k-
DN

resh
, 3
4

> ape(a, 2, 3):
[5]
[6]

N -

linalg.rowdim (A [, ---])
Determines the row dimension of the matrix A. The return is a number.

If you pass more than one argument, then a fime-consuming check whether A is a
maitrix, is skipped.

A more direct way of determining the column dimension is left(A.dim)

328 7 Standard Libraries

See also: linalg.coldim.
linalg.rref (A [, v])
Returns the reduced row echelon form of any mx n matrix A.

If a vector v is given, the function computes the reduced row echelon form of the
augmented matrix A| v. In this case, A and v must have equal dimensions.

See also: linalg.gsolve.

linalg.scalarmul (v, n)
linalg.scalarmul (n, v)

Performs a scalar multiplication by multiplying each element in vector v by the
numiber n. The result is a new vector.

linalg.scale (A)

Normalises the (non-null) columns of a matrix A in such a way that, in each column,
an element of maximum absolute value equals 1. The return is a new matrix where
the normalised vectors are delivered in the corresponding columns.

See also: math.norm, stats.scale.

linalg.stack (---)

Joins two or more matrices or vectors together verically. Vectors are supposed to
e row vectors. The matrices and vectors must have the same number of columns.

The return is a new matrix.

See also: linalg.augment.

linalg.submatrix (A, p [, 1)
linalg.submatrix (A, p:q [, r:s])

In the first form, returns column p from matrix A as a new row vector.

In the second form, returns columns p t0 g As a new Mmatrix.

An optional third argument may be given tfo limit the extraction of the columns to
the specified row r orrows r to s.

With the second and third arguments, you may mix numbers with pairs.

See also: linalg.column.

agena >> 329

linalg.swapcol (A, p, q)

Swaps column p in matrix A with column q. p, ¢ must be positive integers. The result is
a new matrix.

See also: linalg.swaprow, linalg.mulrow, linalg.mulrowadd .

linalg.swaprow (A, p, q)

Swaps row p in matrix A with row q. p, g must be positive integers. The result is a new
matrix.

See also: linalg.swapcol, linalg.mulrow, linalg.mulrowadd .

linalg.sub (v, w)

Subtracts vector w from vector v. The result is a new vector.

See also: linalg.add.

linalg.trace (A)
Computes the frace of a square matrix A and returns a number.

linalg.transpose (A)

Computes the franspose of a m x n-matrix A and thus returns an n x m-maitrix.

linalg.vector (al, a2, ---)
linalg.vector ([al, a2, ---])
linalg.vector (seq(al, a2, ---))
linalg.vector (n, [a1, a2, ---])
linalg.vector (n, [])

Creates a vector with numeric components a1, a2, etc. The function also accepts a
table or sequence of elements a1, a2, etc. (second and third form).

In the fourth form, n denotes the dimension of the vector, and ay might be single
values or key~value paqirs. By a metamethod, vector components not explicitly set
automatically default to 0. This allows you to create memory-efficient sparse vectors
and thus matrices.

In the fifth form, a sparse zero vector of dimension n is returned.

330 7 Standard Libraries

The result is a table of the user-defined type ‘vector and the linalg.vmt metatable
assigned to allow basic vector operations with the operators +, -, *, unary minus
and abs. The table key 'dim' contains the dimension of the vector created.

See also: linalg.martrix.

linalg.vaeq (a, b)

This function checks vector a and vector b for approximate equality. The return is
either true or false. The function uses Donald Knuth's approximation method to
compare vector elements (see the approx function for information on how this
works).

You can change the accuracy threshold epsilon with the environ.kernel/eps
function.

See also: ~= metamethod, approx, linalg.veeq, linalg.maeq.

linalg.veeq (a, b)

This function checks vector a and vector b. for strict equality. The return is either frue
or false.

See also: == metamethod, linalg.meeq, linalg.vaeq.

linalg.vmap (f, v [, ---])

This operator maps a function f to all the components in vector v and returns a new
vector. The function f must return only one value.

If function f has only one argument, then only the function and the vector are
passed to linalg.vmap. If the function has more than one argument, then all
arguments except the first are passed right after the name of the vector.

Examples:

> vmap(<< x -> x"2 >>, vector(1, 2, 3)):
[1,4,9]

> vmap(<< (X, y) -> x >y >>, vector(l, 0, 1), 0): #0fory
[true, false, true]

See also: linalg.vzip, linalg.mmap, linalg.mzip.

linalg.vzip (f, v1, v2 [, ---])

This function zips together two vectors by applying the function f to each of ifs
respective components. The result is a new vector v where each element VK] is
determined by VK] := f(vi[k], v2[K]).

agena >> 331

vl and v2 must have the same dimension. The third to last argument to f must be
given right after v2.

See also: linalg.vmap, linalg.vzip, linalg.mmap.

linalg.zero (n)

Creates a zero vector of length n with all its components physically set to 0. If you
want to create a sparse zero vector of dimension n, use: linalg.vector(n, [])

332 7 Standard Libraries

7.13 stats - Statistics

This package contains procedures for statistical calculations and operates
completely on tables. As a plus package, it is not part of the standard distribution
and must be activated with the import statement, e.g. import stats

You might want to use utils.readcsv to read distrioutions from a file.

Summary of functions:

Averages:
stats.amean, stats.ema, stats.gema, stats.gmean, stats.gsma, stats.gsmm,
stats.nmean, stats.igmean, stats.median, stats.mean, stats.midrange.,
stats.gmean, stats.sma, stats.smm, stats.timmean.

Combinations:
stats.numbcomb, stats.numbperm.

Deviations:

stats.ad, stats.chauvenet, stats.durbinwatson, stats.ios, stats.mad, stats.md,
stats.sd, stats.spread, stats.ssd, stats.var.

Density:
stats.cdf, stats.nde, stats.ndf, stats.pdf.
Extrema:

stats.colnorm, stats.extrema, stats.minmax, stats.peaks, stats.rownorm,
stats.smallest.

Occurrences:

stats.countentries , stats.isall, stats.isany, stats.mode, stats.olbbcount,
stats.obpart.

Ranges:

stats.fivenum, stats.iqr, stats.percentile , stats.prange ., stats.qcd,
stats.quartiles .

agena >> 333

Sums:

gsadd, sadd, stats.cumsum, stats.fsum, stats.mmoment, stats.sumdata,
stats.sumdataln, stats.var.

Probability density functions :

stats.cauchy, stats.chisquare, stats.fratio, stats.gammad, stats.gammadc,
stats.invnormald, stats.normald, stats.studentst.

Miscellaneous:

stats.acf, stats.acv, stats.checkcoordinate , stats.dbscan, stats.deltalist,
stats.fprod, stats.herfindahl, stats.issorted, stats.kurtosis, stats.neighbours,
stats.scale, stats.skewness, stats.sorfed, stats.tovals.

The functions:

A general note: almost all of the statistics functions ignore the undefined value
should it be part of a distribution. Any non-numeric values in a distribution are
replaced with zeros.

stats.acf (obj, lag, [, option [, m [, s]]])

Returns the autocorrelation of a distrioution obj (a table or sequence) of numbers at
a given lag , @ non-negative integer. If any third argument option different from null
is passed, then the un-normalised autocorrelation is returned. The return is a
number,

n-lag
Z% (0B - 1)(OB g)
i =

where n is the number of observations, and u is the arithmetic mean of the
distribution. If no option is passed, the sum is divided by the variance of obj
multiplied by n, yielding a normalised result. The function uses Kahan-Ozawa
round-off error prevention.

To speed up computation fimes significantly, you may also pass a precomputed
mean mand the sum s of all values in the distribution.

It rnay be used to detect periodicy in a time series.

A distribution is autocorrelated if stats.acf returns a negative or positive value
significantly different from zero. The - normalised - return is in the range [-1, 1], where

334 7 Standard Libraries

+1 denotes perfect autocorrelation and -1 with 1 perfect anti-correlation. A
negative correlation indicates that higher values of a distribution are related to
lower values.

See also: stats.acv.

stats.acv (obj, p, [, option])

Depending on the type of the olbservation obj , retfuns a table or sequence of
autocorrelations starfing with lag = 0, through and including the given number p of
lags. If any third argument option is passed, then un-normalised autocorrelations
are returned. For the formula and numeric method used, see stats.acf.

stats.ad (obj [, option])

Computes the absolute (or mean) deviation of all the values in a table or sequence
obj , i.e. the mean of the equally likely albsolute deviations from the arithmetic
mean u:

N
| |
ﬁz]|0b1i - |
i =

The return is a number.

If any second non-null argument is given, then the variation coefficient is returned:

n
1 .
ﬁ21|0bli-ﬂ|/|ﬂ|
| =

Absolute deviation is more robust than standard deviation since it is less sensitive to
outliers. The function uses Kahan-Babuska round-off error prevention.

If obj is empty or entirely consists of undefineds, fail is returned. The function ignores
undefineds, if obj features at least one number.

Please note that if obj includes non-numbers, where undefined is considered a
number, they are interpreted as zeros which might unexpectedly influence the
result.

The function retumns fail if obj contains less than two elements.

See also: stats.ios, stats.mad, stats.md, stats.sd.

agena >> 335

stats.amean (obj)

Divides each element in a table or sequence obj by the size of obj and sums up
the quotients to finally return the arithmetic mean. It is equivalent to:

1 obj,

By dividing each element before summation, the function avoids arithmetic
overflows and also uses the Kahan-Babuska algorithm to prevent round-off errors
during summation. Thus the function is more robust but also significantly slower than
stafs.mean.

If obj is table, it is assumed to be an array, non-positive integral keys (including
strings, etc.) are ignored.

The function retumns fail if obj contains less than two elements.

If obj is empty or entirely consists of undefineds, fail is returned. The function ignores
undefineds, if obj features at least one number.

Please note that if obj includes non-numbers, where undefined is considered a
number, they are interpreted as zeros which might unexpectedly influence the
result.

See also: stats.gmean, stats.hmean, stats.mean, stats.gmean, stats.smaq,
stats.trimmean.

stats.cauchy (x, a, b)

The cauchy|a, b] distribution has the probability density function:
1/(m*p*(1+((x-a)/b }3)), b > 0.

See also: stats.chisquare, stats.fratio, stats.normald, stats.studentst.

stats.cdf (a, b[, [1) w o

Computes the cumulative density function between the lower bound a and the
upper bound b. If the mean u is not given, it defaults to O; if the standard deviation
o is notf given, it defaults fo 1.

The return is the number:

336 7 Standard Libraries

See also: stats.nde, stats.ndf, stats.pdf.

stats.chauvenet (obj [, x] [, option, ---])

Receives a table or sequence obj of normally distributed numbers and checks
them for outliers using the formula:

p:=n*erfc((| x-ul| /dev),

where n is the number of observations in a distribution, x a sample of i, u the
2, obj 7 -

arithmetic mean u = Z . dev the standard deviation sd = \/ = Z(obji -u)" .
i=1 =1

If at least obj and x is given, the function checks whether the number x is an outlier
by conducting a 1-pass check and returns true or false.

If obj but not x is passed, however, the procedure iterates obj again and again as
long as it does not find an outlier, and returns the outliers in a structure, its type
defined by the type of obj .

By default, if p < 0.5, where 0.5 is the magical Chauvenet number, an outlier is
detected. If you pass the option bailout =cC, then ¢, a non-negative number, will
be the threshold.

If you pass the opftion jump =frue, as soon as an outlier is detecteq, it is removed
from the distribution and then the whole evaluation process is restarted immediately
with a reduced distribution along with a re-computed mean and deviation.

If you do noft, all remaining items are also checked according to the current criteria
- after the last item has been checked, only then the outliers are removed from the
distribution, the mean and deviation are re-computed and another iteration begins.

If you pass the option mean=f, where f is a procedure, then the mean u is
determined by f. The default is f = stats.amean, i.e. the arithmetic mean.

If you pass the option dev =f, where f is a procedure, then the deviation dev is
determined by f. The default is f = statfs.sd, the standard deviation.

if you pass the option outlier="lower' Or outlier='upper' ., then the function only
checks for lower or upper outliers, respectively.

Further information: "Cleaning Data the Chauvenet Way', by Lily Lin and Paul D.
Sherman, published af the South East SAS Users Group's website
http://www.sesug.org.

The function is implemented in Agena and included in the stats.agn file.

agena >> 337

stats.checkcoordinate (c [, prochame])

The function checks whether the given co-ordinate ¢ is a pair xiy with both its
left-hand and right-hand side x and y being numbers. If a second argument, a
string, is given, then error messages of stats.checkcoordinate refer o the given
procedure procname Qs the function issuing the error. Otherwise the error message
includes a reference to stats.checkcoordinate .

The function returns the numbers x and y and issues an error otherwise.

stats.chisquare (x, nu)

The chisquare[nu] distribution has the probability density function:
x ™ ((nu-2)/2) exp(-x/2)/2 ™ (nu/2) / T'(nu/2),
with x > 0 and nu a positive integer.

See also: stats.cauchy, stats.fratio, stats.normald, stats.studentst.

stats.colnorm (obj)

Retuns the largest absolute value of the numbers in the table or sequence obj ,
and the original value with the largest absolute magnitude. If obj includes
undefineds, they are ignored. If the structure obj consists entirely of one or more
undefineds, then the function returns the value undefined twice. If the structure is
empty, fail is returned.

See also: stats.scale, stats.rownorm.

stats.countentries (obj [, f [, ---]])

Counts the number of occurrences of each entry in a table or sequence obj and
retfurns a dictionary with its respective key the entry and its value the number of
occurrences.

You might optionally pass a procedure f to be mapped on the structure before
counting begins on the thus modified structure. If f has more than one argument,
then its second to last argument must be given right after f .

The function is implemented in Agena and included in the stats.agn file.

See also: countitems, bags package.

stats.cumsum (obj)

Returns a structure of the cumulative sums of the numbers in the table or sequence
obj .

338 7 Standard Libraries

The type of return is determined by the type of obj .

The function returns fail if obj contains less than one element. It may also return a
structure containing undefined and/or infinity if obj iNCludes non-numibers.

See also: sadd, calc.fsum, stats.fsum, stats.sumdata.

stats.dbscan (obj, eps, minpts [, option])

The functions finds clusters in a sequence obj of n-dimensional points and returns a
table with the individual clusters along with their respective points.

It also returns a reqister of the size of the whole distribution listing the cluster number
associated with each point, where the point in this case is represented by its integral
position in the sequence obj .

The co-ordinates of points in obj mMay be represented by pairs (2-dimensional
space, only), sequences (any space), or vectors created by linalg.vector (any
space).

eps IS the maximum allowed distance between two points that shall belong to the
same neighbourhood. minpts is the minimum number of points that shall constitute
a neighbourhood.

By specifying the 'select’ option along with a function retfuning a Boolean, e.g.
'select':<< x -> right x < 1 >> ., only points satisfying the given criterion are
examined.

By specifying the 'method’ opftion, you can control how the function determines
clusters: 'method"'original’ uses the classic one, 'method':'modified' uses a
much faster and memory-saving implementation that contrary to the original
method immediately flags neighloours of neighbbours as being visited and thus does
not examine them again in further passes. The default is ‘original’

See also: statfs.neighbours .

stats.deltalist (obj [, option])

Returns a structure of the deltas of neighbouring elements in the table or sequence
obj . If the value true is given as an option, then absolute differences are returned.

The type of return is determined by the type of obj .

Please note that the difference between undefined and a number is undefined,
and that the difference between infinity and a number is +infinity.

The function retumns fail if obj contains less than two elements.

agena >> 339

See also: stats.ios.

stats.durbinwatson (obj)

The Durbin-Watson test detects the autocorrelation in the residuals from a linear
regression and returns

n N
d= Z‘é(obji -obj)?/ z% obj?
| = =

If d is equal to 2, it indicated the absence of autocorrelation. If d is less than 2, it
indicates positive autocorrelation; if d is greater than 2 it indicates negative
autocorrelation and that the observations are very different from each other. If d is
less than 1, the regression should bbe checked. The function uses Kahan-Babuska
roundoff prevention.

stats.ema (obj, k, alpha [, mode [, yOstar]])

Computes the exponential moving average of a table or sequence obj up to and
including its k-th element.

The smoothing factor alpha is a rational number in the range [0, 1].

The function supports two algorithms: If mode is 1 (the default), then the algorithm

r ;= alpha * obj[K];

s:=1 - alpha;

forifromk-1to1by-1do
r:=r+alpha*s”i*obji

od;

r:=r+s”k*y0Ostar;

is used to compute the result r. In mode 1, you can pass an explicit first estimate
yostar , otherwise the first value yostar is equal o the sample moving average of
obj . If mode is 2, then the formula

r:= obj[k];
forifromk-1to1by-1do

r:=r+ alpha * (obj[i] - r)
od;

is applied.
The result is a number.

See also: stats.gema.

340 7 Standard Libraries

stats.extrema (obj, delta)

Expects a sequence or table obj of points X:yx and the number delta and
determines the local minima and maxima.

A value vy is considered an extrema if the difference to its surounding is at least
delta . The function returns two structures of pairs, i.e. points, the first one including
the local minima, the second one the local maxima.

The type of the structures is determined by the type of obj .

The function is implemented in Agena and included in the stats.agn file.

stats.fivenum (obj)

Retuns a sequence of the first quartile, the median, and the third quartile of a
distrioution obj , in this order. If the number of observations is five or more, the
sequence also includes the minimum and the maximum olbservation, along with
the arithmetic mean.

The first and third quartiles are computed according to the NIST rule, see
stats.percentile for further information.

If the elements in obj are not sorted in ascending order, the function automatically
sorts them non-destructively, and any non-numeric values are converted to zeros.

See also: stats.quartiles .

stats.fprod (f, obj[a [, b [, ---]])

Applies the function f onto all elements in the table or sequence obj and then
multiplies the results. The return is the number:

b
T T iooi
I=a

If a is not given, a is set to 1. If b is not given, b is set to the number of elements in
obj . If f is a multivariate function, its second, third, etc. argument must be passed
after b.

See also: calc.fsum, stats.fsum, stats.sumdata.

stats.fratio (x, nul, nu2)

The Fisher's F distribution, also known as fratio distrioution, has the probability density
function:

gamma((nul +nu2)/2) / gamma(nul/2)/gamma(nu2/2)*(nul/nu2) ™~ (nul/2) *

agena >> 341

x ™ ((nu1-2)/2) / (1+ (nuil/nu2)*x) ~ ((nul+nu2)/2)
with x > 0, nul and nu2 positive integers.

See also: stats.cauchy, stats.chisquare, stats.normald, stats.studentst.

stats.fsum (f, obj[a [, b [, ---]])

Applies the function f onto all elements in the table or sequence obj and then
sums up the results using Kahan-Babuska round-off error prevention. The retumn is the
number:

b
2. f(obi)
I=da

If a is not given, a is set fo 1. If b is not given, b is setf to the number of elements in
obj . If f is a multivariate function, its second, third, etc. argument must be passed
after b.

See also: calc.fsum, stats.fporod, stats.sumdata.
stats.gammad (X, a, b)

The Gamma distribution function returns the integral from zero to real x of the
gamma probability density function and retumns the number:

b X
a
mgﬂj“ e ™ gf

where a * x > 0, b > 0. See also: stats.gammadc.

stats.gammadc (x, a, b)

The complemented Gamma distribution function returns the integral from x to
infinity of the gamma probability density function and retumns the number:

o0
Ob
mjfb“ e gt
X

where a * x > 0, b > 0. See also: stats.gammadc .

stats.gema (obj, k, alpha [, mode [, yOstar]])

Like stats.ema, but returns a function that, each time it is called, retumns the
exponential moving average, starting with sample obj [1], and progressing with

342 7 Standard Libraries

sample obj [2], obj [3], efc. with sulbbsequent calls. It return null if there are no more
samples in obj . It is much faster than stats.ema with large distributions.

The smoothing factor alpha is a rational number in the range [0, 1].

The function supports two algorithms: If mode is 1 (the default), then the algorithm

r ;= alpha * obj[K];

s:=1 - alpha;

forifromk-1to1by-1do
r:=r+alpha*s”i*obji

od;

r:=r+s”k*yoOstar;

is used to compute the result. In mode 1, you can pass an explicit first estimate
yostar , otherwise the first value yostar is equal to the sample moving average of
obj .

If mode is 2, then the formula

r:= obj[k];
forifromk-1to1by-1do

r:=r+ alpha * (obj[i] - r)
od;

is applied to the period.

The result is a number.

stats.gini (obj [, 'sorted)

Measures the inequality in a distribution given by the table or sequence obj by
applying Gini's formula

n n
2] Z] % - x|/ 2n%u,
| = =

J
where n is the number of occurrences and u the arithmetic mean.

Allmemibers of obj should be numbers. infinity's or undefined's are ignored.

It returns a number r indicating the absolute mean of the difference between every
pair of observations, divided by the arithmetic mean of the population, with O <r <1
. Where 0 indicates that all observations are equal, and (a theoretical value of) 1

indicates complete inequality. It is assumed that all observations are non-negative.

If the option 'sorted’ is given then the function assumes that all elements in obj are
already sorted in ascending order - thus computing the result much faster.

agena >> 343

To compute the normalised Gini coefficient, multiply the result by n/(n-1).

See also: stats.herfindahl .

stats.gmean (obj)

Returns the geometric mean of all numeric values in table or sequence obj . It is a
measure of central tendency. Its formula is:

n 1/n
(Lo0i)
The function retumns fail if obj contains less than two elements.

The geometric mean should be applied on positive values that are interpreted fo
their products, e.g. rates of growth, instead of their sums, only. Otherwise, undefined
may be returned.

The function is implemented in Agena and included in the stats.agn file.

See also: stats.amean, stats.hmean, stats.mean, stats.gmean.

stats.gsma (obj, k, p)
stats.gsma (obj, k, p, b)

Like stats.sma, but returns a function that, each time it is called, returns the simple
moving mean, starting with sample k, and progressing with sample k+1, k+2, efc.
If k > size obj , then the function returns null. It is much faster than stats.sma with
large distributions.

stats.gsmm (obj, k, p)

stats.gsmm (obj, k, p, b)

Like stats.smm, but returns a function that, each time it is called, returns the simple
moving median, starting with sample k, and progressing with sample k+1, k+2,

efc. If k > size(obj), then the function returns null. It is much faster than stats.smm
with large distributions.

The function automatically non-destructively sorts the distribution obj if it is unsorted.

stats.herfindahl (obj)

Returns the normalised Herfindahl-Hirschman index of a distrioution obj (of type
table or sequence), an indicator of the amount of competition in economy. A
value of 0 means that there is absolute competition, i.e. that all companies have
the same share, and 1T means that there is @ monopoly.

The normalised index h is defined as:

344 7 Standard Libraries

o (902 L H- 1/

j - 1/n

i= (%) wheres = 3, obj, = h = A
B B

It is also a good measure to determine the stability of a distriobution, with a value
tending to zero indicatfing that the numibber of outliers is quite low, and a value
tending to 1 that there is at least an extreme outlier.

The function is implemented in Agena and included in the stats.agn file.

See also: stats.gini.

stats.hmean (obj)

Returns the harmonic mean of all numeric values in table or sequence obj as A
number. It is useful with rates and ratios, as it provides the best average. It is defined
as follows:

The function retumns fail if obj contains less than two elements,

The harmonic mean should be applied on observations containing relations to a
unit, e.g. speed.

The function is implemented in Agena and included in the stats.agn file.

See also: stats.amean, stats.gmean, stats.mean, stats.gmean.

stats.invnormald (y)

Evaluates the inverse of the Normal distribution function by returning the argument,
X, for which the area under the Gaussian probability density function (integrated
from —oo tO X) is equal fo y.

See also: stats.cauchy, stats.chisquare, stats.fratio, stats.normald, stats.studentst.

stats.ios (obj [, option])

Sums up absolute differences between neighbouring entries in a table or sequence
obj , divides by the number of its elements minus 1, and returns the number:

n
n]——1 ,22 |Obji_0bji—1|
=

The function retumns fail if obj contains less than two elements.

agena >> 345

If any second non-null argument is given, the function first normalises the distribution
fo the range (-», 1] (see stats.scale), determines the difference list, sums up ifs
absolute differences and divides the sum by the number of occurrences minus 1 to
make a distribution comparable to other ones.

This indicator is quite useful to find out how stable or volatile a preferably unsorted
distrioution is.

See also: stats.ad, stats.deltalist, stats,sd, stats.var.

stats.igmean (obj)

Retuns the arithmetic mean of the interquartie range of the distribution obj
Kahan-Babuska round-off error prevention. The return is a number.

If a distribution is unsorted, the function automatically sorts it non-destructively, and
any non-numeric observations are converted to zeros.

The interquartile range comprises all observations that reside between the first and
third quartiles.

See also: stats.igr, stats.midrange .

stats.igr (obj [, a [, b]])

Without a and b given, the function determines the inferquartile range (IQR), i.e. the
difference of the third and first quartile. stats.igr is useful for determining the
variability in a distribution obj (a table or sequence).

You may optionally pass a lower and upper percentile a, b, both in the range [0,
100). If a'is missing, it is set to 25. If b is missing it is set to 100 -a .

It returns the number
stats.percentile (obj , b) - stats.percentile (obj , a)

If obj is unsorted, the function sorts it non-destructively. It is implemented in Agena
and included in the stats.agn file.

See also: stats.midrange, stats.percentile, stats.qcd, stats.quartiles.

stats.isall (obj [, eps])

Checks whether all elements in a table or sequence obj are non-zero and returns
true or false. If the second argument eps, A non-negative number, is passed, the
function returns true if all observations x in obj satisfies the condition abs(x) > eps. By
default eps is O.

See also: and operator, stats.isany.

346 7 Standard Libraries

stats.isany (obj [, eps])

Checks whether at least one element in a table or sequence obj is non-zero and
returns true or false. If the second argument eps, a non-negative number, is
passed, the function returns true if at least one observations x in obj satisfies the
condition abs(x) > eps. By default eps is O.

See also: or operator, stats.isall.

stats.issorted (obj [,])

Checks whether all values in a table or sequence obj of numbers are stored in
ascending order and refumns true or false. If a value in obj is Not a number, it is
ignored.

If obj is a table, you have to make sure that it does not contain holes. If it contains
holes, apply tables.entries on obj .

If £ is given, then it must be a function that receives two structure elements to
determine the sorting order. See sort for further information.

See also: sort, sorted, skycrane.sorted, stats.sorted.

stats.kurtosis (obj)

The function determines the kurtosis, a measure of flatness or peakedness of
symmetric and unimodal distributions.

To quote Wikipedia, a higher value means that the distribution has “a sharper peak
and fatter tails,” while a lower value indicates "the distrioution has a more rounded
peak and thinner tails.”

The function computes the result by computing the fourth moment around the
mean of a distribution, divided by the fourth power of the standard deviation.

The function retumns fail if obj contains less than two elements.
The function is implemented in Agena and included in the stats.agn file.
See also: stats.skewness.

stats.mad (obj [, option])

Returns the median of the absolute deviations of all numeric values in table or
seguence obj from obj 's median, and returns the number:

Size obj

stafs.median(\/ |obji—s’ro’rs.medion(obj) |).
i=1

agena >> 347

If any second non-null argument is given, then the variation coefficient is returned:

size obj

stats.median(| obj, - stats.median(obj) |) / stats.median(obj).
i=1

Median absolute deviation is quite robust if a distrioution contains a small number of
outliers.

If obj is unsorted, it automatically sors it before determining the result.

If obj contains less than two elements or entirely consists of undefineds, fail is
returned. The function ignores undefineds, if obj features at least one number.

Please note that if obj includes non-numbers, where undefined is considered a
number, they are interpreted as zeros which might unexpectedly influence the
result.

See also: stats.ad, stats.md, stats.median.
stats.md (obj [, option])

Computes the median deviation of all the values in a table or sequence obj , i.e.
the mean of the equally likely absolute deviations from the median med:

n
&> obj, - med
=

The return is a number.

If any second non-null argument is given, then the variation coefficient is returned:

n
\/%_21|obji—med |/ | med |
| =
See also: stats.mad.

stats.median (obj)

Returns the median of all numeric values in table or sequence obj as a number. If
obj is unsorted, it automatically sorts it before determining the median.

If obj contains less than two elements or entirely consists of undefineds, fail is
returned. The function ignores undefineds, if obj features at least one number.

Please note that if obj includes non-numbers, where undefined is considered a
number, they are interpreted as zeros which might unexpectedly influence the
result.

348 7 Standard Libraries

The median is the middle element of a distrioution if its size is odd, or the average
of its middle elements it is size is even.

See also: stats.mad, stats.meanmed.

stats.mean (obj)

Returns the arithmetic mean of all numeric values in table or sequence obj as a
number. It is equivalent to:

n
1 ,
ﬁZOin
i=1
thus the function - as opposed to stats.amean - first computes the sum of the

observations and then divides it by the number of elements.

If obj is table, it is assumed to be an array, non-positive integral keys (including
strings, etc.) are ignored.

The function retumns fail if obj contains less than two elements.
For a more robust but slower version, please have a look at stats.amean.
The function is implemented in Agena and included in the stats.agn file.

See also: stats.amean, stats.gmean, stats.nmean, stats.meanmed, stats.gmean.

stats.meanmed (obj [, option])

Returns both the arithmetic mean and the median of all numeric values in table or
seqguence obj as numbers. If any option is given, the quotient of the mean and the
median is returned.

See also: stats.amean, stats.meanvar, stats.median.

stats.meanvar (obj [, option])

Returns both the arithmetic mean and the variance - in this order - of the distribution
obj using an algorithm developed by B. P. Welford to prevent round-off errors.

By default, the population variance is returned unless you pass the Boolean value
frue for option tO compute the sample variance.

See also: stats.meanmed.

agena >> 349

stats.midrange (obj [, option])

Returns both the arithmetic mean and the variance - in this order - of the distribution
obj

Computes the sum of the minimum and maximum value of a distriobution obj ,
divided by two.

If the opftion 'sorted’ is given, the olbservation is not traversed; instead the first and
the last entry is taken to compute the mean. If the observation is empty or has only
one element, fail is returned.

See also: stats.igr, stats.minmax.

stats.minmax (obj [, 'sorted'])

Returns a table with the minimum of all numeric values in table or sequence obj as
the first value, and the maximum as the second value. If the opftion 'sorted' is
passed than the function assumes that all values in obj are sorted in ascending
order so that execution is much faster.

stats.minmax returns fail if a sequence or table of less than two elements has been
passed. If obj consists entirely of undefined entries, [—owo,] Or seq(—w,) are
returned.

See also: stats.midrange .

stats.mode (obj)

Retuns all values in the sequence or table obj with the largest number of
occurrence, i.e. highest frequency. If there is more than one value with the highest
frequency, they are all returned.

The type of return is determined by the type of its argument. If the given structure is
empty, it is simply returned.

The function is implemented in Agena and included in the stats.agn ~ file.
stats.moment (obj [, p [, X = [, option]]])

Computes the moment p of the given table or sequence obj about any origin x., for
a full population and returns a number. It is equivalent to:

n
%2] (obj, —x

350 7 Standard Libraries

If only obj is given, the moment p defaults to 1, and the origin x,, defaults to 0. If
given, the moment p and the origin x., must be numbers. If obj contains less then
two observations, fail is returned.

if option is given and is true, the sample moment

] n

. P
7 2] (obj, = xm)
|:

is computed.
See also: gmdeyv, stats.sumdata.
stats.nde (x[, [,[1) u« o

~(x)?
Computese 202 ; u and ¢ default to 0 and 1, respectively.

See also: stats.ndf, stats.pdf.

stats.ndf ([]) o

| , 1 . . .
Computes _\/ﬂ if ¢ is not given, and = otherwise, and issues an error if ¢ <0.

See also: stats.nde, stats.pdf.

stats.neighbours (obj, idx, eps [, power [, indices m

Determines all neighbours of a given n-dimensional point in a distribution obj that lie
in a certain Euclidian distance eps. idx is the position of the point of interest in the
distribution - a positive integer -, and not the point itself. eps is any positive number,
power iS A positive integer with which the respective Euclidean distances and eps
shall be raised before a comparison is conducted, its default is 2.

The return is a sequence with the nearby points. If the fifth argument indices is true,
however, then not the points but their positions in the distribution are returned.

The points may be represented either as pairs (2-dimensional space), sequences of
co-ordinates (n-dimensional space), or any n-dimensional vectors created by the
linalg.vector function.

See also: linalg.norm, stats.dbscan.

agena >> 351

stats.normald (x [, [, 1) u o

The normal distribution has the probability density function:
exp(-(x -u)?/2/a?)/
o is the standard deviation and must be positive. udefaults to O, and g to 1.

See also: stats.cauchy, stats.chisquare, stats.fratio, stats.invnormald,
stats.studentst.

stats.numbcomb (n, r)
stats.numbcomb (s, r)

In the first form, counts the number of combinations of n things taken r at a time. In
the second form, the function counts the number of combinations all the elements
in the set s taken r at a time. The set may include data of any type.
If n or r are non-integral or negative, the function returns undefined.

The function is implemented in Agena and included in the stats.agn file.

See also: binomial, fact, stats.numbperm.

stats.numbperm (n, r)
stats.numbperm (s, r)

In the first form, counts the number of permutations of n things taken r at a fime. In
the second form, the function counts the numiber of permutations all the elements
in the set s taken r at a time. The set may include data of any type.

If n or r are non-integral or negative, the function returns undefined.
The function is implemented in Agena and included in the stats.agn file.

See also: binomial, fact, stats.numbcomb .

stats.obcount (s, p, n)

Divides a numeric range defined by the pair p and its step size n info its subintervals,
sorts all occurrences in the distribution s (@ sequence) info these subranges and
finally counts all elements in these subranges.

The function returns a table with the keys the respective left borders of the
subranges and the values the number of counts in the respective subranges. It
always also returns a second table which may include all those elements in s which
are not part of the overall range defined by p. If all numbers in s fit into p, an empty
table is returned.

352 7 Standard Libraries

If an element in s equals the right border of a subinterval, then it is considered to be
part of the next subinterval. But if an element in s equals the right border of the
overall interval p, it is considered part of the last subinterval,

The function issues an error if it encounters a non-number in s, or if the left border in
p is greater or equals to the right border in p.

The function is implemented in Agena and included in the stats.agn ~ file.

An example:

>s:=seq(0.1,0.2,0.3,0.4,1,1.1, 2, 2.1);

> stats.obcount(s, 0:2, 1):
[0~4,1~3] [2.1]

See also: stats.obpart.

stats.obpart (s, p, n [, f [, g])

The function sors occurrences into subintervals. It divides a numeric range defined
by the pair p and its step size n into its subintervals, and sorts all occurrences in the
distrioution s (a sequence) into these subranges.

If the fourth argument f, a function, is given, then an occurrence or a part of an
occurrence is first converted according to the function definition before the correct
subinterval is being determined.

If the fifth argument g, a function, is given, then it is applied on an occurrence or
part of it before it is inserted into the subinterval that already has been determined.

The function returns a table with the keys the respective left borders of the
subranges and the values sequences with the respective occurrences. It always
also returns a second table which may include all those elements in s which are not
part of the overall range defined by p.

If an element in s equals the right border of a subinterval, then it is considered to be
part of the next subinterval. But if an element in s equals the right border of the
overall interval p, it is considered part of the last subinterval,

The function issues an error if a distrioution or part of it is not or could not be
converted o a number, or if the left border in p is greater or equals to the right
border in p.

The function is implemented in Agena and included in the stats.agn file.

See also: stats.obcount.

agena >> 353

Examples:

>s:=seq(l.1, 1.2, 2.4, 2.5, 2.6, 3.1);

> stats.obpart(s, 1:4, 1):
[seq(1.1, 1.2), seq(2.4, 2.5, 2.6), seq(3.1)] []

Given are time stamps and running times in seconds:

> s :=se(('12:30:05.017"3, '12:31:57.235"4);

To convert a fime stamp into its decimal representation, so that stats.obpart can
sorf an occurrence into a subinterval, we define the following function:

> import clock

f:=proc(x) is
local hrs, min, sec;
hrs, min, sec :=
strings.match(left(x), '(%d%d):(%d%d):(%d%d \.%d%d%d)");
return clock.todec(clock.tm(# returns a numb er
tonumber(hrs), tonumber(min), tonumber(sec))
end;

VVVYVYVYVYV

> stats.obpart(s, 12.4:12.6, 1/60, f):
[12.4 ~ seq(), ..., 12.5 ~ seq(12:30:05.017:3),
12.516667 ~ seq(12:31:57.235:4), ...] []

We only want to insert the running times in milliseconds, but not the fime stamps:
> g = << X -> right(x)*1k >>;

> stats.obpart(s, 12.4:12.6, 1/60, f, g):
[12.4 ~ seq(), ..., 12.5 ~ seq(3000), 12.516667 ~ s €q(4000), ...]]

See also: stats.obcount.

stats.pdf (x [, [, Mu o

Computes the probability density function for the normal distribution at the numeric
value x. The defaults are u = 0O, with standard deviatfion ¢ = 1, thus determining
the standard normal distribution.

The return is the number:

~(x)?
e 202

021

See also: stats.cdf, stats.nde, stats.ndf.

354 7 Standard Libraries

stats.peaks (obj, delta [, dv])

The function returns all peaks and valleys of a distribution obj consisting of
two-dimensional numeric co-ordinates represented as pairs xkiyk. obj may be a
table or sequence. A point is considered an extremum if the “vertical™ difference to
its surrounding is at least delta , a positive number. By default, if dv is not given or is
1. the direct neighbours of each point are considered, otherwise the dv-th
neighbours to the left and the right of each point are checked.

Depending on the type of o, the first retun is a structure including all valleys
represented as pairs xk:yk, and the second return is a structure of the peaks as pairs
XK:yk.

See also: stats.extrema.

stats.percentile (obj, p [, option])

Returns the value below which a certain percent p of the elements in obj fall.

obj must be a table or sequence, p an integer in the range 0 < p < 100. If no
option is given, then the percentile is determined by computing the nearest rank
(rank = p/100 * size obj + V2, Wikpedia method"). If option is the string 'nist'
then the method proposed by NIST is used (rank = p/100 * (size obj + 1)); if the
string 'excel' is given for option , then the algorithm used by Excel is used (rank =
p/100*(size obj -1) + 1).

The function issues an error if obj is empty. It is implemented in Agena and included
in the stats.agn ~ file.

See also: whereis, stats.quartiles .

stats.prange (obj [, a [, b]])

Returns all elements in a table or sequence obj from the a-th percentile rank up but
not including the b-th percentile rank. a and b must be positive integers in the range
[0 .. 100). If a and b are not given, a is set to 25, and b to 75. If b is not given, it is set
to 100 - a. The type of retumn is determined by the type of obj . If the elements in obj
are not sorted in ascending order, the function automatically sorts them
non-destructively, and any non-numeric values are converted to zeros.

stats.qcd (obj [, a [, b]])

Without a and b given, the function determines the interquartile range (IQR) of a
distribution obj (a table or sequence), i.e. the difference of the third (= Q3) and first
(= Q1) quartile divided by the sum of the third and first quartile:

Q3-Q
Q3+Q

agena >> 355

You may optionally pass a lower and upper percentile a, b, both in the range [0,
100). If a'is missing, it is set to 25. If b is missing it is set to 100 -a .

If obj is unsorted, the function sorts it non-destructively. It is implemented in Agena
and included in the stats.agn file.

See also: stats.igr, stats.percentile, stats.quartiles.

stats.gmean (obj)

Returns the quadratic mean of all numeric values in table or sequence obj as A
number. If obj is table, it is assumed to be an array, non-positive integral keys
(including strings, efc.) are ignored. It can be used to measure the magnitude of a
quantity which variates are positive and negative, e.g. sinusoids.

It is equivalent to:

n
obj?
=1

1
n N

|
The function retumns fail if obj contains less than two elements.
The function is implemented in Agena and included in the stats.agn ~ file.

See also: stats.amean, stats.gmean, stats.hmean, stats.mean.

stats.quartiles (obj)
stats.quartiles (obj [, pos])

In the first form, it returns the first, second, and third quartile of table or sequence
obj . The first and third quarties are computed according to the NIST rule, see
stats.percentile for further information.

It also determines the lower outlier limit L, where L, = first quartile - 1.5 fimes the
interquartile range of obj , and the upper outlier limit U, where U, = third quartile +
1.5 times the interquartile range of obj . If a value x in obj is equal fo L, or Uy, then x
is returned. If Ly is not included in obj , then the next largest value to L, is returned. If
Uy is not included in obj , then the next smallest value to U; is computed. Finally it
computes the interquartile range, i.e. third quartile - first quartile. The order is: first
quartile, median, third quartile, "L, ", "U; ", and the interquartile range.

In the second form, if either the integer 1, 2, or 3 is passed for the optional second
argument pos, the first, second, or third quartile is returned as a number,
respectively.

If the elements in obj are not sorted in ascending order, the function automatically
sorts them non-destructively, and any non-numeric values are converted to zeros.

356 7 Standard Libraries

The numiber of values in obj should be at least 12, better are 20 or more values. if
the numiber of values is less than 2, fail is returned.

See also: whereis, stats.fivenum, stats.igr, stats.percentile, stats.qcd.

stats.rownorm (obj)

Returns the sum of the absolute values of the numibers in the table or sequence
obj . If obj includes undefineds, they are ignored. If the structure consists entirely of
one or more undefineds, then the function returns undefined. If the structure is
empty, fail is returned.

See also: stats.scale, stats.colnorm.

stats.scale (obj [, option])

The procedure normalises the numbers in the table or sequence obj in such a way
that an element of maximum absolute value equals 1, thus scaling a distrioution to
the range (-, 1] by dividing all observations by this maximum element.

When given a second opfion, the function normalises all ifs observations to the
range [0, 1]. See math.norm for further details.

The normalised numbers are returned in a new table or sequence, depending on
the type of obj .

If the maximum absolute value is O, the function returns fail.

See also: math.norm, linalg.scale.

stats.sd (obj [, sample [, option]])

Returns the standard deviation of all numeric values in table or sequence obj as A
number. If obj is a table, it is assumed to be an array, non-positive infegral keys
(including strings, etfc.) are ignored.

If sample is Not given or is not true, it retums the population standard deviation:

4 , 2
o= % 2(o0i-0)
where w is the arithmetic mean of a distribution.

If sample is given and is true, the (unbiased) sample standard deviation is returned:

G = \/n% é(obii 1)’

agena >> 357

If the return is a small number, it indicates that the points in a distribution are close
fo its mean m. A large value indicates that its points are rather spread out. Contrary
to variance, standard deviation is expressed in the same units as the data.

Standard deviation is less robust to outliers than atbsolute deviation.
The function returns fail if obj contains less than two elements.

If any third non-null argument is given, then the coefficient ¢ / | u| is retfurned to
make different distributions comparable.

The function is implemented in Agena and included in the stats.agn file.

See also: gmdey, stats.ad, stats.chauvenet, stats.ios, stats.mad, stats.var.

stats.skewness (obj)

Returns the sample skewness, a measure of the asymmetry of the probability
distribution of the numeric values in the table or sequence obj, returns O if A
distribution is symmetric, a negative value if the left fail is longer, and a positive
value if the right tail is longer.

It computes the third moment about the mean and divides it by the third power of
the standard deviation.

The function retumns fail if obj contains less than two elements.
The function is implemented in Agena and included in the stats.agn ~ file.
See also: stats.kurtosis .

stats.sma (obj, k, p)
stats.sma (obj, k, p, b)

In the first form, computes the simple moving average of a table or sequence obj
by averaging the last p numbers from the structure (p is also known as the "period)
including sample k, i.e.:

K

1
9 Z obj (financial form)
i = k-p+1

In the second form, by passing the Boolean value true for argument b, the mean is
taken from an equal number of values on either side of k, including k. Thus p must
e an odd number:

358 7 Standard Libraries

k+p\2

1
9 2 obji (scientific form)
| =k-p\2

It returns undefined, if either the left or right end of the sublist to be evaluated is not
part of obj . The function does not accept structures including the value undefined.

By dividing each element before summation, the function avoids arithmetic
overflows and also uses Kahan-Babuska summation to prevent round-off errors
during summation.

stats.gsma is the iterator version of this function which traverses large distributions
much faster.

See also: stafs.amean, stats.gsma, stats.gsmm, stats.smm.

stats.smallest (obj [, k])

Returns the k-th smallest element in the numeric table or sequence obj . If k is not
given, itis setto 1.

stats.smm (obj, k, p)
stats.smm (obj, k, p, b)

In the first form, computes the simple moving median of a table or sequence obj
by sorting the last p numbers from the structure (p is also known as the "period)
including sample k, and then taking its median.

In the second form, by passing the Boolean value true for argument b, the simple
mMoving median is determined by sorting an equal number of values on either side
of k, including k, and then taking the median. Thus p must be an odd number.

The function is more robust than stats.sma 1o outliers in a period.

It returns undefined, if either the left or right end of the sublist to be evaluated is not
part of obj . The function does not accept structures including the value undefined.

The function automatically non-destructively sorts the distribution obj if it is unsorted.

stats.gsmm is the iterator version of this function which fraverses large distributions
much faster.

See also: stats.amean, stats.gsma, stats.gsmm, stafs.sma.

stats.sorted (obj [, true] [, options])

Sorts the table or sequence obj of numbers in ascending order and
non-destructively up to and around twice as fast as sort if the structure contains

agena >> 359

(around) more than seven elements. It also ignores undefined's. The type of return is
defined by the type of the input.

If an element in obj is Not a number, it is replaced with the number O before sorting.

By default, the function internally uses a recursive implementation of the Quicksort
algorithm combined with a fallback to Heapsort in ill-conditioned situations, called
Introsort.

You may exclusively use an iterative variant of the Quicksort algorithm by passing
the second argument frue or the string 'pixelsort' , which may be faster on some
older systems, especially with elements in completely random or in (nearly)
ascending order. If the option 'nrquicksort' is given, an alternative non-recursive
algorithm described by Niklaus Wirth is being used. If the option 'heapsort' is
passed, the function uses the Heapsort algorithm. If the option 'quicksort' is given,
a traditional recursive Quicksort algorithm is being used.

See also: sort, sorted, skycrane.sorted, stats.issorted.

stats.spread (obj)

Computes the population spread, i.e. the variance, of a distribution obj of
numibers, and returns a number. The result is equal 1o

] P I
| -

IVE

The function is around 10 percent faster than stats.var but is more susceptible to
numeric overflows if the magnitudes of the olbservations are very large.

The function is implemented in Agena and included in the stats.agn file.

stats.standardise (obj [, option])

Standardises a distribution by subfracting the arithmetic mean ¢ from each
observation and then dividing by the population standard deviation (default) ¢ of
the distribution:

obji—u
obj — —3

Depending on the type of its argument obj , the return is either a new table or
sequence of the respective quoftients, preserving the original order of the
observations. You may alternatively divide by the sample standard deviation by
passing the optional value true as the second argument.

360 7 Standard Libraries

stats.studentst (x [, nu])

The Student's t-distribution has the probability density function:
I((nu+1)/2)/ T(nu/2)/ ynu*n / (1+1%/nu) ™ ((nu+1)/2),
with nu a positive integer.

See also: stats.cauchy, stats.chisquare, stats.fratio, stats.normald.

stats.sum (obj)

stats.sum (f, obj [, ---])

The function has bbeen deprecated, please use stats.sumdata instead.

stats.sumdata ([f,] obj [, p [, X ml 1)

Sums up all the powers p of the given table or sequence obj oOf N elements about
the origin x,, and returns a number. If is equivalent fo:

2 (Obji - Xm>p

=1

If only obj is given, the power p defaults to 1, and the origin x,, defaults to 0. If given,
p and x, must be numbers. If obj is empty, the function returns fail.

If a function f is given, it only sums up the values in obj safisfying f, which should
return a Boolean. If f has more than one argument, then its second to last
argument must be given right after x,

Examples:

> import stats;

> stats.sumdata(<< x -> x > 2 >>, seq(1, 2, 3, 4)):
7

> stats.sumdata(<< x, y -> x +y > 2 >>, seq(1, 2, 3,4),1,0,1):
9

The function uses Kahan-Babuska round-off error prevention.

See also: math.koadd, stats.fsum, stats.moment, stats.sumdatain.

stats.sumdataln ([f,] obj [, p [, x ml +=<11)

Sums up all the natural logarithms of the powers p of the given table or sequence
obj of n elements about the origin x,,and returns a number. It is equivalent fo:

agena >> 361

2 |n<<0bji ~Xen) p)

i=1

If only obj is given, the power p defaults to 1, and the origin x,, defaults to 0. If given,
p and x, must be numbers. If obj is empty, the function returns fail.

If a function f is given, it only sums up the values in obj safisfying f, which should
return a Boolean. If f has more than one argument, then its second to last
argument must be given right after x,,. For examples, please see stats.sumdata.

stats.tovals (obj)

Converts all string values in the structure obj to Agena numbers or complex
numibers and returns a new structure. The type of retumn is determined by the type of
obj .

stats.trimean (obj [, p])

If p is not given, the function determines the 1st quartile Q1 and the 3rd quartile Q3
along with the median Q2 of a distribution obj and returns the fimean (Q1 + 2*Q2
+ Q3)/4 along with the median.

If p, an intfeger in the range [0 .. 100) is given, instead of the first and third quartiles
the p-th and 100 - p-th percentile ranks are the lower and upper margins in the
computation,

When compared to the median, the trimean is a means to determine whether a
distrioution is biased in its first or second half. If the distribbution is not sorted, it
automatically sorts it non-destructively, where any non-numeric elements are set to
0.

stats.trimmean (obyj, f)

Returns the arithmetic mean of the interior of a distribution obj (of type table or
sequence), where the number f € [0, 1) determines the fraction of the data that is
to be excluded from the margins.

The number p of data to be excluded from obj is always rounded down to the
nearest even numiber. The function then does not take into account p/2 points from
the left margin and p/2 points from the right margin when calculating the average
using Kahan-Babuska round-off eror prevention. The function does not sort the
distribution.

The retun is a number. It retuns fail, if the distribution includes less than two
elements.

362 7 Standard Libraries

The function is implemented in Agena and included in the stats.agn file.
See also: stafs.amean.

stats.var (obj [, sample [, option]])

Returns the variance of all numeric values in table or sequence obj as a number. If
obj is a table, it is assumed to be an array, non-positive infegral keys (including
strings, etc.) are ignored.

If sample is not given or does not evaluate to true, the population variations is
returned, where y is the arithmetic mean of a distrioution:

n
%2<obu)’
=

If sample is given and is true, the (unbiased) sample variance is returned:

n
1 .
g2= o1 2<Obji —/1)2
i=

If option Of any type is passed, the variation coefficient ¢ / | u| is determined to
make different distributions comparable.
The function retumns fail if obj contains less than two elements.

The function is implemented in Agena and included in the stats.agn file.

See also: stats.ad, stats.ios, stats.mad, stats.sd, stats.spread.

stats.zscore (obyj)

Returns a univariate function "z(x)* computing the z-score (standard score) of a
sample x in the table or sequence obj - the numiber of standard deviations x is
above or below the mean according to the formula: z(x) = (X - w)/d, where u
denotes the arithmetic mean of obj , and ¢ its standard deviation.

The resulting function returns a positive number if x is above the mean and a
negative number if it is below. It does, however, not check whether x is part of obj .
The result is computed using Kahan-Babuska round-off error prevention for uand é.

The function is implemented in Agena and included in the stats.agn ~ file.

agena >>

363

7.14 io - Input and Output Facilities

The I/O library provides two ways for file manipulation.

Summary of functions:
Opening and closing files:
io.open, io.close.
Reading data:
io.input, io.lines, io.read, io.readfile, io.readlines.
Wiriting data:
io.output, io.write, io.writefile, io.writelines .
File positions:
io.eof, io.filepos, io.move, io.seek, io.skiplines.
File locking:
jo.lock, io.unlock.
File buffering:
io.setvbuf, io.sync
Inferaction with applications:
io.pcall, io.popen, io.close.
Keyboard interaction:
io.anykey, io.getkey.
Windows cliplboard interaction
io.getclip, io.putclip.

Miscellaneous:

io.isfdesc, io.fileno, io.filesize, io.isopen, io.nlines, io.tmpfile, io.truncate.

364 7 Standard Libraries

Usage:

1. The first one uses file handles; that is, there are operations to set a default input
fle and a default output file, and all input/output operations are over these
default files. File handles are values of type userdata and are used as in the
following example:

Open a file and store the file handle to the name fh .

> fh := i0.open('d:/agena/src/change.log’):
file(7803A6F0)

Read 10 characters:

> io.read(fh, 10):
Change Log

Close the file:

> io.close(th):
true

In the following descriptions of the io functions, file handles are indicated with
the argument filehandle

The table io provides three predefined file handles with their usual meanings
from C: io.stdin , io.stdout , And io.stderr

2. The second style uses file names passed as stings like
'd:/agena/lib/library.agn’ . File names are always indicated with the
argument filename in this chapter.

Unless otherwise stated, all I/O functions return null on failure (plus an error message
as a second result) and some value different from null on success.

io.anykey ()

Checks whether a key is being pressed and returns either true or false. A common
usage is as follows:

> while io.anykey() = false do od; # wait until a k ey has been pressed
The function works in the eComStation - OS/2, Solaris, Linux, Lion, DOS, and Windows
editions only. On Lion, the function sometimes echoes the key being pressed. On

other systems, it returns fail.

See also: io.getkey, io.read.

agena >> 365

io.close ([filehandle, ---])

Closes one or more files. Note that files are automatically closed when their handles
are garbage collected, but that takes an unpredictable amount of time to
happen.

Without a filehandle , closes the default output file.

The function also deletes the file handles and the corresponding filenames from the
io.openfiles table if the files could e properly closed.

See also: i0.open, io.popen.

io.eof (filehandle)

Checks whether the end of the file denoted by filehandle has been reached and
returns true or false.

io.fileno (filehandle)

Retuns the file descriptor, an integer, associated with the stream referenced by
flehandle , which is of type userdata/file. It is useful for informative purposes, only.
The return cannot be used as a sulstitute 1o filehandle in calls to io functions, and
which require a handle of type userdataffile .

The function issues an error if filehandle is not of type userdata/file or if does not
reference an open file.

See also: io.isfdesc.

io.filepos (filehandle)

Returns the current position in the file denoted by its file handle filehandle , and
returns a non-negative number.

See also: io.seek.

io.filesize (filehandle)

Returns the size of an open file denoted by its file handle filehandle and returns the
numiber of bytes as a non-negative integer.

io.getclip ()

Returns the contents of the Windows clipboard as a string. If the clipbboard could not
e accessed, it retumns fail plus an error string. It also retumns fail and an error string, if
the clipbboard contains a binary object.

366 7 Standard Libraries

The function is available in the Windows edition only.

See also: io.putclip.

io.getkey ()
Waits until a key is pressed and returns its ASCIl numiber.

The function is available in the eComStation - OS/2, Solaris, Linux, Mac OS X, DOS,
and Windows editions only.

See also: io.anykey, io.read.

io.infile (filename, pattern)
io.infile (filehandle, pattern)

Checks whether the file given by the name filename or the file denoted by its
descriptor filehandle includes a pattern Of type string, and returns true or false.

See also: io.readfile.

io.input (filehandle)

io.input (filename)

io.input ()

When called with a file name, it opens the named file (in text mode), and sets its
handle as the default input file. When called with a file handle, it simply sets this file

handle as the default input file. When called without parameters, it retumns the
current default input file.

In case of errors this function raises the error, instead of retuning an error code.

io.isfdesc (filehandle)

Checks whether filehandle is a valid file handle. Returns true if filehandle is an
open file handle, or false if filehandle is Not a file handle.

See also: io.fileno, io.isopen.

io.isopen (filehandle)

Checks whether filehandle references an open file. Returns frue if filehandle is an
open file handle, or false if filehandle is not a file handle. Thus it also returns false if
filehandle is not of type userdata/file. Contrary to io.isfdesc, it also detects invalid
file positions caused by files too large or if the stream referenced by filehandle
does not support file positioning.

agena >> 367

The function is five times slower than io.fdesc.

See also: io.fileno, io.isfdesc .

io.lines (filename)

io.lines (filehandle)

io.lines ()

In the first form, the function opens the given file denoted by filename in read

mode and returns an iterator function that, each time it is called, returns a new line
from the file.

In the second form, the function opens the given file in read mode and returns an
iterator function that, each time it is called, returns a new line from the file.

Therefore, the construction

for keys line in io.lines(f) do body od

will iterate over all lines of the file denoted by f, where f is either a file name or file
handle. When the iterator function detects the end of file, it retumns null (to finish the
loop) and automatically closes the file if a flename is given. In case of a file
handle, the file is not closed.

The call io.lines() (without a file name) iterates over the lines of the default input
file. In this case it does not close the file when the loop ends.

See also: io.readlines.

io.lock (filehandle)
io.lock (filehandle, size)

The function locks the file given by its handle filehandle ~ so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 243
bytes are locked, so you have 1o use the second form described below in Windows
after the file has become larger than 293 bytes (= 8,589,934,592 GBytes).

In the second form the function locks size bytes from the curent file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

The function returns true on a successful lock, and false otherwise.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access 1o the file.

368 7 Standard Libraries

See also: io.unlock.

io.move (filehandle, n)

Moves the current file position of the open file denoted by its filehandle either to
the left or the right.

If n is a positive integer, then the file position is moved n characters to the right, if it is
a negative integer, it is moved n characters to the left. If n is zero, the position is not
changed at all.

The function returns true on success and false otherwise.

See dlso: io.seek.

io.nlines (filename)

io.nlines (filehandle)

The function counts the numiber of lines in the (text) file denoted by filename oOr
flehandle ~ and returns a non-negative intfeger.

See also: io.skiplines.

io.open (filename [, mode])

This function opens a file, given by the string filename , in the mode specified in the
string mode. It retfurns a new file handle of type userdata/file. The function does not
lock the file (see io.lock).

The function also enters the newly opened file into the io.openfiles table in the
following format: [flehandle ~ [flename, mode]].

In case of errors, the function quits with an error.
The mode string can be any of the following:

e ', 'read': read mode (the default);

o'W, 'write": write mode only; if the file already exists, it is fruncated to zero
length;

« 'd.'append': append mode;

* 'r+" update mode (both reading and writing), all previous data is preserved;
the inifial file position is at the beginning of the file;

* 'w+'": update mode (reading and writing), all previous data is erased;

* 'a+" append update mode (reading and appending), previous data is
preserved, writing is only allowed at the end of file.

agena >> 369

The mode string may also have a 'b* af the end, which is needed in some systems
fo open the file in binary mode. This string is exactly what is used in the standard C
function fopen .

See also: io.close, io.lock.

io.output ([filehandle])
Similar to io.input but operates over the default output file.

io.pcall (prog [, mode])

Starts programme prog (passed as a string) in a separated process, sends and
receives dafa to this programme (if mode is ' , Or mode is NOt given) via stdout, or
writes data to this programme (if mode is 'w'). After communication finishes, the
connection is automatically closed.

The return is a sequence of strings containing the result sent back by the
application.

The function thus is a combination of io.popen, io.readlines, and io.pclose, has
been written in Agena, and is included in the main Agena library (lib/library.agn).

This function is system dependent and is not available on all platforms.
See also: os.execute.

io.popen ([prog [, mode]])

Starts programme prog in a separated process and returns a file handle that you
can use to read data that is sent from this programme (if modeis ', the default) via
stdout, or to write data to this programme (if mode is 'w').

Use io.close 1o close the connection.

The following example shows how to receive the output of the UNIX “Is° command:

> p :=io.popen(ls -I', 'r):
file(779509B8)

> for keys i in io.lines(p) do print(i) od;

total 1917

drwxrwxrwx 1 user group 00Oct 1217 :00 OS2
-rw-rw-rw- 1 user group 24481 Oct 13 18 :23 aauxlib.c
-rw-rw-rw- 1 user group 6205 Aug 10 02 :26 aauxlib.h
-rw-rw-rw- 1 user group 16067 Oct 12 23 :42 aauxlib.o
> io.close(p):

true

This function is system dependent and is not available on all platforms.

370 7 Standard Libraries

See also: os.execute, io.pcall.

io.putclip (str)

Copies the string str 1o the Windows clipboard. If the clipboard could not be
accessed, if returns fail plus an error string. It only returns fail, if something else went
wrong, and true on success.

The function is available in the Windows edition only.

See also: io.getclip.

io.read (filehandle [, format])
io.read ()

In the first form, reads the file with the given filehandle , according to the given
formats, which specify what to read. For each format, the function returns a string
(or a number) with the characters read, or null if it cannot read data with the
specified format. When called without formats, it uses a default format that reads
the entire next line (see below).

The available formats are

* "*n" reads a number; this is the only format that returns a number instead of a
string.

* *a" reads the whole file, staring at the current position. On end of file, it
returns the empty string®*,

* " reads the next line (skipping the end of line), returning null on end of file.
This is the default format.

* number: reads a string up to this number of characters, retumning null on end
of file. If number is zero, it reads nothing and returns an empty string, or null
on end of file.

In the second form, the function reads from the default input stream (usually the
keyboard) and refurns a string or number. This keyboard input functionality is not
available in AgenaEdit.

See dalso: io.lines, io.readfile, io.readlines, skycrane.readcsv, utils.readcsv,
utils.readxml.

io.readfile (filename [, true [, pattern [, flag]]])
io.readfile (filhandle [, true [, pattern [, flag]])
Reads the entire file with name filename or the file denoted by its handle

filehandle in binary mode and retumns it as a string. Note that contrary to
io.readlines, the function also returns carriage returns (ASCII code 13).

24 see also io.readfile to read a file entirely.

agena >> 371

If a second argument, the Boolean value true, has been passed, then the function
removes all newlines and if existing all carriage retumns at the end of each line.

If the optional third argument pattern i given, the function only returns the whole
contents of a file if the string pattern has been found in the file. Pattern matching is
not supported.

If the opftional fourth argument flag is false, the function retuns the whole file
contents file if the string pattern has not been found in the file.

See also: io.read, io.readlines, io.writefile.

io.readlines (filename [, options])

io.readlines (filehandle [, options])

Reads the entire file with name filename or file handle filehandle and returns all
lines in a table. If a string consisting of one or more characters is given as a further
argument, then all lines beginning with this string are ignored. If the opfion true is
passed, then diacritics in the file are properly converted to the console character
set, provided you use code page 1252. The function automatically deletes
carriage returns (ASCIl code 13) if included in the file.

An error is issued if the file could not be found.

If you use file handles, you must open the file with io.open before applying
io.readlines, and close it with io.close thereafter.

See also: io.lines, io.read, io.readfile, utils.readcsv, utils.readxml, skycrane.readcsv .

io.rewind (filehandle)

Sets the current file position of the open file denoted by its filehandle fo the
beginning of the file. It returns the current file position, the numlber O, af success,
and null plus an error string otherwise.

See also: io.move, io.seek, io.toend.

io.seek (filehandle [, whence [, offset]])

Sefs and gets the file position, measured from the beginning of the file, to the
position given by offset plus a base specified by the string whence, as follows:

* 'set :base is position O (beginning of the file);
e ‘cur :base is current position;
e ‘end :baseisend of file.

372 7 Standard Libraries

In case of success, i0.seek returns the final file position, Mmeasured in bytes from the
beginning of the file. If this function fails, it returns null, plus a string describing the
eror,

The default value for whence is ‘cur , and for offset is 0. Therefore, the call

io.seek(file) returns the current file position, without changing it; the call
io.seek(file, 'set’) sets the position to the beginning of the file (and returns 0O);
and the call io.seek(file, 'end’) sets the position to the end of the file, and

returns its size.

See also: io.move, io.rewind, io.skiplines, io.toend.

io.setvbuf (filehandle, mode [, size])

Sets the buffering mode for an output file. There are three available modes:

* 'no": no buffering; the result of any output operation appears immediately.

« 'full's full buffering; output operation is performed only when the buffer is full or
when you explicitly flush the file (see io.sync).

* lline": line buffering; output is buffered until a newline is output or there is any
input from some specidal files (such as a terminal device).

For the last two cases, sizes specifies the size of the buffer, in bytes. The default is
an appropriate size.

io.skiplines (filehandle, n)
io.skiplines (filename, n)

The function skips the given number of lines and sets the file position to the
beginning of the line that follows the last line skipped.

If a file name is passed, then with each call to io.skiplines the search always starts at
the very first line in the file. The function automatically closes the file if a file name
has been passed and returns the result (see below).

If you use a file handle, then lines can be skipped multiple times, always relative 1o
the current file position. With a file handle, io.skiplines does not close the file.

The second argument n may be any non-negatfive number. If n is O, then the
function does nothing and does not change the file position.

The function returns two values: the non-negative number of lines actually skipped
and the non-negative numiber of characters skipped in this process, including
newlines and carriage returns.

See also: io.nlines, io.seek.

agena >> 373

io.sync (filehandle)
io.sync ()

In the first form, saves any written data to the file denoted by filehandle . In the
second form, the function flushes the default output.

io.tmpfile ()

Returns a handle for a temporary file. This file is opened in update mode and it is
automatically removed when the programme ends.

io.toend (filehandle)

Sets the current file position of the open file denoted by its filehandle to the end of
the file. It returns the current file position, a number indicating the size of the file, af
success, and null plus an error string otherwise.

See also: io.move, io.rewind, io.seek.

io.unlock (filehandle [, size])

The function unlocks the file given by its handle filehandle so that it can be read or
overwritften by other applications again. If size is given, the function, only the given
numiber of bytes is unlocked, starting from the current file position.

The function returns true on a successful unlock, and false otherwise.

For more information, see io.lock.

io.write (---)

io.writeline (---)

Write the value of each of its arguments to standard output if the first argument is
not a file handle, or to the file denoted by the first argument, a file handle. Except
for the file handle and the 'delim' option described below, all arguments must be
strings, numbers, or Booleans. To write other values, use tostring or strings.format.
See skycrane.scribe, as well.

io.writeline adds a new line at the end of the data written, whereas io.write does
not.

By default, no character is inserted between neighbouring values. This may be

changed by passing the option 'delim':<str> (i.e. a pair, e.q. 'delim"'|') as the
last argument to the functions with <str> being a string of any length. Remember
that in the function call, a shortcut 1o 'delim':<str> i delim ~ <str>

The functions return true on success, and false otherwise.

374 7 Standard Libraries

Hint: If you work in DOS-like systems, such like DOS, Windows, or eComStation - OS/2,
and if the text to be written includes line breaks, you may wonder why the resulting
file will be larger than the number of characters in the text. This is because the
operating system adds a further control code, i.e. carriage return, in front of each
line break. To avoid this, open the file in binary mode, e.qg. io.open(filename,
‘whb')

Examples:

Write a string to the console. Note that in the first statement, no newline is added to
the output, as opposed to the second and third statements.

> jo.write('Gauden Dach ")
Gauden Dach !

> io.write('Gauden Dach !', \n")
Gauden Dach !

> io.writeline('Gauden Dach !")
Gauden Dach !

Write strings to the console:

> jo.writeline('Bet’, 'to\'n’, '16.", 'Johrhunnert' , 'geef', 'dat’, 'hier’,
> 'baben’, 'anne’, 'Kist', 'nix’, 'anneres', 'as ', 'Platt.")
Betto'n16.JohrhunnertgeefdathierbabenanneKistnixann eresasPlatt.

Use a white space as a separator:

> jo.writeline('Bet’, 'to\'n’, '16.", 'Johrhunnert' , 'geef', 'dat’, 'hier’,

> ‘'baben’, ‘anne’, 'Kust', 'nix', 'anneres', ‘as ", 'Platt.’,

> delim="")

Bet to'n 16. Johrhunnert geef dat hier baben anne K Ust nix anneres as

Platt.

Write a string to a new file called 'd:/newfile.txt' : First we have fo creatfe the new

file with i0.open and the 'w' (write) option.

> fth := io.open(‘d:/newfile.txt', 'w'):
file(7803A6F0)

Write some text 1o the file.

> io.write(fh, 'Gouden Dach !"):

true

> jo.writeline(fh, \nBet', 'to\'n’, '16.", 'Johrhu nnert', 'geef’, 'dat’,
> ‘hier’, 'baben’, 'anne’, 'Kist', 'nix’, '‘anner es', 'as', 'Platt.’,

> delim=""):

true

Finally, the file will be closed.

> io.close(fh):
true

agena >> 375

See also: io.writefile, print, skycrane.scribe, skycrane.tee.

io.writefile (filename, ---)
io.writefile (filehandle, ---)

In the first form, creates a new file filename denoted by its first argument (a string)
and writes all of the given strings or numbers starting with the second argument in
binary mode to it. To write other values, use tostring or strings.format. After writing alll
data, the function automatically closes the new file.

In the second form, the function writes its arguments to the open file denoted by its
handle filehandle

By default, no character is inserted between neighbouring strings. This may be
changed by passing the option 'delm': <str> (i.e. a pair, e.g. 'delm"'|') as the last
argument o the function with <str> being a string of any length.

If the file fn already exists, it is overwritten without warning.

The function returns the total number of bytes written, and issues an error otherwise.
It is around twice as fast than using a combination of io.open, io.write, and
jo.close.

See also: save, io.readfile.

376 7 Standard Libraries

/.15 binio - Binary File Package

This package contains functions to read data from and write data to binary files.

Summary of functions:
Opening and closing files:

binio.open, binio.close, binio.isfdesc .
Reading data:

binio.lines, binio.readbytes, binio.readchar, binio.readlong,
binio.readnumber, binio.readshortstring , binio.readstring .

Writing data:

binio.writebytes , binio.writechar, binio.writeline, binio.writelong,
binio.writenumber , binio.writeshortstring , binio.writestring .

File positions:
binio.eof, binio.filepos, binio.rewind, binio.seek, binio.toend.
File locking:
binio.lock, binio.unlock.
File buffering:
binio.sync.
Miscellaneous:
binio.length.
The binio package always uses file handles that are positive integers greater than 2.
(Note that the io package uses file handles of type userdata.) The positive integer is
returned by the binio.open function and must be used in all package functions that

require a file handle.

A typical example might look like this:

agena >> 377

Open a file and return the file handle:

> fh := binio.open('c:/agena/lib/library.agn’):
3

Determine the size of the file in bytes:

> binio.length(fh):
46486

Close the file.

> binio.close(fh):
true

The binio functions are:

binio.close (filehandle [, filehandle2, ---])

Closes the files identified by the given file handle(s) and returns true if successful,
and issues an eror otherwise. The function also deletes the file handles and the
corresponding filenames from the binio.openfiles table if the file could be properly
closed.

See also: binio.open.

binio.eof (filehandle)

Checks whether the end of the file denoted by filehandle has been reached and
returns true or false.

binio.filepos (filehandle)

Returns the current file position relative to the beginning of the file as a number. In
case of an error, it quits with this error.

binio.isfdesc (filehandle)

Checks whether filehandle is a valid file handle. Returns true if filehandle is an
open file handle, or false if filehandle is Not a file handle.

binio.length (filehandle)

The function returns the size of the file denoted by filehandle in bytes. In case of an
error, it quits with this error.

378 7 Standard Libraries

binio.lines (filehandle [, n] [, true])

Creates an iterator function that beginning from the current file position, with each
call returns a new line from the file pointed to by the handle filehandle

By default, the function traverses the file up to its end. If the second argument n is a
positive integer, it reads the next n characters from the current file position (default is
infinity = end of file). The function generally ignores carriage returns (ASCII code 13)
and does not return newlines (ASCIl code 10).

If the last argument is the Boolean value true, all embedded zeros (ASCII Code 0)
are replaced with white spaces, and the traversal of the file continues instead of
being finished. By default, zeros are not ignored, so if one is encountered, the
fraversal stops.

The iterator function returns a string, and null if the end of the file has been reached.
It also returns null if the last argument is not frue and an embedded zero has been
found in the file.

The iterator function does not close the file at the end of fraversal, use binio.close to
accomplish this.

binio.lock (filehandle)

binio.lock (filehandle, size)

The function locks the file given by its handle filehandle so that it cannot be read
or overwritten by other applications.

In the first form, the entire file is locked in UNIX-based systems. In Windows, only 243
bytes are locked, so you have to use the second form in Windows after the file has
become larger than 29 bytes (= 8,589,934,592 GBytes).

In the second form the function locks size bytes from the current file position.
Locked blocks in a file may not overlap. size may be larger than the current file
length.

The function returns true on a successful lock, and false otherwise.

Note that other applications that do not use the locking protocol may nevertheless
have read and write access 1o the file.

See also: binio.unlock .

binio.open (filename [, anything])

Opens the given file denoted by filename and returns a file handle (a number).

If it cannot find the file, it creates it and leaves it open for further binio operations.

agena >> 379

If the file already exists, it leaves it open and sets the current file position to the
beginning of the file. (In subsequent write operations, the contents of the file will thus
e overwritten and the programmer has to ensure its integrity.) Use binio.toend to
append to the file.

The file is always opened in both read and write modes.

If an optional second argument is given (any valid Agena value), the file is opened
in read mode only. Thus, if the file does not yet exist, the function returns an error.

The function also enters the newly opened file into the binio.openfiles table.

See also: binio.close, binio.lock, binio.unlock, os.exists.

binio.readbytes (filehandle [, bytes] [, eof])

In the first form, the function reads environ.kernel['buffersize’] bytes from the file
denoted by filehandle and returns them as a sequence of integers. You may
change the kernel buffer size value to any other values in order fo read less or more
bytes.

In the second form, the function reads bytes bytes from the file denoted by
flehandle and returns them as a sequence of integers.

The function increments the file position thereafter so that the next bytes in the file
can be read with a new call to various binio.read* functions.

If the end of the file has been reached, null is returned. In case of an error, it quits
with the respective error.

If the last argument eof is the Boolean value true, then the function quits if it
encounters an embedded zero in the file and retuns all the bytes read before. The
file pointer is automatically reset to the position of the embedded zero.

The function is much faster when working on a larger numiber of bytes.
See also: binio.writebytes, math.tonumber, strings.tochars.

binio.readchar (filehandle)

binio.readchar (filehandle, position)

In the first form, the function reads a byte from the file denoted by filehandle from
the current file position and increments the file position thereafter so that the next
byte in the file can be read with a new call to binio.read* functions.

In the second form, at first the file position is changed by position bytes (a positive
or negative number or zero) relative to the current file position. After that, the byte af
the new file position is read. Next, the file position is being incremented thereafter so

380 7 Standard Libraries

that the next byte in the file can e read with a new function call.

If the byte is successfully read, it is returned as a number. If the end of the file has
been reached, null is returned. In case of an error, the function quits.

binio.readlong (filehandle)

The function reads a signed C value of type int32_t from the file denoted by
flehandle from the current file position and returns it. If there is an error or nothing
to read, the function quits with an error. Note that the numiber to be read should
have lbeen writfen fo the file using the binio.writelong function.

See also: binio.writelong.

binio.readnumber (filehandle)

The function reads an Agena number from the file denoted by filehandle ~ from the
current file position and returns it. If there is an error or nothing to be read, the
function quits with an error. Note that the number to be read should have been
written to the file using the binio.write number function.

See also: binio.writenumber.

binio.readshortstring (filehandle)

The function reads a string of up to 255 characters from the file denoted by
flehandle from the current file position and returns it. If there is an error or nothing
to read, the function quits with an error.

Note that the string to be read should have been wiitten to the file using the
binio.writeshortstring function, as binio.writeshortstring also stores the length of the
string o the file.

See also: binio.writeshortstring.

binio.readstring (filehandle)

The function reads a string of any length from the file denoted by filehandle from
the current file position and returns it. If there is an emror or nothing to read, the
function quits with an error.

Note that the string to be read should have been wiitten to the file using the
binio.writestring function, as binio.writestring also stores the length of the string to the
file.

See also: binio.writestring.

agena >> 381

binio.rewind (filehandle [, pos])

Sefts the file position to the beginning of the file denoted by filehandle

If pos, a non-negative integer is given, the function resefs the file pointer to the
position pos relative to the beginning of the file.

The function returns the new file position as a number in case of success, and quits
with an error otherwise.

See also: binio.toend, binio.seek.

binio.seek (filehandle, position)

The function changes the file position of the file denoted by filehandle position
bytes relative 1o the current position. positon ~ May be negative, zero, or positive.

The return is true if the file position could be changed successfully, or issues an error
otherwise.

See also: binio.rewind, binio.toend.

binio.sync (filehandle)

Flushes all unwritten content to the file denoted by the handle fiehandle . The
function returns frue if successful, false if stdin or stdout should be closed, and issues
an error otherwise (e.g. if the file was not opened before or an error during flushing
occurred).

binio.toend (filehandle)

Sets the file position to the end of the file denoted by filehandle so that data can
be appended fo the file without overwriting existing data. The function returns the
file position as a number in case of success, and issues an error otherwise.

See also: binio.rewind, binio.seek.

binio.unlock (filehandle)

binio.unlock (filehandle, size)

The function unlocks the file given by its handle filehandle so that it can be read or
overwritten by other applications again.

The function returns true on a successful unlock, and false otherwise.

For more information, see binio.lock.

382 7 Standard Libraries

binio.writebytes (filehandle, s)

The function writes all integers in the sequence s to the file denoted by filehandle
at its current position. The function returns frue in case of success and fail if the
sequence is empty.

The integers in s should be integers number with O < number < 256, otherwise number
% 256 will be stored to the file.

Internally, the bytes are stored as C unsigned char 's.

See also: binio.readbytes, math.tobytes, strings.tobytes .

binio.writechar (filehandle, number [, --])

The function writes the given Agena number, and opfionally more numbers, to the
fle denoted by filehandle at its current position. The function returns true in case of
success and quits with an error otherwise.

All number (s) should be integers with O < number < 256, otherwise number % 256 will
e stored to the file.

Internally, the bytes are stored as a C unsigned char

binio.writeline (filehandle, ---)

Writes one or more strings to the file denoted by its file handle fiehandle
separated by newlines.

The function is wriffen in the Agena language and is included in the
lib/library.agn file.

binio.writelong (filehandle, number [, ---])

The function writes the given Agena number, and optionally more numbers, to the
fle denoted by filehandle at its current position. The number (S) should be integers
with environ.minlong < number < environ.maxlong, otherwise the result is not
defined.

The function retumns true in case of success and quits with an error otherwise.
Internally, the numbers are stored as signed C int32_t in Big Endian notation. Use

binio.readlong to read values written by writelong back info Agena as readlong
fransforms the value back into the proper Endian format used by your machine.

agena >> 383

binio.writenumber (filehandle, number [, ---])

The function writes the given Agena number, and opfionally more numbers, to the
fle denoted by filehandle @t its current position. The function returns true in case of
success and issues an error otherwise. The numbers are always stored in Big Endian
notation. The binio.readnumber function conducts proper conversion to Little
Endian if Agena runs on a Little Endian machine.

binio.writeshortstring (filehandle, string [, ---])

The function writes the given string , and optionally more strings, to the file denoted
by filenandle @t its current position. The strings can be of length 0 to 255.

The function returns true in case of success and issues an error otherwise. Internally,
writeshortstring at first writes the length of the respective string as a C unsigned char
and after this it stores the string without a trailing null character to the file. If you call
binio.readstring later, Agena very efficiently retumns the string.

See also: binio.readshortstring.

binio.writestring (filehandle, string [, ---])

The function writes the given string , and optionally more strings, to the file denoted
by filehandle at its current position.

The function returns frue in case of success and quits with an error otherwise.
Internally, writestring first writes the length of the respective string as a C long int and
then the string without a null character to the file. This information is then read by the
binio.readstring function to efficiently returmn the string.

See also: binio.readstring .

384 7 Standard Libraries

7.16 xbase - Library to Read and Write xBase Files

As a plus package, in Solaris, Linux, Mac OS X, and Windows, this library is not part of
the standard distribution and must be activated with the import statement, e.Q.
import xbase

This package provides basic functions to read and write dBASE llI+ compliant files.

A typical session may look like this:

> import xbase alias;

> new('test.dbf', data=Number);
> f := open(test.dbf’, ‘write');

> writenumber(f, 1, 1, Pi);

> readvalue(f, 1, 1):
3.1415926535898

> close(f):
true

Limitations:

1. The xBase data types currently supported are: Number, Float (dBASE IV 2.0),
Binary Double (dBASE 7), String, Date, and Logical.

2. Only files with extension .dbf are supported. Searching and sorfing functions are
not available, and any .ndx, or .idx index files or *.dbt files will be ignored.

3. Files with sizes greater than 2 GBytes are not supported.

xbase.attrib (filehandle)

retuns a table with various information on the xBase file pointed to by filehandle

Table key Meaning

‘codepage’ Code page used.

A table of tables that describe the respective fields in
consecutive order: title, xBase native type (see below), Agena
fieldinfo’ type, total number of bytes occupied by the field in the file.
With numbers, the number of decimals following the decimal
point (its scope) given.

‘fields' Number of fields in the file.

filename’ Name of the xBase file (relative).

‘headerlength’ Length of the header in the xBase file.

lastmodified’ UTC date of the last write access, coded as an integer.
'records' Number of records stored in the file.

‘recordlength’ Numiber of bytes occupied by each record.

agena >> 385

xBase native types recognised are: 'C' for String, 'N' for Number, 'F' for Float, 'L' for
Logical, 'D' for Date, and 'O' for binary Double.

See also: xbase.filepos.

xbase.close (filehandle)

Closes a connection to the xBase file pointed to by filehandle . NO more data can
e read or writfen to the xBase file until you open it again using xbase.open. The
function returns true if the file could be closed, and false otherwise.

xbase.field (filehandle, row [, 'set’])

The function has been deprecated. Please use xbase.readdbf instead.

See also: xbase.ismarked, xbase.readdbf, xbase.readvalue , xbase.record.

xbase.fields (filehandle)

Returns the number of fields per record contained in the xBase file denoted by
filehandle

See also: xbase.attrib, xbase.records.

xbase.filepos (filehandle)

Returns the current file position in the file denoted by filehandle and returns it as a
number.

See also: xbase.attrib .

xbase.header (filehandle)

Returns three sequences: the header field names of the file denoted by
fl