INTERNET-DRAFT Tom Talpey Expires: January 2005 Network Appliance, Inc. Chet Juszczak Sun Microsystems, Inc. July, 2004 NFS RDMA Problem Statement draft-ietf-nfsv4-nfs-rdma-problem-statement-01.txt Status of this Memo By submitting this Internet-Draft, I certify that any applicable patent or other IPR claims of which I am aware have been disclosed, or will be disclosed, and any of which I become aware will be disclosed, in accordance with RFC 3668. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. Copyright Notice Copyright (C) The Internet Society (2004). All Rights Reserved. Talpey and Juszczak Expires January 2005 [Page 1] Internet-Draft NFS RDMA Problem Statement July 2004 Abstract This draft addresses applying Remote Direct Memory Access to the NFS protocols. NFS implementations historically incur significant overhead due to data copies on end-host systems, as well as other sources. The potential benefits of RDMA to these implementations are explored, and the reasons why RDMA is especially well-suited to NFS and network file protocols in general are evaluated. Table Of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 2 2. Problem Statement . . . . . . . . . . . . . . . . . . . . 5 3. File Protocol Architecture . . . . . . . . . . . . . . . . 6 4. Sources of Overhead . . . . . . . . . . . . . . . . . . . 8 4.1. Savings from TOE . . . . . . . . . . . . . . . . . . . . 9 4.2. Savings from RDMA . . . . . . . . . . . . . . . . . . . 9 5. Application of RDMA to NFS . . . . . . . . . . . . . . . . 10 6. Improved Semantics . . . . . . . . . . . . . . . . . . . . 11 7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . 11 Acknowledgements . . . . . . . . . . . . . . . . . . . . . 12 Normative References . . . . . . . . . . . . . . . . . . . 12 Informative References . . . . . . . . . . . . . . . . . . 12 Authors' Addresses . . . . . . . . . . . . . . . . . . . . 14 Full Copyright Statement . . . . . . . . . . . . . . . . . 15 1. Introduction The Network File System (NFS) protocol (as described in [RFC1094], [RFC1813], and [RFC3530]) is one of several remote file access protocols used in the class of processing architecture sometimes called Network Attached Storage (NAS). Historically, remote file access has proved to be a convenient, cost-effective way to share information over a network, a concept proven over time by the popularity of the NFS protocol. However, there are issues in such a deployment. As compared to a local (direct-attached) file access architecture, NFS removes the overhead of managing the local on-disk filesystem state and its metadata, but interposes at least a transport network and two network endpoints between an application process and the files it is accessing. This tradeoff has to date usually resulted in a net performance loss as a result of reduced bandwidth, increased application server CPU utilization, and other overheads. Talpey and Juszczak Expires January 2005 [Page 2] Internet-Draft NFS RDMA Problem Statement July 2004 Several classes of applications, including those directly supporting enterprise activities in high performance domains such as database applications and shared clusters, have therefore encountered issues with moving to NFS architectures. While this has been due principally to the performance costs of NFS versus direct attached files, other reasons are relevant, such as the lack of strong consistency guarantees being provided by NFS implementations. Replication of local file access performance on NAS using traditional network protocol stacks has proven difficult, not because of protocol processing overheads, but because of data copy costs in the network endpoints. This is especially true since host buses are now often the main bottleneck in NAS architectures [MOG03] [CHA+01]. The External Data Representation [RFC1832] employed beneath NFS and RPC [RPC1831] can add more data copies, exacerbating the problem. Data copy-avoidance designs have not been widely adopted for a variety of reasons. [BRU99] points out that "many copy avoidance techniques for network I/O are not applicable or may even backfire if applied to file I/O." Other designs that eliminate unnecessary copies, such as [PAI+00], are incompatible with existing APIs and therefore force application changes. Over the past year, an effort to standardize a set of protocols for Remote Direct Memory Access, RDMA, over the standard Internet Protocol Suite has been chartered [RDDP]. Several drafts have been proposed and are under discussion. RDMA is a general solution to the problem of CPU overhead incurred due to data copies, primarily at the receiver. Substantial research has addressed this and has borne out the efficacy of the approach. An overview of this is the RDDP Problem Statement document, [RDDPPS]. In addition to the per-byte savings of off-loading data copies, RDMA-enabled NICs (RNICS) offload the underlying protocol layers as well, e.g. TCP, further reducing CPU overhead due to NAS processing. 1.1. Background The RDDP Problem Statement [RDDPPS] asserts: "High costs associated with copying are an issue primarily for large scale systems ... with high bandwidth feeds, usually Talpey and Juszczak Expires January 2005 [Page 3] Internet-Draft NFS RDMA Problem Statement July 2004 multiprocessors and clusters, that are adversely affected by copying overhead. Examples of such machines include all varieties of servers: database servers, storage servers, application servers for transaction processing, for e- commerce, and web serving, content distribution, video distribution, backups, data mining and decision support, and scientific computing. Note that such servers almost exclusively service many concurrent sessions (transport connections), which, in aggregate, are responsible for > 1 Gbits/s of communication. Nonetheless, the cost of copying overhead for a particular load is the same whether from few or many sessions." Note that each of the servers listed above could be accessing their file data as an NFS client, or NFS serving the data to such clients, or acting as both. The CPU overhead of the NFS and TCP/IP protocol stacks (including data copies or reduced copy workarounds) becomes a significant matter in these clients and servers. File access using locally attached disks imposes relatively low overhead due to the highly optimized I/O path and direct memory access afforded to the storage controller. This is not the case with NFS, which must pass data to, and especially from, the network and network processing stack to the NFS stack. Frequently, data copies are imposed on this transfer, in some cases several such copies in each direction. Copies are potentially encountered in an NFS implementation exchanging data to and from user address spaces, within kernel buffer caches, in XDR marshalling and unmarshalling, and within network stacks and network drivers. Other overheads such as serialization among multiple threads of execution sharing a single NFS mount point and transport connection are additionally encountered. Numerous upper layer protocols achieve extremely high bandwidth and low overhead through the use of RDMA. [MAF+02] show that the RDMA- based Direct Access File System (with a user-level implementation of the file system client) can outperform even a zero-copy implementation of NFS [CHA+01] [CHA+99] [GAL+99]. Also, file data access implies the use of large ULP messages. These large messages tend to amortize any increase in per-message costs due to the offload of protocol processing incurred when using RNICs while gaining the benefits of reduced per-byte costs. Finally, the direct memory addressing afforded by RDMA avoids many sources of contention on network resources. Talpey and Juszczak Expires January 2005 [Page 4] Internet-Draft NFS RDMA Problem Statement July 2004 2. Problem Statement The principal performance problem encountered by NFS implementations is the CPU overhead required to implement the protocol. Primary among the sources of this overhead is the movement of data from NFS protocol messages to its eventual destination in user buffers or aligned kernel buffers. Due to the nature of the RPC and XDR protocols, the NFS data payload arrives at arbitrary alignment and the NFS requests are completed in an arbitrary sequence. The data copies consume system bus bandwidth and CPU time, reducing the available system capacity for applications [RDDPPS]. Achieving zero-copy with NFS has, to date, required sophisticated, version- specific "header cracking" hardware and/or extensive platform- specific virtual memory mapping tricks. Such approaches become even more difficult for NFS version 4 due to the existence of the COMPOUND operation, which further reduces alignment and greatly complicates ULP offload. Furthermore, NFS will soon be challenged by emerging high-speed network fabrics such as 10 Gbits/s Ethernet. Performing even raw network I/O such as TCP is an issue at such speeds with today's hardware. The problem is fundamental in nature and has led the IETF to explore RDMA [RDDPPS]. Zero-copy techniques benefit file protocols extensively, as they enable direct user I/O, reduce the overhead of protocol stacks, provide perfect alignment into caches, etc. Many studies have already shown the performance benefits of such techniques [SKE+01, DCK+03, FJNFS, FJDAFS, MAF+02]. RDMA implementations generally have other interesting properties, such as hardware assisted protocol access, and support for user space access to I/O. RDMA is compelling here for another reason; hardware offloaded networking support in itself does not avoid data copies, without resorting to implementing part of the NFS protocol in the NIC. Support of RDMA by NFS enables the highest performance at the architecture level rather than by implementation; this enables ubiquitous and interoperable solutions. By providing file access performance equivalent to that of local file systems, NFS over RDMA will enable applications running on a set of client machines to interact through an NFS file system, just as applications running on a single machine might interact through a local file system. Talpey and Juszczak Expires January 2005 [Page 5] Internet-Draft NFS RDMA Problem Statement July 2004 3. File Protocol Architecture NFS runs as an ONC RPC [RFC1831] application. Being a file access protocol, NFS is very "rich" in data content (versus control information). NFS messages can range from very small (under 100 bytes) to very large (from many kilobytes to a megabyte or more). They are all contained within an RPC message and follow a variable length RPC header. This layout provides an alignment challenge for the data items contained in an NFS call (request) or reply (response) message. In addition to the control information in each NFS call or reply message, sometimes there are large "chunks" of application file data, for example read and write requests. With NFS version 4 (due to the existence of the COMPOUND operation) there can be several of these data chunks interspersed with control information. ONC RPC is a remote procedure call protocol that has been run over a variety of transports. Most implementations today use UDP or TCP. RPC messages are defined in terms of an eXternal Data Representation (XDR) [RFC1832] which provides a canonical data representation across a variety of host architectures. An XDR data stream is conveyed differently on each type of transport. On UDP, RPC messages are encapsulated inside datagrams, while on a TCP byte stream, RPC messages are delineated by a record marking protocol. An RDMA transport also conveys RPC messages in a unique fashion that must be fully described if client and server implementations are to interoperate. The RPC transport is responsible for conveying an RPC message from a sender to a receiver. An RPC message is either an RPC call from a client to a server, or an RPC reply from the server back to the client. An RPC message contains an RPC call header followed by arguments if the message is an RPC call, or an RPC reply header followed by results if the message is an RPC reply. The call header contains a transaction ID (XID) followed by the program and procedure number as well as a security credential. An RPC reply header begins with an XID that matches that of the RPC call message, followed by a security verifier and results. All data in an RPC message is XDR encoded. The encoding of XDR data into transport buffers is referred to as "marshalling", and the decoding of XDR data contained within transport buffers and into destination RPC procedure result buffers, is referred to as "unmarshalling". The process of marshalling takes place therefore at the sender of any particular Talpey and Juszczak Expires January 2005 [Page 6] Internet-Draft NFS RDMA Problem Statement July 2004 message, be it an RPC request or an RPC response. Unmarshalling, of course, takes place at the receiver. Normally, any bulk data is moved (copied) as a result of the unmarshalling process, because the destination adddress is not known until the RPC code receives control and subsequently invokes the XDR unmarshalling routine. In other words, XDR-encoded data is not self-describing, and it carries no placement information. This results in a data copy in most NFS implementations. One mechanism by which the RPC layer may overcome this is for each request to include placement information, to be used for direct placement during XDR encode. This "write chunk" can avoid sending bulk data inline in an RPC message and generally results in one or more RDMA Write operations. Similarly, a "read chunk", where placement information referring to bulk data which may be directly fetched via one or more RDMA Read operations during XDR decode, may be conveyed. The "read chunk" will therefore be useful in both RPC calls and replies, while the "write chunk" is used solely in replies. These "chunks" are the key concept in an existing proposal [RPCRDMA]. They convey what are effectively pointers to remote memory across the network. They allow cooperating peers to exchange data outside of XDR encodings but still use XDR for describing the data to be transferred. And, finally, through use of XDR they maintain a large degree of on-the-wire compatibility. The central concept of the RDMA transport is to provide the additional encoding conventions to convey this placement information in transport-specific encoding, and to modify the XDR handling of bulk data. Block Diagram +------------------------+-----------------------------------+ | NFS | NFS + RDMA | +------------------------+----------------------+------------+ | Operations / Procedures | | +-----------------------------------------------+ | | RPC/XDR | | +--------------------------------+--------------+ | | Stream Transport | RDMA Transport | +--------------------------------+---------------------------+ Talpey and Juszczak Expires January 2005 [Page 7] Internet-Draft NFS RDMA Problem Statement July 2004 4. Sources of Overhead Network and file protocol costs can be categorized as follows: o per-byte costs - data touching costs such as checksum or data copy. Today's network interface hardware commonly offloads the checksum, which leaves the other major source of per-byte overhead, data copy. o per-packet costs - interrupts and lower-layer processing. Today's network interface hardware also commonly coalesce interrupts to reduce per-packet costs. o per-message (request or response) costs - LLP and ULP processing. Improvement from optimization becomes more important if the overhead it targets is a larger share of the total cost. As other sources of overhead, such as the checksumming and interrupt handling above are eliminated, the remaining overheads (primarily data copy) loom larger. With copies crossing the bus twice per copy, network processing overhead is high whenever network bandwidth is large in comparison to CPU and memory bandwidths. Generally with today's end-systems, the effects are observable at network speeds at or above 1 Gbits/s. A common question is whether increase in CPU processing power alleviates the problem of high processing costs of network I/O. The answer is no, it is the memory bandwidth that is the issue. Faster CPUs do not help if the CPU spends most of its time waiting for memory [RDDPPS]. TCP offload engine (TOE) technology aims to offload the CPU by moving TCP/IP protocol processing to the NIC. However, TOE technology by itself does nothing to avoid necessary data copies within upper layer protocols. [MOG03] provides a description of the role TOE can play in reducing per-packet and per-message costs. Beyond the offloads commonly provided by today's network interface hardware, TOE alone (w/o RDMA) helps in protocol header processing, but this has been shown to be a minority component of the total protocol processing overhead. [CHA+01] Numerous software approaches to the optimization of network throughput have been made. Experience has shown that network I/O interacts with other aspects of system processing such as file I/O and disk I/O. [BRU99] [CHU96] Zero-copy optimizations based on page remapping [CHU96] can be dependent upon machine architecture, Talpey and Juszczak Expires January 2005 [Page 8] Internet-Draft NFS RDMA Problem Statement July 2004 and are not scaleable to multi-processor architectures. Correct buffer alignment and sizing together are needed to optimize the performance of zero-copy movement mechanisms [SKE+01]. The NFS message layout described above does not facilitate the splitting of headers from data nor does it facilitate providing correct data buffer alignment. 4.1. Savings from TOE The expected improvement of TOE specifically for NFS protocol processing can be quantified and shown to be fundamentally limited. [SHI+03] presents a set of "LAWS" parameters which serve to illustrate the issues. In the TOE case, the copy cost can be viewed as part of the application processing "a". Application processing increases the LAWS "gamma", which is shown by the paper to result in a diminished benefit for TOE. For example, if the overhead is 20% TCP/IP, 30% copy and 50% real application work, then gamma is 80/20 or 4, which means the maximum benefit of TOE is 1/gamma, or only 25%. For RDMA (with embedded TOE) and the same example, the "overhead" (o) offloaded or eliminated is 50% (20%+30%). Therefore in the RDMA case, gamma is 50/50 or 1, and the inverse gives the potential benefit of 1 (100%), a factor of two. CPU overhead reduction factor No Offload TCP Offload RDMA Offload -----------+-------------+------------- 1.00x 1.25x 2.00x The analysis in the paper shows that RDMA could improve throughput by the same factor of two, even when the host is (just) powerful enough to drive the full network bandwidth without RDMA. It can also be shown that the speedup may be higher if network bandwidth grows faster than Moore's Law, although the higher benefits will apply to a narrow range of applications. 4.2. Savings from RDMA Performance measurements directly comparing an NFS over RDMA prototype with conventional network-based NFS processing are described in [CAL+03]. Comparisons of Read throughput and CPU overhead were performed on two Gigabit Ethernet adapters, one conventional and one with RDMA capability. The prototype RDMA protocol performed all transfers via RDMA Read. Talpey and Juszczak Expires January 2005 [Page 9] Internet-Draft NFS RDMA Problem Statement July 2004 In these results, conventional network-based throughput was severely limited by the client's CPU being saturated at 100% for all transfers. Read throughput reached no more than 60MBytes/s. I/O Type Size Read Throughput CPU Utilization Conventional 2KB 20MB/s 100% Conventional 16KB 40MB/s 100% Conventional 256KB 60MB/s 100% However, over RDMA, throughput rose to the theoretical maximum throughput of the platform, while saturating the single-CPU system only at maximum throughput. I/O Type Size Read Throughput CPU Utilization RDMA 2KB 10MB/s 45% RDMA 16KB 40MB/s 70% RDMA 256KB 100MB/s 100% The lower relative throughput of the RDMA prototype at the small blocksize may be attributable to the RDMA Read imposed by the prototype protocol, which reduced the operation rate since it introduces additional latency. As well, it may reflect the relative increase of per-packet setup costs within the DMA portion of the transfer. 5. Application of RDMA to NFS Efficient file protocols require efficient data positioning and movement. The client system knows the client memory address where the application has data to be written or wants read data deposited. The server system knows the server memory address where the local filesystem will accept write data or has data to be read. Neither peer however is aware of the others' data destination in the current NFS, RPC or XDR protocols. Existing NFS implementations have struggled with the performance costs of data copies when using traditional Ethernet transports. With the onset of faster networks, the network I/O bottleneck will worsen. Fortunately, new transports that support RDMA have emerged. RDMA excels at bulk transfer efficiency; it is an efficient way to deliver direct data placement and remove a major part of the problem: data copies. RDMA also addresses other overheads, e.g. underlying protocol offload, and offers separation of control information from data. The current NFS message layout provides the performance enhancing opportunity for an NFS over RDMA protocol that separates the Talpey and Juszczak Expires January 2005 [Page 10] Internet-Draft NFS RDMA Problem Statement July 2004 control information from data chunks while meeting the alignment needs of both. The data chunks can be copied "directly" between the client and server memory addresses above (with a single occurrence on each memory bus) while the control information can be passed "inline". [ONCRDMA] describes such a protocol. 6. Improved Semantics Network file protocols need to export the application programming interfaces and semantics that applications, especially mission critical ones like database and clusters, have been developed to expect. These APIs and semantics are historical in nature and successful deprecation is doubtful. NFS has not delivered all of the semantics (for example, reliable filesystem transactions) for the sake of acceptable performance. The advanced properties of RDMA-capable transports allow improved semantics. [DAFS] is an example of a protocol which exports semantics which are similar to those of NFSv4, but improved in specific areas. Improved NFS semantics can also be delivered. As an example, [NFSRDMA] describes an implementation of RPC for RDMA transport that is evolutionary in nature yet enables the provision of reliable and idempotent filesystem operation. This proposal shows that it is possible to deliver extended semantics with an RPC/XDR layer implementation with no changes required above the NFS layer, and few within. 7. Conclusions NFS version 4 [RFC3530] has recently been granted "Proposed Standard" status. The NFSv4 protocol was developed along several design points, important among them: effective operation over wide- area networks, including the Internet itself; strong security integrated into the protocol; extensive cross-platform interoperability including integrated locking semantics compatible with multiple operating systems; and (this is key), protocol extension. NFS version 4 is an excellent base on which to add the needed performance enhancements and improved semantics described above. The minor versioning support defined in NFS version 4 was designed to support protocol improvements without disruption to the installed base. Evolutionary improvement of the protocol via minor versioning is a conservative and cautious approach to current and future problems and shortcomings. Many arguments can be made as to the efficacy of the file abstraction in meeting the future needs of enterprise data service Talpey and Juszczak Expires January 2005 [Page 11] Internet-Draft NFS RDMA Problem Statement July 2004 and the Internet. Fine grained Quality of Service (QoS) policies (e.g. data delivery, retention, availability, security, ...) are high among them. It is vital that the NFS protocol continue to provide these benefits to a wide range of applications, without its usefulness being compromised by concerns about performance and semantic inadequacies. This can reasonably be addressed in the existing NFS protocol framework. A cautious evolutionary improvement of performance and semantics allows building on the value already present in the NFS protocol, while addressing new requirements that have arisen from the application of networking technology. 8. Acknowledgements The authors wish to thank Jeff Chase who provided many useful suggestions. 9. Normative References [RFC3530] S. Shepler, et. al., "NFS Version 4 Protocol", Standards Track RFC [RFC1831] R. Srinivasan, "RPC: Remote Procedure Call Protocol Specification Version 2", Standards Track RFC [RFC1832] R. Srinivasan, "XDR: External Data Representation Standard", Standards Track RFC [RFC1813] B. Callaghan, B. Pawlowski, P. Staubach, "NFS Version 3 Protocol Specification", Informational RFC 10. Informative References [BRU99] J. Brustoloni, "Interoperation of copy avoidance in network and file I/O", in Proc. INFOCOM '99, pages 534-542, New York, NY, Mar. 1999., IEEE. Also available from http://www.cs.pitt.edu/~jcb/publs.html [CAL+03] B. Callaghan, T. Lingutla-Raj, A. Chiu, P. Staubach, O. Asad, "NFS over RDMA", in Proceedings of ACM SIGCOMM Summer 2003 NICELI Workshop. Talpey and Juszczak Expires January 2005 [Page 12] Internet-Draft NFS RDMA Problem Statement July 2004 [CHA+01] J. S. Chase, A. J. Gallatin, K. G. Yocum, "Endsystem optimizations for high-speed TCP", IEEE Communications, 39(4):68-74, April 2001. [CHA+99] J. S. Chase, D. C. Anderson, A. J. Gallatin, A. R. Lebeck, K. G. Yocum, "Network I/O with Trapeze", in 1999 Hot Interconnects Symposium, August 1999. [CHU96] H.K. Chu, "Zero-copy TCP in Solaris", Proc. of the USENIX 1996 Annual Technical Conference, San Diego, CA, January 1996 [DAFS] Direct Access File System Specification version 1.0, available from http://www.dafscollaborative.org, September 2001 [DCK+03] M. DeBergalis, P. Corbett, S. Kleiman, A. Lent, D. Noveck, T. Talpey, M. Wittle, "The Direct Access File System", in Proceedings of 2nd USENIX Conference on File and Storage Technologies (FAST '03), San Francisco, CA, March 31 - April 2, 2003 [FJDAFS] Fujitsu Prime Software Technologies, "Meet the DAFS Performance with DAFS/VI Kernel Implementation using cLAN", available from http://www.pst.fujitsu.com/english/dafsdemo/index.html, 2001. [FJNFS] Fujitsu Prime Software Technologies, "An Adaptation of VIA to NFS on Linux", available from http://www.pst.fujitsu.com/english/nfs/index.html, 2000. [GAL+99] A. Gallatin, J. Chase, K. Yocum, "Trapeze/IP: TCP/IP at Near- Gigabit Speeds", 1999 USENIX Technical Conference (Freenix Track), June 1999. [KM02] K. Magoutis, "Design and Implementation of a Direct Access File System (DAFS) Kernel Server for FreeBSD", in Proceedings of USENIX BSDCon 2002 Conference, San Francisco, CA, February 11-14, 2002. Talpey and Juszczak Expires January 2005 [Page 13] Internet-Draft NFS RDMA Problem Statement July 2004 [MAF+02] K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer, J. Chase, D. Gallatin, R. Kisley, R. Wickremesinghe, E. Gabber, "Structure and Performance of the Direct Access File System (DAFS)", in Proceedings of 2002 USENIX Annual Technical Conference, Monterey, CA, June 9-14, 2002. [MOG03] J. Mogul, "TCP offload is a dumb idea whose time has come", 9th Workshop on Hot Topics in Operating Systems (HotOS IX), Lihue, HI, May 2003. USENIX. [NFSRDMA] T. Talpey, S. Shepler, "NFSv4 Session Extensions", Internet Draft Work in Progress, draft-ietf-nfsv4-session-00, February 2004. [PAI+00] V. S. Pai, P. Druschel, W. Zwaenepoel, "IO-Lite: a unified I/O buffering and caching system", ACM Trans. Computer Systems, 18(1):37-66, Feb. 2000. [RDDPPS] Remote Direct Data Placement Working Group Problem Statement, A. Romanow, J. Mogul, T. Talpey, S. Bailey, draft-ietf-rddp- problem-statement-04 [RPCRDMA] B. Callaghan, T. Talpey, "RDMA Transport for ONC RPC", Internet Draft Work in Progress, draft-ietf-nfsv4-rpcrdma-00 [SHI+03] P. Shivam, J. Chase, "On the Elusive Benefits of Protocol Offload", to be published in Proceedings of ACM SIGCOMM Summer 2003 NICELI Workshop, also available from http://issg.cs.duke.edu/publications/niceli03.pdf [SKE+01] K.-A. Skevik, T. Plagemann, V. Goebel, P. Halvorsen, "Evaluation of a Zero-Copy Protocol Implementation", in Proceedings of the 27th Euromicro Conference - Multimedia and Telecommunications Track (MTT'2001), Warsaw, Poland, September 2001. Talpey and Juszczak Expires January 2005 [Page 14] Internet-Draft NFS RDMA Problem Statement July 2004 Authors' Addresses Tom Talpey Network Appliance, Inc. 375 Totten Pond Road Waltham, MA 02451 USA Phone: +1 781 768 5329 EMail: thomas.talpey@netapp.com Chet Juszczak Sun Microsystems, Inc. 1718 Southwod Drive Nashua, NH 03063 Phone: +1 781 442 3186 Email: chet.juszczak@sun.com Full Copyright Statement Copyright (C) The Internet Society (2004). This document is subject to the rights, licenses and restrictions contained in BCP 78 and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Intellectual Property The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any Talpey and Juszczak Expires January 2005 [Page 15] Internet-Draft NFS RDMA Problem Statement July 2004 assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf- ipr@ietf.org. Acknowledgement Funding for the RFC Editor function is currently provided by the Internet Society. Talpey and Juszczak Expires January 2005 [Page 16]