GNU Octave

A high-level interactive language for numerical computations
Edition 4 for Octave version 4.2.0-rcl
September 2016

Free Your Numbers

John W. Eaton
David Bateman
Sgren Hauberg
Rik Wehbring

Copyright (© 1996, 1997, 1999, 2000, 2001, 2002, 2005, 2006, 2007, 2011, 2013, 2015, 2016
John W. Eaton.

This is the fourth edition of the Octave documentation, and is consistent with version
4.2.0-rcl of Octave.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

Portions of this document have been adapted from the gawk, readline, gcc, and C library
manuals, published by the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301-1307, USA.

Table of Contents

Preface 1
Acknowledgements 1
Citing Octave in Publications. e 5)
How You Can Contribute to Octave........ ...)
Distribution 6

1 A Brief Introduction to Octave............................ 7
1.1 Running OCEavet e 7
1.2 Simple Examples 7

1.2.1 Elementary Calculations.......... ... 7
1.2.2 Creating a Matrixooi i e e 8
1.2.3 Matrix Arithmetic. ... 8
1.2.4 Solving Systems of Linear Equations.............ot 8
1.2.5 Integrating Differential Equations........... ... o it 9
1.2.6 Producing Graphical Output ... 10
1.2.7 Editing What You Have Typedo 10
1.2.8 Help and Documentation, 10
1.3 COnVENTIONS .« o ottt ettt et e e e e e 11
13,1 FOmtS. .o 11
1.3.2 Evaluation Notation......... ..o i 11
1.3.3 Printing Notationcoooii i e e 12
1.3.4 ErTor MeSSages . .« oo vttt ettt e 12
1.3.5 Format of Descriptionsouuiiiii e 12
1.3.5.1 A Sample Function Descriptiono i 12
1.3.5.2 A Sample Command Description..............ooiiiiiiiiiiaie .. 13

2 Getting Started.............. ... 15

2.1 Invoking Octave from the Command Line.............. o .. 15
2.1.1 Command Line Optionsuutiii i 15
2.1.2 Startup Files 19

2.2 Quitting OCtavet e 19

2.3 Commands for Getting Help..... ... i 20

2.4 Command Line Editing.........o i 25
2.4.1 Cursor Motion. . .o .v et e 25
2.4.2 Killing and Yanking 26
2.4.3 Commands for Changing Text, 27
2.4.4 Letting Readline Type for You......... .o, 27
2.4.5 Commands for Manipulating the History............ 28
2.4.6 Customizing readline.c.uuutiiintin i 32
2.4.7 Customizing the Prompt....... ... o i 32
2.4.8 Diary and Echo Commands.o, 34

2.5 How Octave Reports Errors e 35

ii

GNU Octave

2.6 Executable Octave Programs i 36
2.7 Comments in Octave Programs........... ..., 37
2.7.1 Single Line Commentsttt 37
2.7.2 Block Comments e 37
2.7.3 Comments and the Help System it 38
Data Types. ... 39
3.1 Built-in Data Types. ... e 39
3.1.1 Numeric ObjJects ... o.. oo 42
3.1.2 Missing Data. ... 43
3.1.3 String ObJects. .o eu it 43
3.1.4 Data Structure ObjJects. 43
3.1.5 Cell Array ODJectS .. vvvt ettt e e 44
3.2 User-defined Data Typesouuii e 44
3.3 ODbJECt SIZES. o ottt e 44
Numeric Data Types............cooiiiiiiiiii .. 47
A1 MaATICES . v vttt e 48
4.1.1 Empty Matriceso e o1
4.2 RAIZES . ettt 52
4.3 Single Precision Data Typeso 53
4.4 Tnteger Data Types. e 54
4.4.1 Integer Arithmetic. e 56
4.5 Bit Manipulations. e 57
4.6 Logical Values. e 59
4.7 Promotion and Demotion of Data Types.........c..coiiiiiiiiiiiii .. 61
4.8 Predicates for Numeric Objects. i 61
SErings. 67
5.1 Escape Sequences in String Constants, 67
5.2 Character ATTaYS. ...ttt ettt et ettt e e 68
5.3 Creating Strings.ottt e 69
5.3.1 Concatenating Stringsouuuiiitiiin i 70
5.3.2 Converting Numerical Data to Strings, 73
5.4 Comparing StIINgS .« .« ov vttt e 76
5.5 Manipulating Strings e 7
5.6 String CONVEISIONSttt ettt ettt et e 91
5.7 Character Class Functions.......... .. 96
Data Containers............. ..., 99
6.1 STUCTUTES . - o ottt e 99
6.1.1 Basic Usage and Examples.o 99
6.1.2 SEructure ATTAYSottt e e 103
6.1.3 Creating Structuresot e 104
6.1.4 Manipulating Structures........... . .. i 107

6.1.5 Processing Data in Structurest 111

6.2 Cell AT aYS .\ttt et 112
6.2.1 Basic Usage of Cell Arrays.o, 112
6.2.2 Creating Cell ATraysooiuiii e 114
6.2.3 Indexing Cell ATTayst 116
6.2.4 Cell Arrays of Strings ... 118
6.2.5 Processing Data in Cell Arrays ..., 119

6.3 Comma Separated LiStso 120
6.3.1 Comma Separated Lists Generated from Cell Arrays.................... 121
6.3.2 Comma Separated Lists Generated from Structure Arrays............... 122

7 Variables........ 123

7.1 Global Variables 124

7.2 Persistent Variables i 126

7.3 Status of Variables i 127

8 EXPressions..............c.coiiiiiiiiiiii 135

8.1 Index EXpressionsttt e 135
8.1.1 Advanced Indexingt 136

8.2 Calling Functionso e 139
8.2.1 Call by Valueo 140
8.2.2 RECUISION . .ottt e 141

8.3 Arithmetic Operators 142

8.4 Comparison OPeratorsit ot 145

8.5 Boolean ExXpressions. 147
8.5.1 Element-by-element Boolean Operators.............. ..., 147
8.5.2 Short-circuit Boolean Operatorsoouuiiiiiiiiiiiiieinina . 148

8.6 Assignment EXpressionso 150

8.7 Increment OpPeratorsoinuu i e 152

8.8 Operator Precedenceo 153

9 Evaluation 155
9.1 Calling a Function by its Name...... ... e 156
9.2 Evaluation in a Different Context......... 157

10 Statements 159

10.1 The if Statement 159

10.2 The switch Statement 161
10.2.1 Notes for the C Programmer i, 162

10.3 The while Statement i 163

10.4 The do-until Statement i 164

10.5 The for Statement e 164
10.5.1 Looping Over Structure Elements........................oo s, 165

10.6 The break Statement.............. i 166

10.7 The continue Statement...............iiiiiiiiii i 167

10.8 The unwind_protect Statement............ i 168

10.9 The try Statemento e 168

10.10 Continuation Lines. 169

v

11

12

GNU Octave

Functions and Scripts............... 171
11.1 Introduction to Function and Script Files........... oL, 171
11.2 Defining Functions e 171
11.3 Multiple Return Values ... 174
11.4 Variable-length Argument Lists i 182
11.5 Ignoring Arguments..........oouu ittt e 184
11.6 Variable-length Return Lists i i 184
11.7 Returning from a Function........ i 186
11.8 Default Arguments.ot e 186
11.9 Function Files. e 187

11.9.1 Manipulating the Load Path........ i 189

11.9.2 Subfunctions......... ... e 192

11.9.3 Private Functions i i 193

11.9.4 Nested Functions. ... e 193

11.9.5 Overloading and Autoloading.......... ..., 195

11.9.6 Function Locking. ... 196

11.9.7 Function Precedenceo 198
11.10 Script Files . oo 198

11.10.1 Publish Octave Script Files. i 200

11.10.2 Publishing Markup....... ..o i 202

11.10.2.1 Using Publishing Markup in Script Files.................. 202
11.10.2.2 Text Formatting ... 203
11.10.2.3 SECtIONS . .« v vttt e 203
11.10.2.4 Preformatted Code.........coiiiiiiii i 204
11.10.2.5 Preformatted Text e 204
11.10.2.6 Bulleted Lists oove 204
11.10.2.7 Numbered Listso 204
11.10.2.8 Including File Content o i, 205
11.10.2.9 Including Graphics...........ooiiiiiiii i 205
11.10.2.10 Including URLSot e 205
11.10.2.11 Mathematical Equations o i i, 206
11.10.2.12 HTML Markupovoi e 206
11.10.2.13 LaTeX Markupvueii i e 206
11.11 Function Handles, Anonymous Functions, Inline Functions................. 206

11.11.1 Function Handles e 206

11.11.2 Anonymous Functions........... .. i i 208

11.11.3 Inline Functions. e 209
11,12 Commandsottt e e 210
11.13 Organization of Functions Distributed with Octave 210

Errors and Warnings 213
12.1 Handling Errors. 213

12.1.1 Raising Errors e 213

12.1.2 Catching Errors. e 216

12.1.3 Recovering From Errors......... ... i 219
12.2 Handling Warnings. e e 219

12.2.1 Tssuing Warningsooouni it 220

12.2.2 Enabling and Disabling Warnings............. i i, 226

13

14

15

Debugging 227
13.1 Entering Debug Mode. ... 227
13.2 Leaving Debug Mode. 228
13.3 Breakpoints.ottt 228
13.4 Debug Mode. 232
13.5 Call Stack ... e 233
13.6 Profiling 234
13.7 Profiler Example. 236

Input and Output........... 241
14.1 Basic Input and Output..... ... 241

14.1.1 Terminal OQutpubttt e e 241

14.1.1.1 Paging Screen OUtPULottt e 244
14.1.2 Terminal Input.o 246
14.1.3 Simple File I/O . ..o 248

14.1.3.1 Saving Data on Unexpected Exits...........o il 260

14.2 C-Style I/O Functions.oo.iuiiiii e 262

14.2.1 Opening and Closing Files.......... ..o 263

14.2.2 Simple Outputo 265

14.2.3 Line-Oriented Input ... e e 265

14.2.4 Formatted Outpubovti e e 266

14.2.5 Output Conversion for Matrices ...t ... 268

14.2.6 Output Conversion SyNtaxeeiiieiii i 268

14.2.7 Table of Output Conversionsc.ouuuiiiiiienniieennnee... 269

14.2.8 Integer COnveTrSiONSuuuttt ettt e e e 270

14.2.9 Floating-Point Conversionscoouuiiiiiiiiiieiiennnann.. 271

14.2.10 Other Output Conversionsvuuuteenirieeeniieeaaneanns 271

14.2.11 Formatted Inputo 272

14.2.12 Input Conversion SYNtaxuee et e i 273

14.2.13 Table of Input Conversions............c.oouuiiiiiiiiiiiieennieeann. 274

14.2.14 Numeric Input Conversions.ot 275

14.2.15 String Input Conversionscoouuiiiiiiiiiii i 275

14.2.16 Binary I/O ..o 275

14.2.17 Temporary Files e 278

14.2.18 End of File and Errorso 280

14.2.19 File Positioningooiiiii e 281

Plotting 283
15.1 Introduction to Plotting......... ... o i 283
15.2 High-Level Plotting ... i e 283

15.2.1 Two-Dimensional Plots....... ... o i i 283

15.2.1.1 Axis Configurationot 311

15.2.1.2 Two-dimensional Function Plotting............................... 313

15.2.1.3 Two-dimensional Geometric Shapes.....................oiioia.. 316
15.2.2 Three-Dimensional Plotso i 317

15.2.2.1 Aspect Ratio. ... 339

15.2.2.2 Three-dimensional Function Plotting.............., 340

vi GNU Octave
15.2.2.3 Three-dimensional Geometric Shapes 344
15.2.3 Plot Annotations.o.u i 345
15.2.4 Multiple Plots on One Page i i 352
15.2.5 Multiple Plot Windows. ... 353
15.2.6 Manipulation of Plot Objects. ... 354
15.2.7 Manipulation of Plot Windows, 355
15.2.8 Use of the interpreter Property ..., 359
15.2.9 Printing and Saving Plots 362
15.2.10 Interacting with Plots...... ... i 369
15.2.11 Test Plotting Functions i 370
15.3 Graphics Data Structures 371
15.3.1 Introduction to Graphics Structures, 371
15.3.2 Graphics Objects. 373
15.3.2.1 Creating Graphics Objects. 373
15.3.2.2 Handle Functions........ ..o i i 376
15.3.3 Graphics Object Properties.o, 381
15.3.3.1 Root Figure Properties......... ... i 381
15.3.3.2 Figure Properties. 383
15.3.3.3 Axes Propertieso.oiii 387
15.3.3.4 Line Properties.o 394
15.3.3.5 Text Properties. ...t 395
15.3.3.6 Image Properties........ .o 397
15.3.3.7 Patch Properties ... 398
15.3.3.8 Surface Properties........ ... 401
15.3.3.9 Light Properties. 404
15.3.3.10 Uimenu Properties 405
15.3.3.11 Uibuttongroup Properties i 406
15.3.3.12 Uicontextmenu Properties..............ooooiiiiiiiiiiiiii .., 407
15.3.3.13 Uipanel Properties ..., 408
15.3.3.14 Uicontrol Properties. 410
15.3.3.15 Uitoolbar Properties. ... 411
15.3.3.16 Uipushtool Propertieso, 412
15.3.3.17 Uitoggletool Properties......... ..o, 413
15.3.4 Searching Properties 414
15.3.5 Managing Default Properties........... ... 416
15.4 Advanced Plottingo i 417
15.4. 1 ColOrS . oveee et 417
15.4.2 Line Styles. ... e 417
15.4.3 Marker Styles 417
15.4.4 Callbacks . ..ot 418
15.4.5 Application-defined Data........ ... 419
15.4.6 ODbJECt GIOUDPS « -« ettt ettt ettt et e e 420
15.4.6.1 Data Sources in Object Groups..........coovviiiiiiiiiiinnne... 424
15.4.6.2 Area Series.ttt 425
15.4.6.3 Bar Series.ot 425
15.4.6.4 Contour GrOUPSvvtt ettt e e e 426
15.4.6.5 Error Bar Series. ... 427

15.4.6.6 LINE SEIies . ..ottt 428

15.4.6.7 QUIVET GIOUD ...ttt et e 429

15.4.6.8 Scatter GIroUDut et e e e 430

15.4.6.9 Stair GIrOUDP ..ttt et e 430
15.4.6.10 SEEIL SEIIES . .\ttt ettt e et e e 431

15.4.6.11 Surface Group...... ..o e 432

15.4.7 Graphics ToolKits 432
15.4.7.1 Customizing Toolkit Behavior, 433

16 Matrix Manipulation 435
16.1 Finding Elements and Checking Conditions............... ... 435
16.2 Rearranging Matricesoooiiiiii i e 439
16.3 Special Utility Matrices e 449
16.4 Famous MatriCeso 457
17 Arithmetic......... 467
17.1 Exponents and Logarithms........ i i 467
17.2 Complex Arithmetic 469
17.3 TrigOnOmetTY . . oottt e 470
17.4 Sums and Productst e 474
17.5 Utility FUNCEIONSo oo 476
17.6 Special Functions ... 484
17.7 Rational Approximations.ouiiiiiiiiiiiiiiiii i, 492
17.8 Coordinate Transformations.oviiiiiiiiiiii i, 492
17.9 Mathematical Constants 494
18 Linear Algebra........... L. 499
18.1 Techniques Used for Linear Algebra i i, 499
18.2 Basic Matrix Functions. i 499
18.3 Matrix Factorizations 509
18.4 Functions of a Matrix e 520
18.5 Specialized SOIVErs 522
19 Vectorization and Faster Code Execution............. 527
19.1 Basic Vectorization.ttt 527
19.2 Broadcasting.t 529
19.2.1 Broadcasting and Legacy Code......... ..., 532

19.3 Function Application......... ...t e 532
19.4 Accumulationt 537
19.5 JIT Compilero 539
19.6 Miscellaneous Techniques. i 540
19.7 EXAIMPIES . . 542
20 Nonlinear Equations.................................... 543
20,1 SOIVEIS . .ttt 543

20.2 MINIMIZETS . o oottt et e e e e e e e e 546

viii GNU Octave

21 Diagonal and Permutation Matrices................... 549
21.1 Creating and Manipulating Diagonal /Permutation Matrices................. 549
21.1.1 Creating Diagonal Matrices. ..., 550
21.1.2 Creating Permutation Matrices........... ... i i, 550
21.1.3 Explicit and Implicit Conversions.cooviiiiiiiiiieeniena . 551

21.2 Linear Algebra with Diagonal/Permutation Matrices........................ 552
21.2.1 Expressions Involving Diagonal Matrices............, 552
21.2.2 Expressions Involving Permutation Matrices 553

21.3 Functions That Are Aware of These Matrices.............. 554
21.3.1 Diagonal Matrix Functions i i i 554
21.3.2 Permutation Matrix Functions............ ... i 554

21.4 Examples of Usage 554
21.5 Differences in Treatment of Zero Elements............. 555
22 Sparse Matrices............. ... L. 557
22.1 Creation and Manipulation of Sparse Matrices..............coviiiiii... 557
22.1.1 Storage of Sparse Matricest 557
22.1.2 Creating Sparse Matricest 558
22.1.3 Finding Information about Sparse Matrices................ 564
22.1.4 Basic Operators and Functions on Sparse Matrices..................... 567
22.1.4.1 Sparse FUNCtionsooiuiiiiii i 568

22.1.4.2 Return Types of Operators and Functions 568

22.1.4.3 Mathematical Considerations..............c.cooiiiiiiiiiiia... 570

22.2 Linear Algebra on Sparse Matricesoouiiiiiiiiii i 578
22.3 TIterative Techniques Applied to Sparse Matrices.................ooviia... 587
22.4 Real Life Example using Sparse Matricescoouiiiiiiiiiieeninnnn . 595
23 Numerical Integration.................................. 599
23.1 Functions of One Variable....... ... 599
23.2 Orthogonal Collocation 606
23.3 Functions of Multiple Variables.......... ... i i 607
24 Differential Equations 611
24.1 Ordinary Differential Equations o i i 611
24.1.1 Matlab-compatible solvers........... ..o 613

24.2 Differential-Algebraic Equations........ i 617
25 Optimization 627
25.1 Linear Programmingouuiiiiiiiii i 627
25.2 Quadratic Programming. i 633
25.3 Nonlinear Programming......... ..o, 635

25.4 Linear Least SQUATes.ttt e 637

26 Statistics.............. . 641
26.1 Descriptive Statisticst e 641
26.2 Basic Statistical Functionso 647
26.3 Statistical Plots. ... 651
26.4 Correlation and Regression Analysis............cooiiiiiiiiiiiiiiiiiinn. 652
26.5 Distributions.t e 654
26.6 TSt . . e 662
26.7 Random Number Generation........... ..., 669

2T St 677
27.1 Set Operationsttt 677

28 Polynomial Manipulations.............................. 681
28.1 Evaluating Polynomials ... e 681
28.2 Finding Roots 682
28.3 Products of Polynomials 683
28.4 Derivatives / Integrals / Transforms.......... oo, 686
28.5 Polynomial Interpolation.......... ... i i 687
28.6 Miscellaneous FUnctions. ... e 696

29 Interpolation 699
29.1 One-dimensional Interpolation......... i 699
29.2 Multi-dimensional Interpolationo i i 703

30 Geometry 709
30.1 Delaunay Triangulationo e 709

30.1.1 Plotting the Triangulation........... ... o i i, 711
30.1.2 Identifying Points in Triangulation o ... 714
30.2 Voronoi Diagrams.ooiiiii 716
30.3 Convex Hull 719
30.4 Interpolation on Scattered Data.......... ..., 721

31 Signal Processing L. 725

32 Image Processing 739
32.1 Loading and Saving Imagesuiiiiiii e 739
32.2 Displaying Images. 745
32.3 Representing Images e 47
32.4 Plotting on top of Imageso 756

32.5 C0lor CONVETISION . . .« vttt et et e e e e e e e 756

X GNU Octave

33 Audio Processing L. 759
33.1 Audio File Utilities. o.oe 759
33.2 Audio Device Information........ i 760
33.3 Audio Player. 760

33.3.1 Playbackoo 761
33.3.2 Properties. ..o e 761
33.4 Audio Recorder 762
33.4.1 RecOrding. 762
33.4.2 Data Retrieval ... 763
33.4.3 Properties. ..o e 763
33.5 Audio Data Processing e 763

34 Object Oriented Programming......................... 767
34.1 Creating a Classt 767
34.2 Class Methodso 769
34.3 Indexing ODbJectS.t 773

34.3.1 Defining Indexing And Indexed Assignment......................... ... 773
34.3.2 Indexed Assignment Optimization..........ol 776
34.4 Overloading Objects 77
34.4.1 Function Overloading ..ot T
34.4.2 Operator Overloadingo i 778
34.4.3 Precedence of Objectso 779
34.5 Inheritance and Aggregation 781

35 GUI Development....................................... 787
35.1 I/O DIalogs . ..ottt et 787
35.2 Progress Bar.ooiiiiii e 794
35.3 UILElements e 794
35.4 GUI Utility Functions......... ..o 800
35.5 User-Defined Preferences........... i 802

36 System Utilities.......... 805
36.1 Timing Utilities.t e 805
36.2 Filesystem Utilities. 816
36.3 File Archiving Utilitiesot e 825
36.4 Networking Utilities. ... e e 828

36.4.1 FTP ODbJects. . .vvinttt i 828

36.4.2 URL Manipulationo 830

36.4.3 Base64 and Binary Data Transmission.............o i, 831
36.5 Controlling SUbPIrOCESSESottt e 831
36.6 Process, Group, and User IDs 839
36.7 Environment Variables...........oii 840
36.8 Current Working Directoryo 840
36.9 Password Database Functions oo i i 842
36.10 Group Database Functions. ...t 843
36.11 System Information......... ... 844

36.12 Hashing Functions i 848

37 Packages........ ... 851
37.1 Installing and Removing Packages........ 851
37.2 Using Packages 854
37.3 Administrating Packages 855
37.4 Creating Packages.o 855

37.4.1 The DESCRIPTION File.oooutiiii e 857
3742 The INDEX Fileo e 859
37.4.3 PKG_ADD and PKG_DEL Directivesooiiiiiiiiininan... 860
37.4.4 Missing COMPONENTS .« . ..o vttt et 860

Appendix A External Code Interface..................... 861

AT OCH-FIles . .ot 862
A.1.1 Getting Started with Oct-Files........ ... o i 862
A.1.2 Matrices and Arrays in Oct-Files........... ... i, 865
A.1.3 Character Strings in Oct-Files............. i, 868
A.1.4 Cell Arrays in Oct-Files.o e 869
A. 1.5 Structures in Oct-Files. e 870
A.1.6 Sparse Matrices in Oct-Fileso 871

A.1.6.1 Array and Sparse Class Differences............ 872

A.1.6.2 Creating Sparse Matrices in Oct-Files 873

A.1.6.3 Using Sparse Matrices in Oct-Files.........., 876
A.1.7 Accessing Global Variables in Oct-Files 876
A.1.8 Calling Octave Functions from Oct-Files oL, 877
A.1.9 Calling External Code from Oct-Files.......... 879
A.1.10 Allocating Local Memory in Oct-Files............ 881
A.1.11 Input Parameter Checking in Oct-Files......... 881
A.1.12 Exception and Error Handling in Oct-Files............... 882
A.1.13 Documentation and Test of Oct-Files, 884

A2 Mex-Files. .o 885
A.2.1 Getting Started with Mex-Files i i 885
A.2.2 Working with Matrices and Arrays in Mex-Files........................ 887
A.2.3 Character Strings in Mex-Files.......... ... i 889
A2.4 Cell Arrays with Mex-Files.o i 890
A.2.5 Structures with Mex-Files.......... ... 891
A.2.6 Sparse Matrices with Mex-Files............ i ... 892
A.2.7 Calling Other Functions in Mex-Files.................oiiiiiiiiin.. 896

A.3 Standalone Programs.......... ... 897

A4 JavaInterface 899
A.4.1 Java Interface Functions i 900
A.4.2 Making Java Classes Available......... i i 906
A.4.3 Creating an Instance of a Java Class 907
A.4.4 Handling Java Memory Limitationso i, 907

Appendix B Test and Demo Functions 909
Bl Test FUNCtIONS. . ..o e 909

B.2 Demonstration FUnctions 916

xii GNU Octave

Appendix C Obsolete Functions........................... 921
Appendix D Known Causes of Trouble................... 925
D.1 Actual Bugs We Haven’t Fixed Yet i 925
D.2 Reporting Bugs.ot e 925
D.2.1 Have You Found a Bug? oo i 925

D.2.2 Where to Report Bugs...... ..o 926

D.2.3 How to Report Bugs..........ooiiii i 926

D.2.4 Sending Patches for Octave i 927

D.3 How To Get Help with Octave......... ..o 928
D.4 How to Distinguish Between Octave and Matlab 928
Appendix E Installing Octave............................. 931
E.1 Build Dependencies.o 931
E.1.1 Obtaining the Dependencies Automatically 931

E.1.2 Build TOOIS e 931

E.1.3 External Packageso 932

E.2 Running Configure and Make i i 934
E.3 Compiling Octave with 64-bit Indexing............. 938
E.4 Installation Problems e 941
Appendix F Emacs Octave Support 945
F.1 Inmstalling EOS ... o 945
F.2 Using Octave Mode. e 945
F.3 Running Octave from Within Emacs......... ... o o i i 949
F.4 Using the Emacs Info Reader for Octave 950
Appendix G Grammar and Parser 953
G. 1 KeyWords 953
G2 PaISeT . .ttt e 953
Appendix H GNU GENERAL PUBLIC LICENSE...... 955
Concept Index........ 967
Function Index 979

Operator Index.......... 993

Preface

Octave was originally intended to be companion software for an undergraduate-level text-
book on chemical reactor design being written by James B. Rawlings of the University of
Wisconsin-Madison and John G. Ekerdt of the University of Texas.

Clearly, Octave is now much more than just another ‘courseware’ package with limited
utility beyond the classroom. Although our initial goals were somewhat vague, we knew
that we wanted to create something that would enable students to solve realistic problems,
and that they could use for many things other than chemical reactor design problems. We
find that most students pick up the basics of Octave quickly, and are using it confidently in
just a few hours.

Although it was originally intended to be used to teach reactor design, it has been used in
several other undergraduate and graduate courses in the Chemical Engineering Department
at the University of Texas, and the math department at the University of Texas has been
using it for teaching differential equations and linear algebra as well. More recently, Octave
has been used as the primary computational tool for teaching Stanford’s online Machine
Learning class (ml-class.org) taught by Andrew Ng. Tens of thousands of students
participated in the course.

If you find Octave useful, please let us know. We are always interested to find out how
Octave is being used.

Virtually everyone thinks that the name Octave has something to do with music, but
it is actually the name of one of John W. Eaton’s former professors who wrote a famous
textbook on chemical reaction engineering, and who was also well known for his ability
to do quick ‘back of the envelope’ calculations. We hope that this software will make it
possible for many people to do more ambitious computations just as easily.

Everyone is encouraged to share this software with others under the terms of the GNU
General Public License (see Appendix H [Copying], page 955). You are also encouraged to
help make Octave more useful by writing and contributing additional functions for it, and
by reporting any problems you may have.

Acknowledgements

Many people have contributed to Octave’s development. The following people have helped
code parts of Octave or aided in various other ways (listed alphabetically).

Ben Abbott Drew Abbot Andy Adler
Adam H. Aitkenhead Joakim Andén Giles Anderson
Joel Andersson Lachlan Andrew Pedro Angelo
Damjan Angelovski Muthiah Annamalai Markus Appel
Branden Archer Willem Atsma Marco Atzeri
Ander Aurrekoetxea Shai Ayal Roger Banks

Ben Barrowes Alexander Barth David Bateman
Heinz Bauschke Julien Bect Stefan Beller
Roman Belov Markus Bergholz Karl Berry

Atri Bhattacharya Ethan Biery David Billinghurst
Don Bindner Jakub Bogusz Moritz Borgmann

Paul Boven Richard Bovey John Bradshaw

ml-class.org

Marcus Brinkmann
Clemens Buchacher
Daniel Calvelo
Jean-Francois Cardoso
David Castelow
Albert Chin-A-Young
J. D. Cole

Michael Creel

Martin Dalecki

Carlo de Falco

Bill Denney

Pantxo Diribarne
David M. Doolin
John W. Eaton

Paul Eggert

Garrett Euler
Gunnar Farnebéack
Ramon Garcia Fernandez
Jose Daniel Munoz Frias
Eduardo Gallestey
Driss Ghaddab
Nicolo Giorgetti
Michael Goflioul
Keith Goodman
Steffen Groot

Kyle Guinn

Kai Habel

Jaroslav Hajek

Sgren Hauberg
Daniel Heiserer
Stefan Hepp

Yozo Hida

A. Scottedward Hodel
David Hoover

Cyril Humbert

Alan W. Irwin
Vytautas Jancauskas
Robert Jenssen
Heikki Junes

Jarkko Kaleva

Lute Kamstra

Joel Keay

Lars Kindermann
Arno J. Klaassen
Heine Kolltveit
Daniel Kraft

Oyvind Kristiansen

Max Brister
Ansgar Burchard
John C. Campbell
Joao Cardoso
Vincent Cautaerts
Carsten Clark
Jacopo Corno
Richard Crozier
Jacob Dawid
Thomas D. Dean
Fabian Deutsch
Vivek Dogra
Carné Draug

Dirk Eddelbuettel
Stephen Eglen
Edmund Grimley Evans
Massimiliano Fasi
Torsten Finke
Brad Froehle
Walter Gautschi
FEugenio Gianniti
Arun Giridhar
Glenn Golden
Brian Gough
Etienne Grossmann
Vaibhav Gupta
Patrick Hacker
Benjamin Hall
Dave Hawthorne
Piotr Held
Martin Hepperle
Ryan Hinton

Richard Allan Holcombe

Kurt Hornik

John Hunt

Allan Jacobs

Nicholas R. Jankowski
Cai Jianming
Matthias Juschke
Avinoam Kalma
Fotios Kasolis

Mumit Khan

Aaron A. King
Alexander Klein

Ken Kouno

Nir Krakauer

Artem Krosheninnikov

GNU Octave

Remy Bruno

Marco Caliari

Juan Pablo Carbajal
Larrie Carr

Clinton Chee

Catalin Codreanu
Martin Costabel

Jeff Cunningham
Jorge Barros de Abreu
Philippe Defert
Christos Dimitrakakis
John Donoghue
Pascal A. Dupuis
Pieter Eendebak
Peter Ekberg

Rolf Fabian

Stephen Fegan

Colin Foster

Castor Fu

Klaus Gebhardt
Hartmut Gimpel
Michael D. Godfrey
Tomislav Goles
Michael C. Grant
David Grundberg
Peter Gustafson
William P. Y. Hadisoeseno
Kim Hansen

Oliver Heimlich
Martin Helm

Jordi Gutiérrez Hermoso
Roman Hodek

Tom Holroyd
Christopher Hulbert
Teemu Ikonen

Geoff Jacobsen

Mats Jansson

Steven G. Johnson
Atsushi Kajita
Mohamed Kamoun
Thomas Kasper

Paul Kienzle

Erik Kjellson
Geoffrey Knauth
Kacper Kowalik
Aravindh Krishnamoorthy
Piotr Krzyzanowski

Preface

Volker Kuhlmann
Philipp Kutin

Kai Labusch

Bill Lash

Friedrich Leisch
Jyh-miin Lin

Ross Lippert
Barbara Locsi
Massimo Lorenzin
Hoxide Ma
Jens-Uwe Mager
Alexander Mamonov
Axel Mathéi
Christoph Mayer
Ronald van der Meer
Thorsten Meyer
Mike Miller

Rafael Monteiro
Armin Miller
PrasannaKumar
Muralidharan
Carmen Navarrete
Al Niessner

Takuji Nishimura
Patrick Noffke
Michael O’Brien
Thorsten Ohl
Valentin Ortega-Clavero
Janne Olavi Paanajarvi
Jason Alan Palmer
Rolando Pereira

Jim Peterson

Elias Pipping
Sergey Plotnikov
Orion Poplawski
Francesco Potorti
Eduardo Ramos
Eric S. Raymond
Lukas Reichlin

Jens Restemeier

E. Joshua Rigler
Matthew W. Roberts
Andrew Ross

Joe Rothweiler
Kristian Rumberg
Toni Saarela

Ilya Kurdyukov
Miroslaw Kwasniak
Claude Lacoursiere
Dirk Laurie
Johannes Leuschner
Timo Lindfors

Yu Liu

Sebastien Loisel
Emil Lucretiu
Colin Macdonald
Stefan Mahr
Ricardo Marranita
Makoto Matsumoto
Laurent Mazet
Julio Hoffimann Mendes
Stefan Miereis
Serviscope Minor
Antoine Moreau
Hannes Miiller

Tain Murray

Todd Neal

Felipe G. Nievinski
Akira Noda

Eric Norum

Cillian O’Driscoll
Kai T. Ohlhus

Luis F. Ortiz

Scott Pakin

Gabriele Pannocchia
Per Persson

Danilo Piazzalunga
Robert Platt

Tom Poage

Ondrej Popp
Konstantinos Poulios
Pooja Rao

Balint Reczey
Michael Reifenberger
Anthony Richardson
Sander van Rijn
Dmitry Roshchin
Fabio Rossi

David Rorich

Ryan Rusaw

Juhani Saastamoinen

Tetsuro Kurita
Rafael Laboissiere
Walter Landry
Maurice LeBrun
Thorsten Liebig
Benjamin Lindner
David Livings
Erik de Castro Lopo
Yi-Hong Lyu
James Macnicol
Rob Mahurin
Orestes Mas
Tatsuro Matsuoka
G. D. McBain

Ed Meyer

Petr Mikulik
Stefan Monnier
Kai P. Mueller
Victor Munoz
Markus Mitzel

Philip Nienhuis
Rick Niles

Kai Noda
Krzesimir Nowak
Peter O’Gorman
Arno Onken

Carl Osterwisch
José Luis Garcia Pallero
Sylvain Pelissier
Primozz Peterlin
Nicholas Piper
Hans Ekkehard Plesser
Nathan Podlich
Jef Poskanzer
Jarno Rajahalme
James B. Rawlings
Joshua Redstone
Ernst Reissner
Jason Riedy
Petter Risholm
Peter Rosin

Mark van Rossum
Kevin Ruland

Olli Saarela
Radek Salac

Mike Sander

Alois Schlogl
Sebastian Schops
Lasse Schuirmann
Daniel J. Sebald
Marko Seric

Andriy Shinkarchuck
John Smith

Peter L. Sondergaard
Christoph Spiel
Russell Standish
Jonathan Stickel
Bernardo Sulzbach
Daisuke Takago
Duncan Temple Lang
Georg Thimm

Olaf Till

Karsten Trulsen
Utkarsh Upadhyay
James R. Van Zandt
Mihas Varantsou
Marco Vitetta
Andreas Weber

Rik Wehbring
Martin Weiser
Joachim Wiesemann
Michele Zaffalon
Federico Zenith

Ben Sapp

Michel D. Schmid
Nicol N. Schraudolph
Ludwig Schwardt
Dmitri A. Sergatskov
Ahsan Ali Shahid
Robert T. Short
Julius Smith

Joerg Specht

David Spies

Brett Stewart

Judd Storrs

Ivan Sutoris

Ariel Tankus
Matthew Tenny
Corey Thomasson
Christophe Tournery
David Turner

Stefan van der Walt
Risto Vanhanen
Ivana Varekova
Daniel Wagenaar
Olaf Weber

Bob Weigel

Michael Weitzel
Fook Fah Yap
Johannes Zarl

Alex Zvoleff

GNU Octave

Aleksej Saushev
Julian Schnidder
Sebastian Schubert
Thomas L. Scofield
Vanya Sergeev
Baylis Shanks
Joseph P. Skudlarek
Shan G. Smith
Quentin H. Spencer
Richard Stallman
Doug Stewart
Thomas Stuart
John Swensen

Falk Tannh&user
Kris Thielemans
Andrew Thornton
Thomas Treichl
Frederick Umminger
Peter Van Wieren
Gregory Vanuxem
Sébastien Villemot
Thomas Walter
Thomas Weber
Andreas Weingessel
David Wells

Sean Young
Michael Zeising

Special thanks to the following people and organizations for supporting the development

of Octave:

The United States Department of Energy, through grant number DE-FG02-04ER25635.

Ashok Krishnamurthy, David Hudak, Juan Carlos Chaves, and Stanley C. Ahalt of the
Ohio Supercomputer Center.

The National Science Foundation, through grant numbers CTS-0105360, CTS-9708497,
CTS-9311420, CTS-8957123, and CNS-0540147.

The industrial members of the Texas-Wisconsin Modeling and Control Consortium
(TWMCC).

The Paul A. Elfers Endowed Chair in Chemical Engineering at the University of
Wisconsin-Madison.

Digital Equipment Corporation, for an equipment grant as part of their External Re-
search Program.

Sun Microsystems, Inc., for an Academic Equipment grant.

International Business Machines, Inc., for providing equipment as part of a grant to
the University of Texas College of Engineering.

http://www.che.utexas.edu/twmcc

Preface 5

e Texaco Chemical Company, for providing funding to continue the development of this
software.

e The University of Texas College of Engineering, for providing a Challenge for Excellence
Research Supplement, and for providing an Academic Development Funds grant.

e The State of Texas, for providing funding through the Texas Advanced Technology
Program under Grant No. 003658-078.

e Noel Bell, Senior Engineer, Texaco Chemical Company, Austin Texas.

e John A. Turner, Group Leader, Continuum Dynamics (CCS-2), Los Alamos National
Laboratory, for registering the octave.org domain name.

e James B. Rawlings, Professor, University of Wisconsin-Madison, Department of Chem-
ical and Biological Engineering.

e Richard Stallman, for writing GNU.

This project would not have been possible without the GNU software used in and to
produce Octave.

Citing Octave in Publications

In view of the many contributions made by numerous developers over many years it is
common courtesy to cite Octave in publications when it has been used during the course of
research or the preparation of figures. The citation function can automatically generate
a recommended citation text for Octave or any of its packages. See the help text below on
how to use citation.

citation

citation package
Display instructions for citing GNU Octave or its packages in publications.
When called without an argument, display information on how to cite the core GNU
Octave system.

When given a package name package, display information on citing the specific named
package. Note that some packages may not yet have instructions on how to cite them.

The GNU Octave developers and its active community of package authors have in-
vested a lot of time and effort in creating GNU Octave as it is today. Please give
credit where credit is due and cite GNU Octave and its packages when you use them.

How You Can Contribute to Octave

There are a number of ways that you can contribute to help make Octave a better system.
Perhaps the most important way to contribute is to write high-quality code for solving
new problems, and to make your code freely available for others to use. See http://www.
octave.org/get-involved.html for detailed information.

If you find Octave useful, consider providing additional funding to continue its develop-
ment. Even a modest amount of additional funding could make a significant difference in
the amount of time that is available for development and support.

Donations supporting Octave development may be made on the web at https://my.

fsf.org/donate/working-together/octave. These donations also help to support the
Free Software Foundation

octave.org
http://www.octave.org/get-involved.html
http://www.octave.org/get-involved.html
https://my.fsf.org/donate/working-together/octave
https://my.fsf.org/donate/working-together/octave

6 GNU Octave

If you’d prefer to pay by check or money order, you can do so by sending a check to the
FSF at the following address:

Free Software Foundation

51 Franklin Street, Suite 500
Boston, MA 02110-1335
USA

If you pay by check, please be sure to write “GNU Octave” in the memo field of your check.

If you cannot provide funding or contribute code, you can still help make Octave better
and more reliable by reporting any bugs you find and by offering suggestions for ways to
improve Octave. See Appendix D [Trouble], page 925, for tips on how to write useful bug
reports.

Distribution

Octave is free software. This means that everyone is free to use it and free to redistribute
it on certain conditions. Octave is not, however, in the public domain. It is copyrighted
and there are restrictions on its distribution, but the restrictions are designed to ensure
that others will have the same freedom to use and redistribute Octave that you have. The
precise conditions can be found in the GNU General Public License that comes with Octave
and that also appears in Appendix H [Copying], page 955.

To download a copy of Octave, please visit http://www.octave.org/download.html.

http://www.octave.org/download.html

1 A Brief Introduction to Octave

GNU Octave is a high-level language, primarily intended for numerical computations. It is
typically used for such problems as solving linear and nonlinear equations, numerical linear
algebra, statistical analysis, and for performing other numerical experiments. It may also
be used as a batch-oriented language for automated data processing.

Until recently GNU Octave provided a command-line interface only with graphical plots
displayed in separate windows. However, by default the current version runs with a graphical
user interface.

GNU Octave is freely redistributable software. You may redistribute it and/or modify
it under the terms of the GNU General Public License as published by the Free Software
Foundation. The GPL is included in this manual, see Appendix H [Copying], page 955.

This manual provides comprehensive documentation on how to install, run, use, and
extend GNU Octave. Additional chapters describe how to report bugs and help contribute
code.

This document corresponds to Octave version 4.2.0-rcl.

1.1 Running Octave

On most systems, Octave is started with the shell command ‘octave’. This starts the
graphical user interface (GUI). The central window in the GUI is the Octave command-line
interface. In this window Octave displays an initial message and then a prompt indicating
it is ready to accept input. If you have chosen the traditional command-line interface then
only the command prompt appears in the same window that was running a shell. In any
case, you can immediately begin typing Octave commands.

If you get into trouble, you can usually interrupt Octave by typing Control-C (written
C-c for short). C-c gets its name from the fact that you type it by holding down CTRL and
then pressing c. Doing this will normally return you to Octave’s prompt.

To exit Octave, type quit or exit at the Octave prompt.

On systems that support job control, you can suspend Octave by sending it a SIGTSTP
signal, usually by typing C-z.

1.2 Simple Examples

The following chapters describe all of Octave’s features in detail, but before doing that, it
might be helpful to give a sampling of some of its capabilities.

If you are new to Octave, we recommend that you try these examples to begin learning
Octave by using it. Lines marked like so, ‘octave:13>’, are lines you type, ending each
with a carriage return. Octave will respond with an answer, or by displaying a graph.

1.2.1 Elementary Calculations

Octave can easily be used for basic numerical calculations. Octave knows about arithmetic
operations (+,-,*,/), exponentiation ("), natural logarithms/exponents (log, exp), and the
trigonometric functions (sin, cos, ...). Moreover, Octave calculations work on real or
imaginary numbers (i,j). In addition, some mathematical constants such as the base of

8 GNU Octave

the natural logarithm (e) and the ratio of a circle’s circumference to its diameter (pi) are
pre-defined.

For example, to verify Euler’s Identity,

e’ =-1

type the following which will evaluate to -1 within the tolerance of the calculation.

octave:1> exp (ixpi)

1.2.2 Creating a Matrix

Vectors and matrices are the basic building blocks for numerical analysis. To create a new
matrix and store it in a variable so that you can refer to it later, type the command

octave:1> A = [1, 1, 2; 3, 5, 8; 13, 21, 34]

Octave will respond by printing the matrix in neatly aligned columns. Octave uses a comma
or space to separate entries in a row, and a semicolon or carriage return to separate one row
from the next. Ending a command with a semicolon tells Octave not to print the result of
the command. For example,

octave:2> B = rand (3, 2);

will create a 3 row, 2 column matrix with each element set to a random value between zero
and one.

To display the value of a variable, simply type the name of the variable at the prompt.
For example, to display the value stored in the matrix B, type the command

octave:3> B

1.2.3 Matrix Arithmetic

Octave has a convenient operator notation for performing matrix arithmetic. For example,
to multiply the matrix A by a scalar value, type the command

octave:4> 2 x A

To multiply the two matrices A and B, type the command
octave:5> A * B

and to form the matrix product ATA, type the command

octave:6> A’ *x A

1.2.4 Solving Systems of Linear Equations

Systems of linear equations are ubiquitous in numerical analysis. To solve the set of linear
equations Ax = b, use the left division operator, ‘\’:

x=A\D

This is conceptually equivalent to A~'b, but avoids computing the inverse of a matrix
directly.

If the coefficient matrix is singular, Octave will print a warning message and compute a
minimum norm solution.

Chapter 1: A Brief Introduction to Octave 9

A simple example comes from chemistry and the need to obtain balanced chemical
equations. Consider the burning of hydrogen and oxygen to produce water.

H,; + O, — H,0O

The equation above is not accurate. The Law of Conservation of Mass requires that the num-
ber of molecules of each type balance on the left- and right-hand sides of the equation. Writ-
ing the variable overall reaction with individual equations for hydrogen and oxygen one finds:

z1Hy + 2,05 — Hy0
H: 2x,4+0xy —2
O 0$1+2$2—>1

The solution in Octave is found in just three steps.
octave:1> A = [2, 0; 0, 2 1;
octave:2> b [2;117;
octave:3> x = A \ b

1.2.5 Integrating Differential Equations
Octave has built-in functions for solving nonlinear differential equations of the form

% = f(x,t), z(t =tg) = xg
For Octave to integrate equations of this form, you must first provide a definition of the
function f(x,t). This is straightforward, and may be accomplished by entering the function
body directly on the command line. For example, the following commands define the right-
hand side function for an interesting pair of nonlinear differential equations. Note that
while you are entering a function, Octave responds with a different prompt, to indicate that
it is waiting for you to complete your input.

octave:1> function xdot = f (x, t)

>

> r = 0.25;

> k =1.4;

> a 1.5;

> b 0.16;

> ¢ =0.9;

> d = 0.8;

>

> xdot(1l) = rkx(1)*(1 - x(1)/k) - a*xx(1)*x(2)/(1 + b*x(1));
> xdot(2) = cxaxx(1)*x(2)/(1 + b*x(1)) - d*x(2);

>
> endfunction

Given the initial condition
octave:2> x0 = [1; 2];

and the set of output times as a column vector (note that the first output time corresponds
to the initial condition given above)

octave:3> t = linspace (0, 50, 200)’;

10 GNU Octave

it is easy to integrate the set of differential equations:
octave:4> x = lsode ("f", x0, t);

The function 1sode uses the Livermore Solver for Ordinary Differential Equations, described
in A. C. Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, in: Scientific
Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pages 55—64.

1.2.6 Producing Graphical Output

To display the solution of the previous example graphically, use the command
octave:1> plot (t, x)

If you are using a graphical user interface, Octave will automatically create a separate
window to display the plot.

To save a plot once it has been displayed on the screen, use the print command. For
example,

print -dpdf foo.pdf

will create a file called foo.pdf that contains a rendering of the current plot in Portable
Document Format. The command

help print

explains more options for the print command and provides a list of additional output file
formats.

1.2.7 Editing What You Have Typed

At the Octave prompt, you can recall, edit, and reissue previous commands using Emacs-
or vi-style editing commands. The default keybindings use Emacs-style commands. For
example, to recall the previous command, press Control-p (written C-p for short). Doing
this will normally bring back the previous line of input. C-n will bring up the next line of
input, C-b will move the cursor backward on the line, C-f will move the cursor forward on
the line, etc.

A complete description of the command line editing capability is given in this manual,
see Section 2.4 [Command Line Editing], page 25.

1.2.8 Help and Documentation

Octave has an extensive help facility. The same documentation that is available in printed
form is also available from the Octave prompt, because both forms of the documentation
are created from the same input file.

In order to get good help you first need to know the name of the command that you want
to use. The name of this function may not always be obvious, but a good place to start is to
type help —-1list. This will show you all the operators, keywords, built-in functions, and
loadable functions available in the current session of Octave. An alternative is to search
the documentation using the lookfor function (described in Section 2.3 [Getting Help],
page 20).

Once you know the name of the function you wish to use, you can get more help on the
function by simply including the name as an argument to help. For example,

help plot

Chapter 1: A Brief Introduction to Octave 11

will display the help text for the plot function.

Octave sends output that is too long to fit on one screen through a pager like less or
more. Type a RET to advance one line, a SPC to advance one page, and q to quit the pager.

The part of Octave’s help facility that allows you to read the complete text of the printed
manual from within Octave normally uses a separate program called Info. When you invoke
Info you will be put into a menu driven program that contains the entire Octave manual.
Help for using Info is provided in this manual, see Section 2.3 [Getting Help|, page 20.

1.3 Conventions

This section explains the notation conventions that are used in this manual. You may want
to skip this section and refer back to it later.

1.3.1 Fonts

Examples of Octave code appear in this font or form: svd (a). Names that represent
variables or function arguments appear in this font or form: first-number. Commands
that you type at the shell prompt appear in this font or form: ‘octave --no-init-file’.
Commands that you type at the Octave prompt sometimes appear in this font or form: foo
—--bar —-baz. Specific keys on your keyboard appear in this font or form: RET.

1.3.2 Evaluation Notation

In the examples in this manual, results from expressions that you evaluate are indicated
with ‘=’. For example:

sqrt (2)
= 1.4142

You can read this as “sqrt (2) evaluates to 1.4142”.
In some cases, matrix values that are returned by expressions are displayed like this

(1, 2; 3, 4] == [1, 3; 2, 4]
= [1, 0; 0, 1]

and in other cases, they are displayed like this
eye (3)

in order to clearly show the structure of the result.

Sometimes to help describe one expression, another expression is shown that produces
identical results. The exact equivalence of expressions is indicated with ‘=’. For example:

rot90 ([1, 2; 3, 4], -1)

rot90 ([1, 2; 3, 4], 3)

rot90 ([1, 2; 3, 41, 7)

12 GNU Octave

1.3.3 Printing Notation

Many of the examples in this manual print text when they are evaluated. In this manual
the printed text resulting from an example is indicated by ‘ <’. The value that is returned
by evaluating the expression is displayed with ‘=’ (1 in the next example) and follows on
a separate line.

printf ("foo %s\n", "bar")
- foo bar
=1

1.3.4 Error Messages

Some examples signal errors. This normally displays an error message on your terminal.
Error messages are shown on a line beginning with error:.

fieldnames ([1, 2; 3, 4])
error: fieldnames: Invalid input argument

1.3.5 Format of Descriptions

Functions and commands are described in this manual in a uniform format. The first line
of a description contains the name of the item followed by its arguments, if any. If there
are multiple ways to invoke the function then each allowable form is listed.

The description follows on succeeding lines, sometimes with examples.

1.3.5.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is
followed on the same line by a list of parameters. The names used for the parameters are
also used in the body of the description.

After all of the calling forms have been enumerated, the next line is a concise one-sentence
summary of the function.

After the summary there may be documentation on the inputs and outputs, examples
of function usage, notes about the algorithm used, and references to related functions.

Here is a description of an imaginary function foo:

Chapter 1: A Brief Introduction to Octave 13

foo (x)
foo (x, y)
foo (x,y,...)
The function foo subtracts x from y, then adds the remaining arguments to the result.
If y is not supplied, then the number 19 is used by default.
Example:
foo (1, [3, 5], 3, 9
= [14, 16 1]
foo (5)
= 14

More generally,

foo (w, %, y, ...)

X—w+y+...

See also: bar

Any parameter whose name contains the name of a type (e.g., integer or matrix) is
expected to be of that type. Parameters named object may be of any type. Parameters
with other sorts of names (e.g., new_file) are discussed specifically in the description of
the function. In some sections, features common to parameters of several functions are
described at the beginning.

Functions in Octave may be defined in several different ways:

Function File
The function described is defined using Octave commands stored in a text file.
See Section 11.9 [Function Files|, page 187.

Built-in Function
The function described is written in a language like C++, C, or Fortran, and is
part of the compiled Octave binary.

Loadable Function
The function described is written in a language like C++, C, or Fortran. On
systems that support dynamic linking of user-supplied functions, it may be
automatically linked while Octave is running, but only if it is needed. See
Appendix A [External Code Interface|, page 861.

Mapping Function
The function described works element-by-element for matrix and vector argu-
ments.

Use which or exist to determine the category of a function and where it resides.

1.3.5.2 A Sample Command Description

Commands are functions that may be called without surrounding their arguments in paren-
theses. Command descriptions have a format similar to function descriptions. For example,
here is the description for Octave’s diary command:

14 GNU Octave

diary

diary on

diary off

diary filename
Record a list of all commands and the output they produce, mixed together just as
they appear on the terminal.

Valid options are:

on Start recording a session in a file called diary in the current working
directory.
off Stop recording the session in the diary file.

filename Record the session in the file named filename.
With no arguments, diary toggles the current diary state.

See also: history.

15

2 Getting Started

This chapter explains some of Octave’s basic features, including how to start an Octave ses-
sion, get help at the command prompt, edit the command line, and write Octave programs
that can be executed as commands from your shell.

2.1 Invoking Octave from the Command Line

Normally, Octave is used interactively by running the program ‘octave’ without any ar-
guments. Once started, Octave reads commands from the terminal until you tell it to
exit.

You can also specify the name of a file on the command line, and Octave will read and
execute the commands from the named file and then exit when it is finished.

You can further control how Octave starts by using the command-line options described
in the next section, and Octave itself can remind you of the options available. Type ‘octave
--help’ to display all available options and briefly describe their use (‘octave -h’is a shorter
equivalent).

2.1.1 Command Line Options

Here is a complete list of the command line options that Octave accepts.

--built-in-docstrings-file filename
Specify the name of the file containing documentation strings for the built-in
functions of Octave. This value is normally correct and should only need to
specified in extraordinary situations.

--debug

-d Enter parser debugging mode. Using this option will cause Octave’s parser to
print a lot of information about the commands it reads, and is probably only
useful if you are actually trying to debug the parser.

--debug-jit

Enable JIT compiler debugging and tracing.

-—doc-cache-file filename
Specify the name of the doc cache file to use. The value of filename specified
on the command line will override any value of 0CTAVE_DOC_CACHE_FILE found
in the environment, but not any commands in the system or user startup files
that use the doc_cache_file function.

-—echo-commands
-X Echo commands as they are executed.

--eval code
Evaluate code and exit when finished unless —-persist is also specified.

--exec-path path
Specify the path to search for programs to run. The value of path specified on
the command line will override any value of OCTAVE_EXEC_PATH found in the
environment, but not any commands in the system or user startup files that set
the built-in variable EXEC_PATH.

16 GNU Octave

--force-gui
Force the graphical user interface (GUI) to start.

--help
-h
-7 Print short help message and exit.

--image-path path
Add path to the head of the search path for images. The value of path specified
on the command line will override any value of OCTAVE_IMAGE_PATH found in
the environment, but not any commands in the system or user startup files that
set the built-in variable IMAGE_PATH.

-—info-file filename
Specify the name of the info file to use. The value of filename specified on
the command line will override any value of OCTAVE_INFO_FILE found in the
environment, but not any commands in the system or user startup files that
use the info_file function.

—-—info-program program
Specify the name of the info program to use. The value of program specified
on the command line will override any value of OCTAVE_INFO_PROGRAM found
in the environment, but not any commands in the system or user startup files
that use the info_program function.

-—interactive

-i Force interactive behavior. This can be useful for running Octave via a remote
shell command or inside an Emacs shell buffer. For another way to run Octave
within Emacs, see Appendix F [Emacs Octave Support], page 945.

--jit-compiler

Enable the JIT compiler used for accelerating loops.
--line-editing

Force readline use for command-line editing.

--no-gui Disable the graphical user interface (GUI) and use the command line interface
(CLI) instead.

--no-history
-H Disable recording of command-line history.
--no-init-file

Don’t read the initialization files ~/.octaverc and .octaverc.
--no-init-path

Don’t initialize the search path for function files to include default locations.
--no-line-editing

Disable command-line editing.
--no-site-file

Don’t read the site-wide octaverc initialization files.

Chapter 2: Getting Started 17

--no-window-system
-W Disable use of a windowing system including graphics. This forces a strictly
terminal-only environment.

--norc
-f Don’t read any of the system or user initialization files at startup. This is

equivalent to using both of the options —-no-init-file and --no-site-file.
--path path

-p path Add path to the head of the search path for function files. The value of path
specified on the command line will override any value of OCTAVE_PATH found
in the environment, but not any commands in the system or user startup files
that set the internal load path through one of the path functions.

--persist
Go to interactive mode after ——eval or reading from a file named on the com-
mand line.

--silent

--quiet

-q Don’t print the usual greeting and version message at startup.

--texi-macros-file filename
Specify the name of the file containing Texinfo macros for use by makeinfo.

-—traditional

--braindead
For compatibility with MATLAB, set initial values for user preferences to the
following values

pPS1 = ">> "

pPS2 = "
beep_on_error = true
confirm_recursive_rmdir = false
crash_dumps_octave_core = false
disable_diagonal _matrix = true
disable_permutation_matrix = true
disable_range = true
fixed_point_format = true
history_timestamp_format_string = "%%-— %D %I:%M %p —-%h"
page_screen_output = false
print_empty_dimensions = false
save_default_options = "-mat-binary"

struct_levels_to_print 0

and disable the following warnings

Octave:abbreviated-property-match
Octave:fopen-file-in-path
Octave:function-name-clash
Octave:load-file-in-path
Octave:possible-matlab-short-circuit-operator

18 GNU Octave

Note that this does not enable the Octave:language-extension warning,
which you might want if you want to be told about writing code that works in
Octave but not MATLAB (see [warning|, page 220, [warning_ids], page 221).

--verbose
-V Turn on verbose output.

--version
-v Print the program version number and exit.

file Execute commands from file. Exit when done unless --persist is also specified.

Octave also includes several functions which return information about the command line,
including the number of arguments and all of the options.

argv ()

Return the command line arguments passed to Octave.
For example, if you invoked Octave using the command
octave —--no-line-editing --silent

argv would return a cell array of strings with the elements -—no-line-editing and
--silent.

If you write an executable Octave script, argv will return the list of arguments passed
to the script. See Section 2.6 [Executable Octave Programs|, page 36, for an example
of how to create an executable Octave script.

program_name ()
Return the last component of the value returned by program_invocation_name.

See also: [program_invocation_-name|, page 18.

program_invocation_name ()
Return the name that was typed at the shell prompt to run Octave.

If executing a script from the command line (e.g., octave foo.m) or using an ex-
ecutable Octave script, the program name is set to the name of the script. See
Section 2.6 [Executable Octave Programs]|, page 36, for an example of how to create
an executable Octave script.

See also: [program_name|, page 18.

Here is an example of using these functions to reproduce the command line which invoked
Octave.

printf ("%s", program_name ());

arg_list = argv O;

for i = l:nargin

printf (" %s", arg_list{il});

endfor

printf ("\n");
See Section 6.2.3 [Indexing Cell Arrays|, page 116, for an explanation of how to retrieve
objects from cell arrays, and Section 11.2 [Defining Functions|, page 171, for information
about the variable nargin.

Chapter 2: Getting Started 19

2.1.2 Startup Files

When Octave starts, it looks for commands to execute from the files in the following list.
These files may contain any valid Octave commands, including function definitions.

octave-home/share/octave/site/m/startup/octaverc

where octave-home is the directory in which Octave is installed (the default
is /usr/local). This file is provided so that changes to the default Octave
environment can be made globally for all users at your site for all versions of
Octave you have installed. Care should be taken when making changes to this
file since all users of Octave at your site will be affected. The default file may
be overridden by the environment variable OCTAVE_SITE_INITFILE.

octave-home/share/octave/version/m/startup/octaverc

where octave-home is the directory in which Octave is installed (the default
is /usr/local), and version is the version number of Octave. This file is pro-
vided so that changes to the default Octave environment can be made glob-
ally for all users of a particular version of Octave. Care should be taken
when making changes to this file since all users of Octave at your site will
be affected. The default file may be overridden by the environment variable
OCTAVE_VERSION_INITFILE.

~/.octaverc

.octaverc

startup.m

This file is used to make personal changes to the default Octave environment.

This file can be used to make changes to the default Octave environment for a
particular project. Octave searches for this file in the current directory after it
reads ~/.octaverc. Any use of the cd command in the ~/.octaverc file will
affect the directory where Octave searches for .octaverc.

If you start Octave in your home directory, commands from the file
~/.octaverc will only be executed once.

This file is used to make personal changes to the default Octave environment. It
is executed for MATLAB compatibility, but ~/.octaverc is the preferred location
for configuration changes.

A message will be displayed as each of the startup files is read if you invoke Octave with
the —--verbose option but without the ——silent option.

2.2 Quitting Octave

Shutdown is initiated with the exit or quit commands (they are equivalent). Similar

to startup,

Octave has a shutdown process that can be customized by user script files.

During shutdown Octave will search for the script file finish.m in the function load path.
Commands to save all workspace variables or cleanup temporary files may be placed there.
Additional functions to execute on shutdown may be registered with atexit.

exit

exit (status)

20 GNU Octave

quit

quit (status)
Exit the current Octave session.
If the optional integer value status is supplied, pass that value to the operating system
as Octave’s exit status. The default value is zero.

When exiting, Octave will attempt to run the m-file finish.m if it exists. User
commands to save the workspace or clean up temporary files may be placed in that
file. Alternatively, another m-file may be scheduled to run using atexit.

See also: [atexit], page 20.

atexit (fcn)
atexit (fcn, flag)
Register a function to be called when Octave exits.

For example,

function last_words ()
disp ("Bye bye");

endfunction

atexit ("last_words");

will print the message "Bye bye" when Octave exits.

The additional argument flag will register or unregister fcn from the list of functions
to be called when Octave exits. If flag is true, the function is registered, and if flag
is false, it is unregistered. For example, after registering the function last_words
above,

atexit ("last_words", false);

will remove the function from the list and Octave will not call 1last_words when it
exits.

Note that atexit only removes the first occurrence of a function from the list, so if a
function was placed in the list multiple times with atexit, it must also be removed
from the list multiple times.

See also: [quit], page 19.

2.3 Commands for Getting Help

The entire text of this manual is available from the Octave prompt via the command doc.
In addition, the documentation for individual user-written functions and variables is also
available via the help command. This section describes the commands used for reading
the manual and the documentation strings for user-supplied functions and variables. See
Section 11.9 [Function Files], page 187, for more information about how to document the
functions you write.

help name
help --list
help .
help
Display the help text for name.

Chapter 2: Getting Started 21

For example, the command help help prints a short message describing the help
command.

Given the single argument --1ist, list all operators, keywords, built-in functions,
and loadable functions available in the current session of Octave.

Given the single argument ., list all operators available in the current session of
Octave.

If invoked without any arguments, help displays instructions on how to access help
from the command line.

The help command can provide information about most operators, but name must
be enclosed by single or double quotes to prevent the Octave interpreter from acting
on name. For example, help "+" displays help on the addition operator.

See also: [doc], page 21, [lookfor], page 21, [which], page 132, [info], page 22.

doc function_name

doc

Display documentation for the function function_name directly from an online version
of the printed manual, using the GNU Info browser.

If invoked without an argument, the manual is shown from the beginning.

For example, the command doc rand starts the GNU Info browser at the rand node
in the online version of the manual.

Once the GNU Info browser is running, help for using it is available using the com-
mand C-h.

See also: [help], page 20.

lookfor str

lookfor -all str

[fcn, helplstr] = lookfor (str)

[fcn, helplstr] = lookfor ("-all", str)

Search for the string str in the documentation of all functions in the current function
search path.

By default, lookfor looks for str in just the first sentence of the help string for each
function found. The entire help text of each function can be searched by using the
"-all" argument. All searches are case insensitive.

When called with no output arguments, lookfor prints the list of matching functions
to the terminal. Otherwise, the output argument fcns contains the function names
and helplstr contains the first sentence from the help string of each function.

Programming Note: The ability of lookfor to correctly identify the first sentence
of the help text is dependent on the format of the function’s help. All Octave core
functions are correctly formatted, but the same can not be guaranteed for external
packages and user-supplied functions. Therefore, the use of the "-all" argument
may be necessary to find related functions that are not a part of Octave.

The speed of lookup is greatly enhanced by having a cached documentation file. See
doc_cache_create for more information.

See also: |help], page 20, [doc|, page 21, [which]|, page 132, [path]|, page 191,
[doc_cache_create|, page 24.

22 GNU Octave

To see what is new in the current release of Octave, use the news function.

news
news package
Display the current NEWS file for Octave or an installed package.
When called without an argument, display the NEWS file for Octave.

When given a package name package, display the current NEWS file for that package.
See also: [ver|, page 846, [pkg], page 851.

info ()
Display contact information for the GNU Octave community.

warranty ()
Describe the conditions for copying and distributing Octave.

The following functions can be used to change which programs are used for displaying
the documentation, and where the documentation can be found.

val = info_file ()

old_val = info_file (new_val)

info_file (new_val, "local")
Query or set the internal variable that specifies the name of the Octave info file.
The default value is octave-home/info/octave.info, in which octave-home is the
root directory of the Octave installation. The default value may be overridden by the
environment variable OCTAVE_INFO_FILE, or the command line argument --info-
file FNAME.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [info_program]|, page 22, [doc], page 21, [help], page 20, [makeinfo_program]|,
page 23.

val = info_program ()

old_val = info_program (new_val)

info_program (new_val, "local")
Query or set the internal variable that specifies the name of the info program to run.
The default wvalue is octave-home/libexec/octave/version/exec/arch/info
in which octave-home is the root directory of the Octave installation, version
is the Octave version number, and arch is the system type (for example,
i686-pc-linux-gnu). The default value may be overridden by the environment
variable OCTAVE_INFO_PROGRAM, or the command line argument --info-program
NAME.
When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [info_file], page 22, [doc], page 21, [help], page 20, [makeinfo_program],
page 23.

Chapter 2: Getting Started 23

val = makeinfo_program ()

old_val = makeinfo_program (new_val)

makeinfo_program (new_val, "local")
Query or set the internal variable that specifies the name of the program that Octave
runs to format help text containing Texinfo markup commands.

The default value is makeinfo.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [texi_macros_file|, page 23, [info_file], page 22, [info_program], page 22, [doc],
page 21, [help], page 20.

val = texi_macros_file ()

old_val = texi_macros_file (new_val)

texi_macros_file (new_val, "local")
Query or set the internal variable that specifies the name of the file containing Tex-
info macros that are prepended to documentation strings before they are passed to
makeinfo.

The default value is octave-home/share/octave/version/etc/macros.texi, in
which octave-home is the root directory of the Octave installation, and version
is the Octave version number. The default value may be overridden by the
environment variable OCTAVE_TEXI_MACROS_FILE, or the command line argument
-—texi-macros—-file FNAME.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [makeinfo_program|, page 23.

val = doc_cache_file ()

old_val = doc_cache_file (new_val)

doc_cache_file (new_val, "local")
Query or set the internal variable that specifies the name of the Octave documentation
cache file.

A cache file significantly improves the performance of the lookfor command. The
default value is octave-home/share/octave/version/etc/doc-cache, in which
octave-home is the root directory of the Octave installation, and version is the Octave
version number. The default value may be overridden by the environment variable
OCTAVE_DOC_CACHE_FILE, or the command line argument --doc-cache-file FNAME.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [doc_cache_create], page 24, [lookfor|, page 21, [info_program], page 22,
[doc], page 21, [help], page 20, [makeinfo_program]|, page 23.

See also: [lookfor]|, page 21.

24 GNU Octave

val = built_in_docstrings_file ()

old_val = built_in_docstrings_file (new_val)

built_in_docstrings_file (new_val, "local")
Query or set the internal variable that specifies the name of the file containing doc-
strings for built-in Octave functions.

The default value 1is octave-home/share/octave/version/etc/built-in-
docstrings, in which octave-home is the root directory of the Octave installation,
and version is the Octave version number. The default value may be overridden by
the environment variable OCTAVE_BUILT_IN_DOCSTRINGS_FILE, or the command
line argument --built-in-docstrings-file FNAME.

Note: This variable is only used when Octave is initializing itself. Modifying it during
a running session of Octave will have no effect.

val = suppress_verbose_help_message ()

old_val = suppress_verbose_help_message (new_val)

suppress_verbose_help_message (new_val, "local")
Query or set the internal variable that controls whether Octave will add additional
help information to the end of the output from the help command and usage messages
for built-in commands.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

The following functions are principally used internally by Octave for generating the docu-
mentation. They are documented here for completeness and because they may occasionally
be useful for users.

doc_cache_create (out_file, directory)
doc_cache_create (out_file)
doc_cache_create ()

Generate documentation cache for all functions in directory.

A documentation cache is generated for all functions in directory which may be a
single string or a cell array of strings. The cache is used to speed up the function
lookfor.

The cache is saved in the file out_file which defaults to the value doc-cache if not
given.

If no directory is given (or it is the empty matrix), a cache for built-in functions,
operators, and keywords is generated.

See also: [doc_cache_file], page 23, [lookfor|, page 21, [path], page 191.

[text, format] = get_help_text (name)
Return the raw help text of function name.

The raw help text is returned in text and the format in format The format is a string
which is one of "texinfo", "html", or "plain text".

See also: [get_help_text_from_file], page 25.

Chapter 2: Getting Started 25

[text, format] = get_help_text_from_file (fname)
Return the raw help text from the file fname.

The raw help text is returned in text and the format in format The format is a string
which is one of "texinfo", "html", or "plain text".

See also: [get_help_text]|, page 24.

text = get_first_help_sentence (name)

text = get_first_help_sentence (name, max_len)

[text, status] = get_first_help_sentence (...)
Return the first sentence of a function’s help text.

The first sentence is defined as the text after the function declaration until either the
first period (".") or the first appearance of two consecutive newlines ("\n\n"). The
text is truncated to a maximum length of max_len, which defaults to 80.

The optional output argument status returns the status reported by makeinfo. If
only one output argument is requested, and status is nonzero, a warning is displayed.

As an example, the first sentence of this help text is

get_first_help_sentence ("get_first_help_sentence")
-1 ans = Return the first sentence of a function’s help text.

2.4 Command Line Editing

Octave uses the GNU Readline library to provide an extensive set of command-line editing
and history features. Only the most common features are described in this manual. In
addition, all of the editing functions can be bound to different key strokes at the user’s
discretion. This manual assumes no changes from the default Emacs bindings. See the
GNU Readline Library manual for more information on customizing Readline and for a
complete feature list.

To insert printing characters (letters, digits, symbols, etc.), simply type the character.
Octave will insert the character at the cursor and advance the cursor forward.

Many of the command-line editing functions operate using control characters. For ex-
ample, the character Control-a moves the cursor to the beginning of the line. To type
C-a, hold down CTRL and then press a. In the following sections, control characters such as
Control-a are written as C-a.

Another set of command-line editing functions use Meta characters. To type M-u, hold
down the META key and press u. Depending on the keyboard, the META key may be labeled
ALT or even WINDOWS. If your terminal does not have a META key, you can still type Meta
characters using two-character sequences starting with ESC. Thus, to enter M-u, you would
type ESC u. The ESC character sequences are also allowed on terminals with real Meta keys.
In the following sections, Meta characters such as Meta-u are written as M-u.

2.4.1 Cursor Motion

The following commands allow you to position the cursor.
C-b Move back one character.

Cc-f Move forward one character.

26 GNU Octave

BACKSPACE
Delete the character to the left of the cursor.
DEL Delete the character underneath the cursor.
c-d Delete the character underneath the cursor.
M-f Move forward a word.
M-b Move backward a word.
C-a Move to the start of the line.
C-e Move to the end of the line.
Cc-1 Clear the screen, reprinting the current line at the top.
C—_
c-/ Undo the last action. You can undo all the way back to an empty line.
M-r Undo all changes made to this line. This is like typing the ‘undo’ command

enough times to get back to the beginning.

The above table describes the most basic possible keystrokes that you need in order to
do editing of the input line. On most terminals, you can also use the left and right arrow
keys in place of C-f and C-b to move forward and backward.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

The function clc will allow you to clear the screen from within Octave programs.
clc ()

home ()
Clear the terminal screen and move the cursor to the upper left corner.

2.4.2 Killing and Yanking

Killing text means to delete the text from the line, but to save it away for later use, usually
by yanking it back into the line. If the description for a command says that it ‘kills’ text,
then you can be sure that you can get the text back in a different (or the same) place later.

Here is the list of commands for killing text.
C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or if between words, to the
end of the next word.

M-DEL Kill from the cursor to the start of the previous word, or if between words, to
the start of the previous word.

C-w Kill from the cursor to the previous whitespace. This is different than M-DEL
because the word boundaries differ.

And, here is how to yank the text back into the line. Yanking means to copy the
most-recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

Chapter 2: Getting Started 27

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it in one
clean sweep. The kill ring is not line specific; the text that you killed on a previously typed
line is available to be yanked back later, when you are typing another line.

2.4.3 Commands for Changing Text

The following commands can be used for entering characters that would otherwise have a
special meaning (e.g., TAB, C-q, etc.), or for quickly correcting typing mistakes.

C—q

C-v Add the next character that you type to the line verbatim. This is how to insert
things like C-q for example.

M-TAB Insert a tab character.

C-t Drag the character before the cursor forward over the character at the cursor,
also moving the cursor forward. If the cursor is at the end of the line, then
transpose the two characters before it.

M-t Drag the word behind the cursor past the word in front of the cursor moving
the cursor over that word as well.

M-u Uppercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-1 Lowercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-c Uppercase the character following the cursor (or the beginning of the next word

if the cursor is between words), moving the cursor to the end of the word.

2.4.4 Letting Readline Type for You

The following commands allow Octave to complete command and variable names for you.

TAB Attempt to do completion on the text before the cursor. Octave can complete
the names of commands and variables.

M-7? List the possible completions of the text before the cursor.

val = completion_append_char ()

old_val = completion_append_char (new_val)

completion_append_char (new_val, "local")
Query or set the internal character variable that is appended to successful command-
line completion attempts.

The default value is " " (a single space).

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

28 GNU Octave

completion_matches (hint)
Generate possible completions given hint.

This function is provided for the benefit of programs like Emacs which might be
controlling Octave and handling user input. The current command number is not
incremented when this function is called. This is a feature, not a bug.

2.4.5 Commands for Manipulating the History

Octave normally keeps track of the commands you type so that you can recall previous
commands to edit or execute them again. When you exit Octave, the most recent commands
you have typed, up to the number specified by the variable history_size, are saved in a
file. When Octave starts, it loads an initial list of commands from the file named by the
variable history_file.

Here are the commands for simple browsing and searching the history list.

LFD

RET Accept the current line regardless of where the cursor is. If the line is non-
empty, add it to the history list. If the line was a history line, then restore the
history line to its original state.

C-p Move ‘up’ through the history list.

C-n Move ‘down’ through the history list.

M-< Move to the first line in the history.

M-> Move to the end of the input history, i.e., the line you are entering!

C-r Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary. This is an incremental search.

C-s Search forward starting at the current line and moving ‘down’ through the

history as necessary.

On most terminals, you can also use the up and down arrow keys in place of C-p and
C-n to move through the history list.

In addition to the keyboard commands for moving through the history list, Octave
provides three functions for viewing, editing, and re-running chunks of commands from the
history list.

history

history optl ...

h = history ()

h = history (opti, ...)
If invoked with no arguments, history displays a list of commands that you have
executed.

Valid options are:

n
-n Display only the most recent n lines of history.

-c Clear the history list.

Chapter 2: Getting Started 29

-q Don’t number the displayed lines of history. This is useful for cutting and
pasting commands using the X Window System.

-r file Read the file file, appending its contents to the current history list. If the
name is omitted, use the default history file (normally ~/.octave_hist).

-w file Write the current history to the file file. If the name is omitted, use the
default history file (normally ~/.octave_hist).

For example, to display the five most recent commands that you have typed without
displaying line numbers, use the command history -q 5.

If invoked with a single output argument, the history will be saved to that argument
as a cell string and will not be output to screen.

See also: [edit_history], page 29, [run_history], page 29.

edit_history
edit_history cmd_number
edit_history first last
Edit the history list using the editor named by the variable EDITOR.

The commands to be edited are first copied to a temporary file. When you exit
the editor, Octave executes the commands that remain in the file. It is often more
convenient to use edit_history to define functions rather than attempting to enter
them directly on the command line. The block of commands is executed as soon as
you exit the editor. To avoid executing any commands, simply delete all the lines
from the buffer before leaving the editor.

When invoked with no arguments, edit the previously executed command; With one
argument, edit the specified command cmd_number; With two arguments, edit the
list of commands between first and last. Command number specifiers may also be
negative where -1 refers to the most recently executed command. The following are
equivalent and edit the most recently executed command.

edit_history
edit_history -1
When using ranges, specifying a larger number for the first command than the last

command reverses the list of commands before they are placed in the buffer to be
edited.

See also: [run_history], page 29, [history], page 28.

run_history
run_history cmd_number
run_history first last

Run commands from the history list.

When invoked with no arguments, run the previously executed command;
With one argument, run the specified command cmd_number;

With two arguments, run the list of commands between first and last. Command
number specifiers may also be negative where -1 refers to the most recently executed
command. For example, the command

30 GNU Octave

run_history
OR
run_history -1

executes the most recent command again. The command
run_history 13 169
executes commands 13 through 169.

Specifying a larger number for the first command than the last command reverses the
list of commands before executing them. For example:

disp (1)
disp (2)
run_history -1 -2
=

2

1

See also: [edit_history], page 29, [history], page 28.
Octave also allows you customize the details of when, where, and how history is saved.

val = history_save ()

old_val = history_save (new_val)

history_save (new_val, "local")
Query or set the internal variable that controls whether commands entered on the
command line are saved in the history file.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [history_control], page 30, [history_file], page 31, [history_size|, page 31,

9

[history_timestamp_format_string], page 31.

val = history_control ()

old_val = history_control (new_val)
Query or set the internal variable that specifies how commands are saved to the
history list.

The default value is an empty character string, but may be overridden by the envi-
ronment variable 0CTAVE_HISTCONTROL.

The value of history_control is a colon-separated list of values controlling how
commands are saved on the history list. If the list of values includes ignorespace,
lines which begin with a space character are not saved in the history list. A value of
ignoredups causes lines matching the previous history entry to not be saved. A value
of ignoreboth is shorthand for ignorespace and ignoredups. A value of erasedups
causes all previous lines matching the current line to be removed from the history list
before that line is saved. Any value not in the above list is ignored. If history_
control is the empty string, all commands are saved on the history list, subject to
the value of history_save.

See also: |history_file], page 31, [history_size|, page 31, [history_timestamp_format_string] J]
page 31, [history_save|, page 30.

Chapter 2: Getting Started 31

val = history_file ()

old_val = history_file (new_val)
Query or set the internal variable that specifies the name of the file used to store
command history.

The default value is “/.octave_hist, but may be overridden by the environment
variable OCTAVE_HISTFILE.

See also: |history_size|, page 31, [history_save|, page 30, [history_timestamp_format_string]]
page 31.

val = history_size ()

old_val = history_size (new_val)
Query or set the internal variable that specifies how many entries to store in the
history file.

The default value is 1000, but may be overridden by the environment variable
OCTAVE_HISTSIZE.

See also: [history_file], page 31, [history_timestamp_format_string|, page 31,
[history_save|, page 30.

val = history_timestamp_format_string ()
old_val = history_timestamp_format_string (new_val)
history_timestamp_format_string (new_val, "local")
Query or set the internal variable that specifies the format string for the comment
line that is written to the history file when Octave exits.

The format string is passed to strftime. The default value is
"# Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USERQHOST>"

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [strftime], page 807, [history_file], page 31, [history_size], page 31,
[history_save|, page 30.

val = EDITOR ()
old_val = EDITOR (new_val)
EDITOR (new_val, "local")
Query or set the internal variable that specifies the default text editor.

The default value is taken from the environment variable EDITOR when Octave starts.
If the environment variable is not initialized, EDITOR will be set to "emacs".

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [edit], page 187, [edit_history], page 29.

32 GNU Octave

2.4.6 Customizing readline

Octave uses the GNU Readline library for command-line editing and history features. Read-
line is very flexible and can be modified through a configuration file of commands (See the
GNU Readline library for the exact command syntax). The default configuration file is
normally ~/.inputrc.

Octave provides two commands for initializing Readline and thereby changing the com-
mand line behavior.

readline_read_init_file (file)
Read the readline library initialization file file.
If file is omitted, read the default initialization file (normally ~/.inputrc).

See Section “Readline Init File” in GNU Readline Library, for details.

See also: [readline_re_read_init_file|, page 32.

readline_re_read_init_file ()
Re-read the last readline library initialization file that was read.

See Section “Readline Init File” in GNU Readline Library, for details.

See also: [readline_read_init_file|, page 32.

2.4.7 Customizing the Prompt

The following variables are available for customizing the appearance of the command-line
prompts. Octave allows the prompt to be customized by inserting a number of backslash-
escaped special characters that are decoded as follows:

\t’ The time.

‘\d’ The date.

“\n’ Begins a new line by printing the equivalent of a carriage return followed by a
line feed.

‘\s’ The name of the program (usually just ‘octave’).

Aw’ The current working directory.

AW The basename of the current working directory.

Au’ The username of the current user.

‘\h’ The hostname, up to the first ‘..

‘\H’ The hostname.

\# The command number of this command, counting from when Octave starts.

A\ The history number of this command. This differs from ‘\#’ by the number of
commands in the history list when Octave starts.

\$’ If the effective UID is 0, a ‘#’, otherwise a ‘$’.

‘\nnn’ The character whose character code in octal is nnn.

AN A backslash.

Chapter 2: Getting Started 33

val = PS1 ()
old_val = PS1 (new_val)
PS1 (new_val, "local")
Query or set the primary prompt string.

When executing interactively, Octave displays the primary prompt when it is ready
to read a command.

The default value of the primary prompt string is "octave:\#> ". To change it, use
a command like

PS1 ("\\u@\\H> ")

which will result in the prompt ‘boris@kremvax> ’ for the user ‘boris’ logged in
on the host ‘kremvax.kgb.su’. Note that two backslashes are required to enter a
backslash into a double-quoted character string. See Chapter 5 [Strings|, page 67.

You can also use ANSI escape sequences if your terminal supports them. This can be
useful for coloring the prompt. For example,

PS1 (°\[\033[01;31m\]\s:\#> \[\033[0m\]*)
will give the default Octave prompt a red coloring.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [PS2], page 33, [PS4], page 33.

val = PS2 ()
old_val = PS2 (new_val)
PS2 (new_val, "local")
Query or set the secondary prompt string.

The secondary prompt is printed when Octave is expecting additional input to com-
plete a command. For example, if you are typing a for loop that spans several lines,
Octave will print the secondary prompt at the beginning of each line after the first.
The default value of the secondary prompt string is "> ".

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [PS1], page 32, [PS4], page 33.

val = PS4 ()

old_val = PS4 (new_val)

PS4 (new_val, "local")
Query or set the character string used to prefix output produced when echoing com-
mands is enabled.

The default value is "+ ". See Section 2.4.8 [Diary and Echo Commands]|, page 34,
for a description of echoing commands.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

34 GNU Octave

See also: [echo], page 34, [echo_executing_commands|, page 34, [PS1], page 32, [PS2],
page 33.

2.4.8 Diary and Echo Commands

Octave’s diary feature allows you to keep a log of all or part of an interactive session by
recording the input you type and the output that Octave produces in a separate file.

diary

diary on

diary off

diary filename
Record a list of all commands and the output they produce, mixed together just as
they appear on the terminal.

Valid options are:

on Start recording a session in a file called diary in the current working
directory.
off Stop recording the session in the diary file.

filename Record the session in the file named filename.
With no arguments, diary toggles the current diary state.

See also: [history|, page 28, [evalc], page 155.

9

Sometimes it is useful to see the commands in a function or script as they are being
evaluated. This can be especially helpful for debugging some kinds of problems.

echo
echo on
echo off
echo on all
echo off all
Control whether commands are displayed as they are executed.

Valid options are:

on Enable echoing of commands as they are executed in script files.

off Disable echoing of commands as they are executed in script files.

on all Enable echoing of commands as they are executed in script files and
functions.

off all Disable echoing of commands as they are executed in script files and
functions.

With no arguments, echo toggles the current echo state.

val = echo_executing_commands ()
old_val = echo_executing_commands (new_val)
echo_executing_commands (new_val, "local")

Query or set the internal variable that controls the echo state.

Chapter 2: Getting Started 35

It may be the sum of the following values:

1 Echo commands read from script files.
2 Echo commands from functions.
4 Echo commands read from command line.

More than one state can be active at once. For example, a value of 3 is equivalent to
the command echo on all.

The value of echo_executing_commands may be set by the echo command or the
command line option --echo-commands.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

2.5 How Octave Reports Errors

Octave reports two kinds of errors for invalid programs.
A parse error occurs if Octave cannot understand something you have typed. For exam-
ple, if you misspell a keyword,
octave:13> function y = f (x) y = x***2; endfunction
Octave will respond immediately with a message like this:

parse error:
syntax error

>>> function y = £ (x) y = x***2; endfunction

For most parse errors, Octave uses a caret (‘~’) to mark the point on the line where it was
unable to make sense of your input. In this case, Octave generated an error message because

the keyword for exponentiation (**) was misspelled. It marked the error at the third ‘*’
because the code leading up to this was correct but the final ‘*’ was not understood.

Another class of error message occurs at evaluation time. These errors are called run-time
errors, or sometimes evaluation errors, because they occur when your program is being run,
or evaluated. For example, if after correcting the mistake in the previous function definition,
you type

octave:13> f ()
Octave will respond with

error: ‘x’ undefined near line 1 column 24
error: called from:
error: f at line 1, column 22

This error message has several parts, and gives quite a bit of information to help you locate
the source of the error. The messages are generated from the point of the innermost error,
and provide a traceback of enclosing expressions and function calls.

In the example above, the first line indicates that a variable named ‘x’ was found to be
undefined near line 1 and column 24 of some function or expression. For errors occurring

36 GNU Octave

within functions, lines are counted from the beginning of the file containing the function
definition. For errors occurring outside of an enclosing function, the line number indicates
the input line number, which is usually displayed in the primary prompt string.

The second and third lines of the error message indicate that the error occurred within
the function f. If the function £ had been called from within another function, for example,
g, the list of errors would have ended with one more line:

error: g at line 1, column 17

These lists of function calls make it fairly easy to trace the path your program took
before the error occurred, and to correct the error before trying again.

2.6 Executable Octave Programs

Once you have learned Octave, you may want to write self-contained Octave scripts, using
the ‘#!” script mechanism. You can do this on GNU systems and on many Unix systems!.

Self-contained Octave scripts are useful when you want to write a program which users
can invoke without knowing that the program is written in the Octave language. Octave
scripts are also used for batch processing of data files. Once an algorithm has been developed
and tested in the interactive portion of Octave, it can be committed to an executable script
and used again and again on new data files.

As a trivial example of an executable Octave script, you might create a text file named
hello, containing the following lines:

#! octave-interpreter—name -qf
a sample Octave program
printf ("Hello, world!\n");

(where octave-interpreter-name should be replaced with the full path and name of your
Octave binary). Note that this will only work if ‘#!” appears at the very beginning of the
file. After making the file executable (with the chmod command on Unix systems), you can
simply type:

hello
at the shell, and the system will arrange to run Octave as if you had typed:

octave hello

The line beginning with ‘#!’ lists the full path and filename of an interpreter to be run,
and an optional initial command line argument to pass to that interpreter. The operating
system then runs the interpreter with the given argument and the full argument list of
the executed program. The first argument in the list is the full filename of the Octave
executable. The rest of the argument list will either be options to Octave, or data files, or
both. The ‘-qf’ options are usually specified in stand-alone Octave programs to prevent
them from printing the normal startup message, and to keep them from behaving differently
depending on the contents of a particular user’s “/.octaverc file. See Section 2.1 [Invoking
Octave from the Command Line], page 15.

Note that some operating systems may place a limit on the number of characters that
are recognized after ‘#!’. Also, the arguments appearing in a ‘#!’ line are parsed differently

1 The ‘#!” mechanism works on Unix systems derived from Berkeley Unix, System V Release 4, and some
System V Release 3 systems.

Chapter 2: Getting Started 37

by various shells/systems. The majority of them group all the arguments together in one
string and pass it to the interpreter as a single argument. In this case, the following script:

#! octave-interpreter-name -q -f # comment
is equivalent to typing at the command line:
octave "-q -f # comment"

which will produce an error message. Unfortunately, it is not possible for Octave to deter-
mine whether it has been called from the command line or from a ‘#!’ script, so some care
is needed when using the ‘#!’ mechanism.

Note that when Octave is started from an executable script, the built-in function argv
returns a cell array containing the command line arguments passed to the executable Octave
script, not the arguments passed to the Octave interpreter on the ‘#!’ line of the script. For
example, the following program will reproduce the command line that was used to execute
the script, not ‘-qf’.

#! /bin/octave -qf
printf ("¥s", program_name ());
arg_list = argv (;
for i = 1l:nargin

printf (" %s", arg_list{i});
endfor
printf ("\n");

2.7 Comments in Octave Programs

A comment is some text that is included in a program for the sake of human readers, and
which is NOT an executable part of the program. Comments can explain what the program
does, and how it works. Nearly all programming languages have provisions for comments,
because programs are typically hard to understand without them.

2.7.1 Single Line Comments

In the Octave language, a comment starts with either the sharp sign character, ‘#’, or the
percent symbol ‘%’ and continues to the end of the line. Any text following the sharp sign
or percent symbol is ignored by the Octave interpreter and not executed. The following
example shows whole line and partial line comments.

function countdown

Count down for main rocket engines

disp (3);

disp (2);

disp (1);

disp ("Blast 0ff!"); # Rocket leaves pad
endfunction

2.7.2 Block Comments

Entire blocks of code can be commented by enclosing the code between matching ‘#{’ and
‘“#}’ or ‘%{" and ‘/%}’ markers. For example,

38 GNU Octave

function quick_countdown
Count down for main rocket engines
disp (3);
#{
disp (2);
disp (1);
#3}
disp ("Blast Off!"); # Rocket leaves pad
endfunction

will produce a very quick countdown from ’3’ to "Blast Off" as the lines "disp (2);"
and "disp (1) ;" won’t be executed.

The block comment markers must appear alone as the only characters on a line (excepting
whitespace) in order to be parsed correctly.

2.7.3 Comments and the Help System

The help command (see Section 2.3 [Getting Help], page 20) is able to find the first block
of comments in a function and return those as a documentation string. This means that the
same commands used to get help on built-in functions are available for properly formatted
user-defined functions. For example, after defining the function f below,

function xdot = f (x, t)

usage: f (x, t)

#

This function defines the right-hand
side functions for a set of nonlinear
differential equations.

r = 0.25;

endfunction
the command help f produces the output
usage: f (x, t)

This function defines the right-hand
side functions for a set of nonlinear
differential equations.

Although it is possible to put comment lines into keyboard-composed, throw-away Oc-
tave programs, it usually isn’t very useful because the purpose of a comment is to help you
or another person understand the program at a later time.

The help parser currently only recognizes single line comments (see Section 2.7.1 [Single
Line Comments|, page 37) and not block comments for the initial help text.

39

3 Data Types

All versions of Octave include a number of built-in data types, including real and complex
scalars and matrices, character strings, a data structure type, and an array that can contain
all data types.

It is also possible to define new specialized data types by writing a small amount of C++
code. On some systems, new data types can be loaded dynamically while Octave is running,
so it is not necessary to recompile all of Octave just to add a new type. See Appendix A
[External Code Interface|, page 861, for more information about Octave’s dynamic linking
capabilities. Section 3.2 [User-defined Data Types|, page 44, describes what you must do
to define a new data type for Octave.

typeinfo ()

typeinfo (expr)
Return the type of the expression expr, as a string.
If expr is omitted, return a cell array of strings containing all the currently installed
data types.

See also: [class|, page 39, [isa], page 39.

3.1 Built-in Data Types

The standard built-in data types are real and complex scalars and matrices, ranges, char-
acter strings, a data structure type, and cell arrays. Additional built-in data types may
be added in future versions. If you need a specialized data type that is not currently pro-
vided as a built-in type, you are encouraged to write your own user-defined data type and
contribute it for distribution in a future release of Octave.

The data type of a variable can be determined and changed through the use of the
following functions.

classname = class (obj)

class (s, id)

class (s, id, p, ...)
Return the class of the object obj, or create a class with fields from structure s and
name (string) id.

Additional arguments name a list of parent classes from which the new class is derived.
See also: [typeinfo|, page 39, [isa], page 39.

isa (obj, classname)
Return true if obj is an object from the class classname.

classname may also be one of the following class categories:
"float" Floating point value comprising classes "double" and "single".
"integer"

Integer value comprising classes (u)int8, (u)int16, (u)int32, (u)int64.
"numeric"

Numeric value comprising either a floating point or integer value.

40 GNU Octave

If classname is a cell array of string, a logical array of the same size is returned,
containing true for each class to which obj belongs to.

See also: [class]|, page 39, [typeinfo], page 39.

cast (val, "type")
Convert val to data type type.

val must be one of the numeric classes:

"double"
"single"
"logical"
n Char"
"int8"
"int16"
"int32"
"int64"
"uint8"
"uinti6"
"uint32"
"uint64"

The value val may be modified to fit within the range of the new type.
Examples:

cast (-5, "uint8")
= 0

cast (300, "int8")
= 127

See also: [typecast], page 40, [int8], page 54, [uint8], page 55, [int16], page 55, [uint16],
page 55, [int32], page 55, [uint32], page 55, [int64], page 55, [uint64], page 55, [double],
page 47, [single], page 53, [logical], page 60, [char]|, page 71, [class], page 39, [typeinfo],
page 39.

y = typecast (x, "class")
Return a new array y resulting from interpreting the data of x in memory as data of
the numeric class class.

Both the class of x and class must be one of the built-in numeric classes:

Chapter 3: Data Types 41

"logical"

"char"

"int8"

"int16"

"int32"

"int64"

"uint8"

"uintie"
"uint32"
"uint64"
"double"
"single"

"double complex"
"single complex"

the last two are only used with class; they indicate that a complex-valued result is
requested. Complex arrays are stored in memory as consecutive pairs of real numbers.
The sizes of integer types are given by their bit counts. Both logical and char are
typically one byte wide; however, this is not guaranteed by C++. If your system is
IEEE conformant, single and double will be 4 bytes and 8 bytes wide, respectively.
"logical" is not allowed for class.

If the input is a row vector, the return value is a row vector, otherwise it is a column
vector.

If the bit length of x is not divisible by that of class, an error occurs.
An example of the use of typecast on a little-endian machine is

x = uint16 ([1, 65535]);
typecast (x, "uint8")
= [1, 0, 255, 255]

See also: [cast], page 40, [bitpack], page 41, [bitunpack|, page 42, [swapbytes]
page 41.

)

swapbytes (x)
Swap the byte order on values, converting from little endian to big endian and vice
versa.

For example:

swapbytes (uint16 (1:4))
= [256 512 768 1024]

See also: [typecast], page 40, [cast], page 40.
y = bitpack (x, class)

Return a new array y resulting from interpreting the logical array x as raw bit patterns
for data of the numeric class class.

class must be one of the built-in numeric classes:

42 GNU Octave

"double"

"single"

"double complex"

"single complex"

"Char“

"int8"

"int16"

"int32"

"int64"

"uint8"

"uint16"

"uint32"

"uint64"
The number of elements of x should be divisible by the bit length of class. If it is
not, excess bits are discarded. Bits come in increasing order of significance, i.e., x(1)
is bit 0, x(2) is bit 1, etc.

The result is a row vector if x is a row vector, otherwise it is a column vector.
See also: [bitunpack], page 42, [typecast], page 40.

y = bitunpack (x)
Return a logical array y corresponding to the raw bit patterns of x.
x must belong to one of the built-in numeric classes:

"double"
"single"
"char"
"int8"
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"

The result is a row vector if x is a row vector; otherwise, it is a column vector.

See also: [bitpack], page 41, [typecast], page 40.
3.1.1 Numeric Objects

Octave’s built-in numeric objects include real, complex, and integer scalars and matrices.
All built-in floating point numeric data is currently stored as double precision numbers.
On systems that use the IEEE floating point format, values in the range of approximately
2.2251 x 1073% t0 1.7977 x 103%® can be stored, and the relative precision is approximately
2.2204 x 107!%. The exact values are given by the variables realmin, realmax, and eps,
respectively.

Matrix objects can be of any size, and can be dynamically reshaped and resized. It is
easy to extract individual rows, columns, or submatrices using a variety of powerful indexing
features. See Section 8.1 [Index Expressions]|, page 135.

Chapter 3: Data Types 43

See Chapter 4 [Numeric Data Types|, page 47, for more information.

3.1.2 Missing Data

It is possible to represent missing data explicitly in Octave using NA (short for “Not Avail-
able”). Missing data can only be represented when data is represented as floating point
numbers. In this case missing data is represented as a special case of the representation of

NA

NA (n)

NA (n, m)

NA (n, m k, ...)

NA (..., class)
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the
special constant used to designate missing values.
Note that NA always compares not equal to NA (NA != NA). To find NA values, use
the isna function.
When called with no arguments, return a scalar with the value ‘NA’.
When called with a single argument, return a square matrix with the dimension
specified.
When called with more than one scalar argument the first two arguments are taken as
the number of rows and columns and any further arguments specify additional matrix
dimensions.
The optional argument class specifies the return type and may be either "double" or
"single".
See also: [isnal, page 43.

isna (x)

Return a logical array which is true where the elements of x are NA (missing) values
and false where they are not.
For example:
isna ([13, Inf, NA, NaN])
= [0,0,1,0]1]

See also: [isnan], page 436, [isinf], page 436, [isfinite|, page 437.
3.1.3 String Objects

A character string in Octave consists of a sequence of characters enclosed in either double-
quote or single-quote marks. Internally, Octave currently stores strings as matrices of
characters. All the indexing operations that work for matrix objects also work for strings.

See Chapter 5 [Strings|, page 67, for more information.

3.1.4 Data Structure Objects

Octave’s data structure type can help you to organize related objects of different types.
The current implementation uses an associative array with indices limited to strings, but
the syntax is more like C-style structures.

See Section 6.1 [Structures|, page 99, for more information.

44 GNU Octave

3.1.5 Cell Array Objects
A Cell Array in Octave is general array that can hold any number of different data types.

See Section 6.2 [Cell Arrays|, page 112, for more information.

3.2 User-defined Data Types

Someday I hope to expand this to include a complete description of Octave’s mechanism
for managing user-defined data types. Until this feature is documented here, you will have
to make do by reading the code in the ov.h, ops.h, and related files from Octave’s src
directory.

3.3 Object Sizes

The following functions allow you to determine the size of a variable or expression. These
functions are defined for all objects. They return —1 when the operation doesn’t make
sense. For example, Octave’s data structure type doesn’t have rows or columns, so the
rows and columns functions return —1 for structure arguments.

ndims (a)
Return the number of dimensions of a.

For any array, the result will always be greater than or equal to 2. Trailing singleton
dimensions are not counted.

ndims (ones (4, 1, 2, 1))
= 3

See also: [size], page 45.
columns (a)
Return the number of columns of a.
See also: [rows|, page 44, [size], page 45, [length], page 45, [numel], page 44, [isscalar],
page 63, [isvector], page 63, [ismatrix], page 62.
rows (a)
Return the number of rows of a.

See also: [columns]|, page 44, [size], page 45, [length], page 45, [numel], page 44,
[isscalar], page 63, [isvector], page 63, [ismatrix|, page 62.

numel (a)
numel (a, idx1, idx2, ...)
Return the number of elements in the object a.
Optionally, if indices idx1, idx2, . .. are supplied, return the number of elements that
would result from the indexing
a(idx1, idx2, ...)
Note that the indices do not have to be scalar numbers. For example,
a=1;

b = ones (2, 3);
numel (a, b)

Chapter 3: Data Types 45

will return 6, as this is the number of ways to index with b. Or the index could be
the string ":" which represents the colon operator. For example,

a = ones (5, 3);

numel (a, 2, ":")
will return 3 as the second row has three column entries.
This method is also called when an object appears as lvalue with cs-list indexing, i.e.,
object{...} or object(...).field.

See also: [size|, page 45, [length], page 45, [ndims|, page 44.

length (a)

size
size

Return the length of the object a.

The length is 0 for empty objects, 1 for scalars, and the number of elements for
vectors. For matrix or N-dimensional objects, the length is the number of elements
along the largest dimension (equivalent to max (size (a))).

See also: [numel|, page 44, [size], page 45.

(a)
(a, dim)
Return the number of rows and columns of a.
With one input argument and one output argument, the result is returned in a row
vector. If there are multiple output arguments, the number of rows is assigned to the
first, and the number of columns to the second, etc. For example:

size ([1, 2; 3, 4; 5, 6])

= [3, 2]

[nr, nc] = size ([1, 2; 3, 4; 5, 6])
= nr = 3
= nc = 2
If given a second argument, size will return the size of the corresponding dimension.
For example,
size ([1, 2; 3, 4; 5, 6], 2)
= 2
returns the number of columns in the given matrix.
See also: [numel|, page 44, [ndims|, page 44, [length], page 45, [rows], page 44,
[columns], page 44, [size_equal], page 46, [common_size]|, page 437.

isempty (a)

Return true if a is an empty matrix (any one of its dimensions is zero).

See also: [isnull], page 45, [isa], page 39.

isnull (x)

Return true if x is a special null matrix, string, or single quoted string.

Indexed assignment with such a value on the right-hand side should delete array
elements. This function should be used when overloading indexed assignment for
user-defined classes instead of isempty, to distinguish the cases:

A(I) = [1 This should delete elements if I is nonempty.

46 GNU Octave

X=1[1; A(I) =X
This should give an error if I is nonempty.

See also: [isempty], page 45, [isindex], page 139.
sizeof (val)

Return the size of val in bytes.

See also: [whos|, page 128.
size_equal (a, b, ...)

Return true if the dimensions of all arguments agree.

Trailing singleton dimensions are ignored. When called with a single argument, or no
argument, size_equal returns true.

See also: [size], page 45, [numel], page 44, [ndims], page 44, [common _size], page 437.
squeeze (x)
Remove singleton dimensions from x and return the result.

Note that for compatibility with MATLAB, all objects have a minimum of two dimen-
sions and row vectors are left unchanged.

See also: [reshape|, page 442.

47

4 Numeric Data Types

A numeric constant may be a scalar, a vector, or a matrix, and it may contain complex
values.

The simplest form of a numeric constant, a scalar, is a single number that can be an
integer, a decimal fraction, a number in scientific (exponential) notation, or a complex
number. Note that by default numeric constants are represented within Octave in double-
precision floating point format (complex constants are stored as pairs of double-precision
floating point values). It is, however, possible to represent real integers as described in
Section 4.4 [Integer Data Types|, page 54. Here are some examples of real-valued numeric
constants, which all have the same value:

105
1.05e+2
1050e-1

To specify complex constants, you can write an expression of the form

3 + 4i
3.0 + 4.01i
0.3el + 40e-11

all of which are equivalent. The letter ‘i’ in the previous example stands for the pure
imaginary constant, defined as /—1.

For Octave to recognize a value as the imaginary part of a complex constant, a space
must not appear between the number and the ‘i’. If it does, Octave will print an error
message, like this:

octave:13> 3 + 4 i
parse error:
syntax error

>>> 3 + 4 i

You may also use ‘j’, ‘I’, or ‘J’ in place of the ‘i’ above. All four forms are equivalent.

double (x)
Convert x to double precision type.

See also: [single|, page 53.

complex (x)
complex (re, im)
Return a complex value from real arguments.
With 1 real argument x, return the complex result x + 01.

With 2 real arguments, return the complex result re + im. complex can often be
more convenient than expressions such as a + i*b. For example:
complex ([1, 2], [3, 4])
= [1+3i 2+4i]

43 GNU Octave

See also: [real], page 470, [imag], page 469, [iscomplex|, page 62, [abs], page 469, [arg],
page 469.

4.1 Matrices

It is easy to define a matrix of values in Octave. The size of the matrix is determined
automatically, so it is not necessary to explicitly state the dimensions. The expression

a=[1, 2; 3, 4]
results in the matrix
o= 1 2
13 4
Elements of a matrix may be arbitrary expressions, provided that the dimensions all

make sense when combining the various pieces. For example, given the above matrix, the
expression

[a, a]

produces the matrix

ans =
1 2 1 2
3 4 3 4

but the expression

La, 1]
produces the error

error: number of rows must match (1 != 2) near line 13, column 6
(assuming that this expression was entered as the first thing on line 13, of course).

Inside the square brackets that delimit a matrix expression, Octave looks at the sur-
rounding context to determine whether spaces and newline characters should be converted
into element and row separators, or simply ignored, so an expression like

a=[12
34]

will work. However, some possible sources of confusion remain. For example, in the expres-
sion

[1-1]
the ‘=’ is treated as a binary operator and the result is the scalar 0, but in the expression
[1-1]

the ‘-’ is treated as a unary operator and the result is the vector [1, -1 1. Similarly, the
expression

[sin (pi)]
will be parsed as

[sin, (pi)]

Chapter 4: Numeric Data Types 49

and will result in an error since the sin function will be called with no arguments. To get
around this, you must omit the space between sin and the opening parenthesis, or enclose
the expression in a set of parentheses:

[(sin (pi)) 1]

Whitespace surrounding the single quote character (‘’’, used as a transpose operator
and for delimiting character strings) can also cause confusion. Given a = 1, the expression

[1a]
results in the single quote character being treated as a transpose operator and the result is
the vector [1, 1], but the expression

[1a’]
produces the error message

parse error:
syntax error

>> [1 a’]

because not doing so would cause trouble when parsing the valid expression
[a ’>foo’]
For clarity, it is probably best to always use commas and semicolons to separate matrix
elements and rows.

The maximum number of elements in a matrix is fixed when Octave is compiled. The
allowable number can be queried with the function sizemax. Note that other factors, such as
the amount of memory available on your machine, may limit the maximum size of matrices
to something smaller.

sizemax ()
Return the largest value allowed for the size of an array.

If Octave is compiled with 64-bit indexing, the result is of class int64, otherwise it is
of class int32. The maximum array size is slightly smaller than the maximum value
allowable for the relevant class as reported by intmax.

See also: [intmax], page 55.

When you type a matrix or the name of a variable whose value is a matrix, Octave
responds by printing the matrix in with neatly aligned rows and columns. If the rows of
the matrix are too large to fit on the screen, Octave splits the matrix and displays a header
before each section to indicate which columns are being displayed. You can use the following
variables to control the format of the output.

val = output_max_field_width ()

old_val = output_max_field_width (new_val)

output_max_field_width (new_val, "local")
Query or set the internal variable that specifies the maximum width of a numeric
output field.

50

GNU Octave

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format|, page 242, [fixed_point_format], page 51, [output_precision],
page 50.

val = output_precision ()
old_val = output_precision (new_val)
output_precision (new_val, "local")

Query or set the internal variable that specifies the minimum number of significant
figures to display for numeric output.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format], page 242, [fixed_point_format], page 51, [output_max_field_width],
page 49.

It is possible to achieve a wide range of output styles by using different values of output_

precision and output_max_field_width. Reasonable combinations can be set using the
format function. See Section 14.1 [Basic Input and Output], page 241.

val = split_long_rows ()
old_val = split_long_rows (new_val)
split_long_rows (new_val, "local")

Query or set the internal variable that controls whether rows of a matrix may be split
when displayed to a terminal window.

If the rows are split, Octave will display the matrix in a series of smaller pieces, each
of which can fit within the limits of your terminal width and each set of rows is labeled
so that you can easily see which columns are currently being displayed. For example:

octave:13> rand (2,10)
ans =

Columns 1 through 6:

0.75883 0.93290 0.40064 0.43818 0.94958 0.16467
0.75697 0.51942 0.40031 0.61784 0.92309 0.40201

Columns 7 through 10:

0.90174 0.11854 0.72313 0.73326
0.44672 0.94303 0.56564 0.82150

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format]|, page 242.

Chapter 4: Numeric Data Types 51

Octave automatically switches to scientific notation when values become very large or
very small. This guarantees that you will see several significant figures for every value in
a matrix. If you would prefer to see all values in a matrix printed in a fixed point format,
you can set the built-in variable fixed_point_format to a nonzero value. But doing so is
not recommended, because it can produce output that can easily be misinterpreted.

val = fixed_point_format ()

old_val = fixed_point_format (new_val)

fixed_point_format (new_val, "local")
Query or set the internal variable that controls whether Octave will use a scaled
format to print matrix values.

The scaled format prints a scaling factor on the first line of output chosen such that
the largest matrix element can be written with a single leading digit. For example:
logspace (1, 7, 5)’
ans =

1.0e+07 *

0.00000
0.00003
0.00100
0.03162
1.00000

Notice that the first value appears to be 0 when it is actually 1. Because of the
possibility for confusion you should be careful about enabling fixed_point_format.
When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format], page 242, [output_max_field_width], page 49, [output_precision],
page 50.

4.1.1 Empty Matrices

A matrix may have one or both dimensions zero, and operations on empty matrices are
handled as described by Carl de Boor in An Empty Exercise, SIGNUM, Volume 25, pages
2-6, 1990 and C. N. Nett and W. M. Haddad, in A System-Theoretic Appropriate Realiza-
tion of the Empty Matrix Concept, IEEE Transactions on Automatic Control, Volume 38,
Number 5, May 1993. Briefly, given a scalar s, an m x n matrix M,,,, and an m X n empty
matrix [],,x, (with either one or both dimensions equal to zero), the following are true:

8 [Jmxn = [Imxn -8 = [Jmxn
Han + men = Hm><n
[Joxm = Misn = [loxn
Mixn + [Tnxo = [lmxo

[Jmxo " [Joxn = Omxn

By default, dimensions of the empty matrix are printed along with the empty matrix
symbol, ‘[]’. The built-in variable print_empty_dimensions controls this behavior.

92 GNU Octave

val = print_empty_dimensions ()

old_val = print_empty_dimensions (new_val)

print_empty_dimensions (new_val, "local")
Query or set the internal variable that controls whether the dimensions of empty
matrices are printed along with the empty matrix symbol, ‘[]1’.

For example, the expression
zeros (3, 0)

will print
ans = [](3x0)

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format], page 242.

Empty matrices may also be used in assignment statements as a convenient way to delete
rows or columns of matrices. See Section 8.6 [Assignment Expressions]|, page 150.

When Octave parses a matrix expression, it examines the elements of the list to determine
whether they are all constants. If they are, it replaces the list with a single matrix constant.

4.2 Ranges

A range is a convenient way to write a row vector with evenly spaced elements. A range
expression is defined by the value of the first element in the range, an optional value for the
increment between elements, and a maximum value which the elements of the range will
not exceed. The base, increment, and limit are separated by colons (the ‘:’ character) and
may contain any arithmetic expressions and function calls. If the increment is omitted, it
is assumed to be 1. For example, the range

1:5
defines the set of values [1, 2, 3, 4, 5], and the range
1:3:5

defines the set of values [1, 4 1.

Although a range constant specifies a row vector, Octave does not normally convert range
constants to vectors unless it is necessary to do so. This allows you to write a constant like
1 : 10000 without using 80,000 bytes of storage on a typical 32-bit workstation.

A common example of when it does become necessary to convert ranges into vectors
occurs when they appear within a vector (i.e., inside square brackets). For instance, whereas

x=0:0.1:1;

defines x to be a variable of type range and occupies 24 bytes of memory, the expression
y=00:0.1:1];

defines y to be of type matrix and occupies 88 bytes of memory.

This space saving optimization may be disabled using the function disable_range.

Chapter 4: Numeric Data Types 53

val = disable_range ()

old_val = disable_range (new_val)

disable_range (new_val, "local")
Query or set the internal variable that controls whether ranges are stored in a special
space-efficient format.

The default value is true. If this option is disabled Octave will store ranges as full
matrices.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [disable_diagonal_matrix|, page 549, [disable_permutation_matrix],
page 549.

Note that the upper (or lower, if the increment is negative) bound on the range is not
always included in the set of values, and that ranges defined by floating point values can
produce surprising results because Octave uses floating point arithmetic to compute the
values in the range. If it is important to include the endpoints of a range and the number of
elements is known, you should use the linspace function instead (see Section 16.3 [Special
Utility Matrices|, page 449).

When adding a scalar to a range, subtracting a scalar from it (or subtracting a range
from a scalar) and multiplying by scalar, Octave will attempt to avoid unpacking the range
and keep the result as a range, too, if it can determine that it is safe to do so. For instance,
doing

a = 2x(1:1e7) - 1;

will produce the same result as 1:2:2e7-1, but without ever forming a vector with ten
million elements.

Using zero as an increment in the colon notation, as 1:0:1 is not allowed, because a
division by zero would occur in determining the number of range elements. However, ranges
with zero increment (i.e., all elements equal) are useful, especially in indexing, and Octave
allows them to be constructed using the built-in function ones. Note that because a range
must be a row vector, ones (1, 10) produces a range, while ones (10, 1) does not.

When Octave parses a range expression, it examines the elements of the expression to
determine whether they are all constants. If they are, it replaces the range expression with
a single range constant.

4.3 Single Precision Data Types

Octave includes support for single precision data types, and most of the functions in Octave
accept single precision values and return single precision answers. A single precision variable
is created with the single function.

single (x)
Convert x to single precision type.

See also: [double|, page 47.

54 GNU Octave

for example:

sngl = single (rand (2, 2))
= sngl =
0.37569 0.92982
0.11962 0.50876
class (sngl)
= single
Many functions can also return single precision values directly. For example

ones (2, 2, "single")
zeros (2, 2, "single")
eye (2, 2, "single")
rand (2, 2, "single")
NaN (2, 2, "single")
NA (2, 2, "single")
Inf (2, 2, "single")

will all return single precision matrices.

4.4 Integer Data Types

Octave supports integer matrices as an alternative to using double precision. It is possible
to use both signed and unsigned integers represented by 8, 16, 32, or 64 bits. It should be
noted that most computations require floating point data, meaning that integers will often
change type when involved in numeric computations. For this reason integers are most
often used to store data, and not for calculations.
In general most integer matrices are created by casting existing matrices to integers.
The following example shows how to cast a matrix into 32 bit integers.
float = rand (2, 2)
= float = 0.37569 0.92982
0.11962 0.50876
integer = int32 (float)
= integer = 0 1
0 1

As can be seen, floating point values are rounded to the nearest integer when converted.
isinteger (x)
Return true if x is an integer object (int8, uint8, int16, etc.).

Note that isinteger (14) is false because numeric constants in Octave are double
precision floating point values.

See also: [isfloat], page 62, [ischar|, page 68, [islogical|, page 62, [isnumeric|, page 62,
[isa], page 39.

int8 (x)
Convert x to 8-bit integer type.

See also: [uint8], page 55, [int16], page 55, [uint16], page 55, [int32], page 55, [uint32],
page 55, [int64], page 55, [uint64], page 55.

Chapter 4: Numeric Data Types 55

uint8 (x)
Convert x to unsigned 8-bit integer type.

See also: [int8], page 54, [int16], page 55, [uint16], page 55, [int32], page 55, [uint32],
page 55, [int64], page 55, [uint64], page 55.

int16 (x)
Convert x to 16-bit integer type.

See also: [int8], page 54, [uint8], page 55, [uint16], page 55, [int32], page 55, [uint32],
page 55, [int64], page 55, [uint64], page 55.

uint16 (x)
Convert x to unsigned 16-bit integer type.

See also: [int8], page 54, [uint8], page 55, [int16], page 55, [int32], page 55, [uint32],
page 55, [int64], page 55, [uint64], page 55.

int32 (x)
Convert x to 32-bit integer type.
See also: [int8], page 54, [uint8], page 55, [int16], page 55, [uint16], page 55, [uint32],
page 55, [int64], page 55, [uint64], page 55.
uint32 (x)
Convert x to unsigned 32-bit integer type.
See also: [int8], page 54, [uint8|, page 55, [int16], page 55, [uint16], page 55, [int32],
page 55, [int64], page 55, [uint64], page 55.
int64 (x)
Convert x to 64-bit integer type.

See also: [int8], page 54, [uint8|, page 55, [int16], page 55, [uint16], page 55, [int32],
page 55, [uint32], page 55, [uint64], page 55.

uint64 (x)
Convert x to unsigned 64-bit integer type.

See also: [int8|, page 54, [uint8], page 55, [int16], page 55, [uint16], page 55, [int32],
page 55, [uint32], page 55, [int64], page 55.

intmax (type)
Return the largest integer that can be represented in an integer type.

The variable type can be

int8 signed 8-bit integer.
int16 signed 16-bit integer.
int32 signed 32-bit integer.
int64 signed 64-bit integer.
uint8 unsigned 8-bit integer.

uinti16 unsigned 16-bit integer.

26 GNU Octave

uint32 unsigned 32-bit integer.
uint64 unsigned 64-bit integer.
The default for type is int32.
See also: [intmin|, page 56, [flintmax], page 56.
intmin (type)
Return the smallest integer that can be represented in an integer type.
The variable type can be

int8 signed 8-bit integer.
int16 signed 16-bit integer.
int32 signed 32-bit integer.
int64 signed 64-bit integer.
uint8 unsigned 8-bit integer.

uinti16 unsigned 16-bit integer.
uint32 unsigned 32-bit integer.
uint64 unsigned 64-bit integer.
The default for type is int32.

See also: [intmax]|, page 55, [flintmax]|, page 56.

flintmax ()

flintmax ("double")

flintmax ("single")
Return the largest integer that can be represented consecutively in a floating point
value.

The default class is "double", but "single" is a valid option. On IEEE 754 com-
patible systems, flintmax is 2% for "double" and 2% for "single".

See also: [intmax], page 55, [realmax], page 496, [realmin|, page 497.

4.4.1 Integer Arithmetic

While many numerical computations can’t be carried out in integers, Octave does support
basic operations like addition and multiplication on integers. The operators +, -, .*, and
./ work on integers of the same type. So, it is possible to add two 32 bit integers, but not
to add a 32 bit integer and a 16 bit integer.

When doing integer arithmetic one should consider the possibility of underflow and
overflow. This happens when the result of the computation can’t be represented using the
chosen integer type. As an example it is not possible to represent the result of 10 — 20
when using unsigned integers. Octave makes sure that the result of integer computations is
the integer that is closest to the true result. So, the result of 10 — 20 when using unsigned
integers is zero.

When doing integer division Octave will round the result to the nearest integer. This is

different from most programming languages, where the result is often floored to the nearest
integer. So, the result of int32 (5) ./ int32 (8) is 1.

Chapter 4: Numeric Data Types 57

idivide (x, y, op)
Integer division with different rounding rules.
The standard behavior of integer division such as a ./ b is to round the result to
the nearest integer. This is not always the desired behavior and idivide permits
integer element-by-element division to be performed with different treatment for the

fractional part of the division as determined by the op flag. op is a string with one
of the values:

"fix" Calculate a ./ b with the fractional part rounded towards zero.

"round" Calculate a ./ b with the fractional part rounded towards the nearest
integer.

"floor" Calculate a ./ b with the fractional part rounded towards negative infin-
ity.

"ceil" Calculate a ./ b with the fractional part rounded towards positive infin-
ity.

If op is not given it defaults to "fix". An example demonstrating these rounding
rules is

idivide (int8 ([-3, 3]), int8 (4), "fix")
= int8 ([0, 0])

idivide (int8 ([-3, 3]), int8 (4), "round")
= int8 ([-1, 11)

idivide (int8 ([-3, 3]), int8 (4), "floor")
= int8 ([-1, 01)

idivide (int8 ([-3, 3]), int8 (4), "ceil")
= int8 ([0, 1]1)

See also: [ldivide], page 143, [rdivide], page 144.

4.5 Bit Manipulations

Octave provides a number of functions for the manipulation of numeric values on a bit by
bit basis. The basic functions to set and obtain the values of individual bits are bitset
and bitget.

C = bitset (4, n)
C = bitset (4, n, val)
Set or reset bit(s) n of the unsigned integers in A.

val = 0 resets and val = 1 sets the bits. The least significant bit is n = 1. All variables
must be the same size or scalars.

dec2bin (bitset (10, 1))
= 1011
See also: [bitand|, page 58, [bitor|, page 58, [bitxor|, page 58, [bitget|, page 57,
[bitcmp], page 58, [bitshift], page 59, [intmax], page 55, [flintmax], page 56.

c = bitget (4, n)
Return the status of bit(s) n of the unsigned integers in A.

28 GNU Octave

The least significant bit is n = 1.

bitget (100, 8:-1:1)
=011 0 0 1 0 O

See also: [bitand], page 58, [bitor], page 58, [bitxor|, page 58, [bitset], page 57,
[bitemp], page 58, [bitshift], page 59, [intmax], page 55, [flintmax], page 56.

The arguments to all of Octave’s bitwise operations can be scalar or arrays, except for
bitcmp, whose k argument must a scalar. In the case where more than one argument is an
array, then all arguments must have the same shape, and the bitwise operator is applied to
each of the elements of the argument individually. If at least one argument is a scalar and
one an array, then the scalar argument is duplicated. Therefore

bitget (100, 8:-1:1)
is the same as
bitget (100 * omnes (1, 8), 8:-1:1)

It should be noted that all values passed to the bit manipulation functions of Octave
are treated as integers. Therefore, even though the example for bitset above passes the
floating point value 10, it is treated as the bits [1, 0, 1, 0] rather than the bits of the
native floating point format representation of 10.

As the maximum value that can be represented by a number is important for bit manip-
ulation, particularly when forming masks, Octave supplies two utility functions: flintmax
for floating point integers, and intmax for integer objects (uint8, int64, etc.).

Octave also includes the basic bitwise ’and’, ’or’, and ’exclusive or’ operators.

bitand (x, y)
Return the bitwise AND of non-negative integers.

x, y must be in the range [0,intmax]

See also: [bitor|, page 58, [bitxor|, page 58, [bitset|, page 57, [bitget], page 57,
[bitcmp], page 58, [bitshift], page 59, [intmax], page 55, [flintmax], page 56.

bitor (x, y)
Return the bitwise OR of non-negative integers x and y.

See also: [bitor|, page 58, [bitxor], page 58, [bitset|, page 57, [bitget], page 57,
[bitcmp], page 58, [bitshift], page 59, [intmax], page 55, [flintmax], page 56.

bitxor (x, y)
Return the bitwise XOR of non-negative integers x and y.

See also: [bitand], page 58, [bitor], page 58, [bitset], page 57, [bitget], page 57,
[bitemp], page 58, [bitshift], page 59, [intmax], page 55, [flintmax], page 56.

The bitwise 'not’ operator is a unary operator that performs a logical negation of each
of the bits of the value. For this to make sense, the mask against which the value is negated
must be defined. Octave’s bitwise 'not’ operator is bitcmp.

Chapter 4: Numeric Data Types 59

bitcmp (4, k)
Return the k-bit complement of integers in A.
If k is omitted k = 1log2 (flintmax) + 1 is assumed.
bitcmp (7,4)
= 8
dec2bin (11)
= 1011
dec2bin (bitcmp (11, 6))
= 110100

See also: [bitand], page 58, [bitor], page 58, [bitxor], page 58, [bitset], page 57, [bitget],
page 57, [bitcmp]|, page 58, [bitshift], page 59, [flintmax], page 56.

Octave also includes the ability to left-shift and right-shift values bitwise.
bitshift (a, k)
bitshift (a, k, n)
Return a k bit shift of n-digit unsigned integers in a.
A positive k leads to a left shift; A negative value to a right shift.
If n is omitted it defaults to 64. n must be in the range [1,64].
bitshift (eye (3), 1)

OO[\)U
O NN O
N O O

bitshift (10, [-2, -1, O, 1, 2])

= 2 5 10 20 40
See also: [bitand], page 58, [bitor], page 58, [bitxor|, page 58, [bitset], page 57, [bitget],
page 57, [bitcmp], page 58, [intmax]|, page 55, [flintmax], page 56.

Bits that are shifted out of either end of the value are lost. Octave also uses arithmetic
shifts, where the sign bit of the value is kept during a right shift. For example:

bitshift (-10, -1)

= -5
bitshift (int8 (-1), -1)
= -1

Note that bitshift (int8 (-1), -1) is -1 since the bit representation of -1 in the int8
data typeis [1, 1, 1,1, 1,1, 1, 1].

4.6 Logical Values

Octave has built-in support for logical values, i.e., variables that are either true or false.
When comparing two variables, the result will be a logical value whose value depends on
whether or not the comparison is true.

The basic logical operations are &, |, and !, which correspond to “Logical And”, “Logical
Or”, and “Logical Negation”. These operations all follow the usual rules of logic.

60 GNU Octave

It is also possible to use logical values as part of standard numerical calculations. In
this case true is converted to 1, and false to 0, both represented using double precision
floating point numbers. So, the result of truex22 - false/6 is 22.

Logical values can also be used to index matrices and cell arrays. When indexing with
a logical array the result will be a vector containing the values corresponding to true parts
of the logical array. The following example illustrates this.
data = [1, 2; 3, 4 1;
idx = (data <= 2);
data(idx)
= ans = [1; 2]
Instead of creating the idx array it is possible to replace data(idx) with data(data <=2)
in the above code.

Logical values can also be constructed by casting numeric objects to logical values, or
by using the true or false functions.

logical (x)
Convert the numeric object x to logical type.
Any nonzero values will be converted to true (1) while zero values will be converted
to false (0). The non-numeric value NaN cannot be converted and will produce an
€rror.

Compatibility Note: Octave accepts complex values as input, whereas MATLAB issues

aln error.

See also: [double], page 47, [single], page 53, [char|, page 71.

true (x)

true (n, m)

true (n, m k, ...)
Return a matrix or N-dimensional array whose elements are all logical 1.
If invoked with a single scalar integer argument, return a square matrix of the specified
size.
If invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with given dimensions.

See also: [false], page 60.

false (x)

false (n, m)

false (n, m k, ...)
Return a matrix or N-dimensional array whose elements are all logical 0.
If invoked with a single scalar integer argument, return a square matrix of the specified
size.

If invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with given dimensions.

See also: [true|, page 60.

Chapter 4: Numeric Data Types 61

4.7 Promotion and Demotion of Data Types

Many operators and functions can work with mixed data types. For example,

uint8 (1) + 1
= 2

where the above operator works with an 8-bit integer and a double precision value and
returns an 8-bit integer value. Note that the type is demoted to an 8-bit integer, rather
than promoted to a double precision value as might be expected. The reason is that if
Octave promoted values in expressions like the above with all numerical constants would
need to be explicitly cast to the appropriate data type like

uint8 (1) + uint8 (1)
= 2
which becomes difficult for the user to apply uniformly and might allow hard to find bugs
to be introduced. The same applies to single precision values where a mixed operation such
as
single (1) + 1
= 2

returns a single precision value. The mixed operations that are valid and their returned
data types are

Mixed Operation Result
double OP single single
double OP integer integer
double OP char double
double OP logical double
single OP integer integer
single OP char single
single OP logical single

The same logic applies to functions with mixed arguments such as

min (single (1), 0)
=0

where the returned value is single precision.
In the case of mixed type indexed assignments, the type is not changed. For example,

x = ones (2, 2);

x(1, 1) = single (2)
= x =2 1
1 1

where x remains of the double precision type.

4.8 Predicates for Numeric Objects

Since the type of a variable may change during the execution of a program, it can be
necessary to do type checking at run-time. Doing this also allows you to change the behavior
of a function depending on the type of the input. As an example, this naive implementation

62 GNU Octave

of abs returns the absolute value of the input if it is a real number, and the length of the
input if it is a complex number.
function a = abs (%)
if (isreal (x))
a = sign (x) .* x;
elseif (iscomplex (x))
a = sqrt (real(x).”2 + imag(x)."2);
endif
endfunction

The following functions are available for determining the type of a variable.
isnumeric (x)
Return true if x is a numeric object, i.e., an integer, real, or complex array.
Logical and character arrays are not considered to be numeric.
See also: [isinteger|, page 54, [isfloat], page 62, [isreal], page 62, [iscomplex], page 62,

[islogical], page 62, [ischar|, page 68, [iscell], page 113, [isstruct], page 107, [isa],
page 39.

islogical (x)

isbool (x)
Return true if x is a logical object.
See also: [isfloat], page 62, [isinteger], page 54, [ischar], page 68, [isnumeric], page 62,
[isa], page 39.

isfloat (x)
Return true if x is a floating-point numeric object.
Objects of class double or single are floating-point objects.
See also: [isinteger], page 54, [ischar], page 68, [islogical], page 62, [isnumeric]|, page 62,
[isa], page 39.

isreal (x)
Return true if x is a non-complex matrix or scalar.
For compatibility with MATLAB, this includes logical and character matrices.
See also: [iscomplex], page 62, [isnumeric|, page 62, [isa], page 39.
iscomplex (x)
Return true if x is a complex-valued numeric object.
See also: [isreal], page 62, [isnumeric], page 62, [islogical], page 62, [ischar], page 68,
[isfloat], page 62, [isa], page 39.
ismatrix (a)
Return true if a is a 2-D array.

See also: [isscalar|, page 63, [isvector], page 63, [iscell], page 113, [isstruct], page 107,
[issparse], page 564, [isa], page 39.

Chapter 4: Numeric Data Types 63

isvector (x)
Return true if x is a vector.

A vector is a 2-D array where one of the dimensions is equal to 1. As a consequence
a 1x1 array, or scalar, is also a vector.

See also: [isscalar|, page 63, [ismatrix]|, page 62, [size], page 45, [rows]|, page 44,
[columns], page 44, [length], page 45.

isrow (x)
Return true if x is a row vector 1xN with non-negative N.

See also: [iscolumn]|, page 63, [isscalar], page 63, [isvector], page 63, [ismatrix],
page 62.

iscolumn (x)
Return true if x is a column vector Nx1 with non-negative N.

See also: [isrow], page 63, [isscalar|, page 63, [isvector|, page 63, [ismatrix]|, page 62.

isscalar (x)
Return true if x is a scalar.

See also: [isvector|, page 63, [ismatrix|, page 62.

issquare (x)
Return true if x is a square matrix.

See also: [isscalar|, page 63, [isvector], page 63, [ismatrix], page 62, [size], page 45.
issymmetric (4)
issymmetric (4, tol)

Return true if A is a symmetric matrix within the tolerance specified by tol.

The default tolerance is zero (uses faster code).

Matrix A is considered symmetric if norm (A - A.’, Inf) / norm (4, Inf) < tol.

See also: [ishermitian], page 63, [isdefinite], page 63.
ishermitian (4)
ishermitian (4, tol)
Return true if A is Hermitian within the tolerance specified by tol.
The default tolerance is zero (uses faster code).
Matrix A is considered symmetric if norm (A - 4’, Inf) / norm (4, Inf) < tol.
See also: [issymmetric], page 63, [isdefinite], page 63.
isdefinite (4)
isdefinite (4, tol)

Return 1 if A is symmetric positive definite within the tolerance specified by tol or 0
if A is symmetric positive semidefinite. Otherwise, return -1.

If tol is omitted, use a tolerance of 100 * eps * norm (4, "fro")

See also: [issymmetric|, page 63, [ishermitian]|, page 63.

64

GNU Octave

isbanded (4, lower, upper)

Return true if A is a matrix with entries confined between lower diagonals below the
main diagonal and upper diagonals above the main diagonal.

lower and upper must be non-negative integers.

See also: [isdiag], page 64, [istril], page 64, [istriu], page 64, [bandwidth], page 500.

isdiag (4)

Return true if A is a diagonal matrix.

See also: [isbanded|, page 64, [istril], page 64, [istriu], page 64, [diag], page 448,
[bandwidth], page 500.

istril (4)

Return true if A is a lower triangular matrix.
A lower triangular matrix has nonzero entries only on the main diagonal and below.

See also: [istriu], page 64, [isbanded], page 64, [isdiag], page 64, [tril], page 446,
[bandwidth], page 500.

istriu (4)

Return true if A is an upper triangular matrix.
An upper triangular matrix has nonzero entries only on the main diagonal and above.

See also: [isdiag|, page 64, [isbanded|, page 64, [istril], page 64, [triu], page 446,
[bandwidth], page 500.

isprime (x)

Return a logical array which is true where the elements of x are prime numbers and
false where they are not.
A prime number is conventionally defined as a positive integer greater than 1 (e.g.,
2, 3, ...) which is divisible only by itself and 1. Octave extends this definition to
include both negative integers and complex values. A negative integer is prime if its
positive counterpart is prime. This is equivalent to isprime (abs (x)).
If class (x) is complex, then primality is tested in the domain of Gaussian integers
(http://en.wikipedia.org/wiki/Gaussian_integer). Some non-complex integers
are prime in the ordinary sense, but not in the domain of Gaussian integers. For
example, 5 = (1+2i)* (1 —2¢) shows that 5 is not prime because it has a factor other
than itself and 1. Exercise caution when testing complex and real values together in
the same matrix.
Examples:

isprime (1:6)

= [0, 1, 1, 0, 1, O]
isprime ([i, 2, 3, 5])
= [0, 0, 1, 0]

Programming Note: isprime is appropriate if the maximum value in x is not too
large (< lel5). For larger values special purpose factorization code should be used.
Compatibility Note: matlab does not extend the definition of prime numbers and will
produce an error if given negative or complex inputs.

See also: [primes]|, page 483, [factor], page 482, [gcd], page 482, [lem], page 482.

http://en.wikipedia.org/wiki/Gaussian_integer

Chapter 4: Numeric Data Types 65

If instead of knowing properties of variables, you wish to know which variables are
defined and to gather other information about the workspace itself, see Section 7.3 [Status
of Variables|, page 127.

67

5 Strings

A string constant consists of a sequence of characters enclosed in either double-quote or
single-quote marks. For example, both of the following expressions

"parrot"
’parrot’

represent the string whose contents are ‘parrot’. Strings in Octave can be of any length.

Since the single-quote mark is also used for the transpose operator (see Section 8.3
[Arithmetic Ops|, page 142) but double-quote marks have no other purpose in Octave, it is
best to use double-quote marks to denote strings.

Strings can be concatenated using the notation for defining matrices. For example, the
expression

["foo" , "bar" , "baz"]

produces the string whose contents are ‘foobarbaz’. See Chapter 4 [Numeric Data Types],
page 47, for more information about creating matrices.

5.1 Escape Sequences in String Constants

In double-quoted strings, the backslash character is used to introduce escape sequences that
represent other characters. For example, ‘\n’ embeds a newline character in a double-quoted
string and ‘\"’ embeds a double quote character. In single-quoted strings, backslash is not
a special character. Here is an example showing the difference:
toascii ("\n")
= 10
toascii (’\n’)
= [92 110]
Here is a table of all the escape sequences used in Octave (within double quoted strings).
They are the same as those used in the C programming language.

\\ Represents a literal backslash, ‘\’.

\" Represents a literal double-quote character, ‘"’.

\’ Represents a literal single-quote character, **’

\O Represents the null character, control-Q, ASCII code 0.
\a Represents the “alert” character, control-g, ASCII code 7.
\b Represents a backspace, control-h, ASCII code 8.

\f Represents a formfeed, control-1, ASCII code 12.

\n Represents a newline, control-j, ASCII code 10.

\r Represents a carriage return, control-m, ASCII code 13.
\t Represents a horizontal tab, control-i, ASCII code 9.

\v Represents a vertical tab, control-k, ASCII code 11.

\nnn Represents the octal value nnn, where nnn are one to three digits between 0

and 7. For example, the code for the ASCII ESC (escape) character is ‘\033’.

63 GNU Octave

\xhh. .. Represents the hexadecimal value hh, where hh are hexadecimal digits (‘0’
through ‘9’ and either ‘A’ through ‘F’ or ‘a’ through ‘f’). Like the same construct
in ANSI C, the escape sequence continues until the first non-hexadecimal digit
is seen. However, using more than two hexadecimal digits produces undefined
results.

In a single-quoted string there is only one escape sequence: you may insert a single quote
character using two single quote characters in succession. For example,

’I can’’t escape’
= I can’t escape

In scripts the two different string types can be distinguished if necessary by using is_
dq_string and is_sq_string.

is_dq_string (x)
Return true if x is a double-quoted character string.

See also: [is_sq_string], page 68, [ischar], page 68.

is_sq_string (x)
Return true if x is a single-quoted character string.

See also: [is_dq_string], page 68, [ischar], page 68.

5.2 Character Arrays

The string representation used by Octave is an array of characters, so internally the string
"dddddddddd" is actually a row vector of length 10 containing the value 100 in all places
(100 is the ASCII code of "d"). This lends itself to the obvious generalization to character
matrices. Using a matrix of characters, it is possible to represent a collection of same-length
strings in one variable. The convention used in Octave is that each row in a character matrix
is a separate string, but letting each column represent a string is equally possible.

The easiest way to create a character matrix is to put several strings together into a
matrix.

collection = ["String #1"; "String #2"];
This creates a 2-by-9 character matrix.
The function ischar can be used to test if an object is a character matrix.

ischar (x)
Return true if x is a character array.

See also: [isfloat], page 62, [isinteger], page 54, [islogical], page 62, [isnumeric|, page 62,
[iscellstr], page 119, [isa], page 39.

To test if an object is a string (i.e., a character vector and not a character matrix) you
can use the ischar function in combination with the isvector function as in the following
example:

Chapter 5: Strings 69

ischar (collection)
= 1

ischar (collection) && isvector (collection)
= 0

ischar ("my string") && isvector ("my string")
=1

One relevant question is, what happens when a character matrix is created from strings
of different length. The answer is that Octave puts blank characters at the end of strings
shorter than the longest string. It is possible to use a different character than the blank
character using the string fill_char function.

val = string_fill_char ()

old_val = string_f£fill_char (new_val)

string_fill_char (new_val, "local")
Query or set the internal variable used to pad all rows of a character matrix to the
same length.

The value must be a single character and the default is " " (a single space). For
example:

string_fill_char ("X");

["these"; "are"; "strings"]
= "theseXX"
"areXXXXx"
"strings"

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

This shows a problem with character matrices. It simply isn’t possible to represent
strings of different lengths. The solution is to use a cell array of strings, which is described
in Section 6.2.4 [Cell Arrays of Strings|, page 118.

5.3 Creating Strings

The easiest way to create a string is, as illustrated in the introduction, to enclose a text
in double-quotes or single-quotes. It is however possible to create a string without actually
writing a text. The function blanks creates a string of a given length consisting only of
blank characters (ASCII code 32).

blanks (n)
Return a string of n blanks.

For example:

70 GNU Octave

blanks (10);
whos ans
=
Attr Name Size Bytes Class

ans 1x10 10 char

See also: [repmat|, page 450.

5.3.1 Concatenating Strings

Strings can be concatenated using matrix notation (see Chapter 5 [Strings|, page 67,
Section 5.2 [Character Arrays|, page 68) which is often the most natural method. For
example:

fullname = [fname ".txt"];
email = ["<" user "@" domain ">"];

In each case it is easy to see what the final string will look like. This method is also the
most efficient. When using matrix concatenation the parser immediately begins joining the
strings without having to process the overhead of a function call and the input validation
of the associated function.

Nevertheless, there are several other functions for concatenating string objects which
can be useful in specific circumstances: char, strvcat, strcat, and cstrcat. Finally,
the general purpose concatenation functions can be used: see [cat], page 441, [horzcat],
page 441, and [vertcat|, page 441.

e All string concatenation functions except cstrcat convert numerical input into char-
acter data by taking the corresponding ASCII character for each element, as in the
following example:

char ([98, 97, 110, 97, 110, 971)
= banana

e char and strvcat concatenate vertically, while strcat and cstrcat concatenate hor-
izontally. For example:

char ("an apple", "two pears")
= an apple
two pears

strcat ("oc", "tave", " is", " good", " for you")
= octave is good for you

e char generates an empty row in the output for each empty string in the input. strvcat,
on the other hand, eliminates empty strings.

char (“orange“, ngreenn, nu’ llredll)
= orange
green

red

Chapter 5: Strings 71

strvcat ("orange", "green", "", "red")
= orange
green
red
e All string concatenation functions except cstrcat also accept cell array data (see
Section 6.2 [Cell Arrays|, page 112). char and strvcat convert cell arrays into char-
acter arrays, while strcat concatenates within the cells of the cell arrays
char ({"red", "green", "", "blue"})
= red
green

blue

strcat ({"abc“; "ghi"}, {"defll; "jklll})
=
{
[1,1] = abcdef
[2,1] = ghijkl

}

e strcat removes trailing white space in the arguments (except within cell arrays), while
cstrcat leaves white space untouched. Both kinds of behavior can be useful as can be
seen in the examples:

strcat (["diril";"directory2"], ["/";"/"], ["filel";"file2"])
= diri/filel
directory2/file2

cstrcat (["thirteen apples"; "a banana"]l, [" 5%";" 1$"]1)
= thirteen apples 5%
a banana 13
Note that in the above example for cstrcat, the white space originates from the inter-
nal representation of the strings in a string array (see Section 5.2 [Character Arrays]
page 68).

9

char (x)

char (x, ...)

char (si, s2, ...)

char (cell_array)
Create a string array from one or more numeric matrices, character matrices, or cell
arrays.
Arguments are concatenated vertically. The returned values are padded with blanks
as needed to make each row of the string array have the same length. Empty input
strings are significant and will concatenated in the output.

For numerical input, each element is converted to the corresponding ASCII character.
A range error results if an input is outside the ASCII range (0-255).

For cell arrays, each element is concatenated separately. Cell arrays converted through
char can mostly be converted back with cellstr. For example:

72 GNU Octave

char ([97, 98, 991, "", {"98", "99", 100}, "stri", ["ha", "1f"])
= ["abc "
ll98 n
ll99 n
lld n
"stri "
"half "]

See also: [strvcat], page 72, [cellstr], page 119.

strvcat (x)

strvcat (x, ...)

strvcat (si, s2, ...)

strvcat (cell_array)
Create a character array from one or more numeric matrices, character matrices, or
cell arrays.

Arguments are concatenated vertically. The returned values are padded with blanks
as needed to make each row of the string array have the same length. Unlike char,
empty strings are removed and will not appear in the output.

For numerical input, each element is converted to the corresponding ASCII character.
A range error results if an input is outside the ASCII range (0-255).

For cell arrays, each element is concatenated separately. Cell arrays converted through
strvcat can mostly be converted back with cellstr. For example:

strvcat ([97, 98, 99], "', {"98", "99", 100}, "strl", ["ha", "1f"])
= ["abc "
"98 n
"99 n
Hd n
"stril "
"half "]

See also: [char|, page 71, [strcat], page 72, [cstrcat], page 73.

strcat (s1, s2, ...)
Return a string containing all the arguments concatenated horizontally.

If the arguments are cell strings, strcat returns a cell string with the individual cells
concatenated. For numerical input, each element is converted to the corresponding
ASCII character. Trailing white space for any character string input is eliminated be-
fore the strings are concatenated. Note that cell string values do not have whitespace
trimmed.

For example:

strcat ("|", " leading space is preserved", "|")
= | leading space is preserved]|

strcat ("|", "trailing space is eliminated ", "[|")
= |trailing space is eliminated|

Chapter 5: Strings 73

strcat ("homogeneous space |", " ", "| is also eliminated")
= homogeneous space || is also eliminated

s = ["ab"; "cde"]1;
strcat (s, s, s)
=
"ababab "
"cdecdecde"
s = { llabll; ||Cd n };
strcat (s, s, s)
=
{
[1,1] = ababab
[2,1] cd cd cd

}
See also: [cstrcat], page 73, [char], page 71, [strvcat], page 72.

cstrcat (si, s2, ...)
Return a string containing all the arguments concatenated horizontally with trailing
white space preserved.

For example:

cstrcat ("ab ", "ed")
= "ab cd"

s = ["ab"; "cde"]1;
cstrcat (s, s, s)

= "ab ab ab "

"cdecdecde"

See also: [strcat], page 72, [char], page 71, [strvcat], page 72.

5.3.2 Converting Numerical Data to Strings

Apart from the string concatenation functions (see Section 5.3.1 [Concatenating Strings],
page 70) which cast numerical data to the corresponding ASCII characters, there are several
functions that format numerical data as strings. mat2str and num2str convert real or
complex matrices, while int2str converts integer matrices. int2str takes the real part
of complex values and round fractional values to integer. A more flexible way to format
numerical data as strings is the sprintf function (see Section 14.2.4 [Formatted Output],
page 266, [sprintf], page 267).

s = mat2str (x, n)
s = mat2str (x, n, "class")
Format real, complex, and logical matrices as strings.

The returned string may be used to reconstruct the original matrix by using the eval
function.

The precision of the values is given by n. If n is a scalar then both real and imaginary
parts of the matrix are printed to the same precision. Otherwise n(1) defines the

74

GNU Octave

precision of the real part and n(2) defines the precision of the imaginary part. The
default for n is 15.

If the argument "class" is given then the class of x is included in the string in such
a way that eval will result in the construction of a matrix of the same class.

mat2str
=

mat2str
=

mat2str
=

mat2str
=

isequal
=

(L -1/3 + i/7; 1/3 - i/7 1, [4 21)
"[-0.3333+0.141;0.3333-0.14i]"

(L -1/3 +i/7; 1/3 -i/7 1, [4 2])
"[-0.3333+0i 0+0.141;0.3333+0i -0-0.14i]"

(int16 ([1 -1]), "class")
"int16([1 -1]1)"

(logical (eye (2)))
"[true false;false true]"

(x, eval (mat2str (x)))
1

See also: [sprintf], page 267, [num2str], page 74, [int2str]|, page 75.

num2str (x)

num2str (x, precision)
num2str (x, format)
Convert a number (or array) to a string (or a character array).

The optional second argument may either give the number of significant digits (pre-
cision) to be used in the output or a format template string (format) as in sprintf
(see Section 14.2.4 [Formatted Output], page 266). num2str can also process complex

numbers.

Examples:

Chapter 5: Strings

num2str (123.456)
= "123.46"

num2str (123.456, 4)
= "123.5"

s = num2str ([1, 1.34; 3, 3.56], "/5.1f")

= s

—
S O

num2str (1.234 + 27.31)
= "1.234+27.3i"

Size

2x8

75

The num2str function is not very flexible. For better control over the results, use
sprintf (see Section 14.2.4 [Formatted Output], page 266).

Programming Notes:

For MATLAB compatibility, leading spaces are stripped before returning the string.

Integers larger than flintmax may not be displayed correctly.

For complex x, the format string may only contain one output conversion specification
and nothing else. Otherwise, results will be unpredictable.

Any optional format specified by the programmer is used without modification. This
is in contrast to MATLAB which tampers with the format based on internal heuristics.

See also: [sprintf], page 267, [int2str|, page 75, [mat2str]|, page 73.

int2str (n)

Convert an integer (or array of integers) to a string (or a character array).

int2str (123)

= "123"
s = int2str ([1, 2, 3;
= s =
1 2 3
4 5 6
whos s
=
Attr Name

4, 5, 61)

Size

2x7

14

char

This function is not very flexible. For better control over the results, use sprintf
(see Section 14.2.4 [Formatted Output|, page 266).

76 GNU Octave

Programming Notes:

Non-integers are rounded to integers before display. Only the real part of complex
numbers is displayed.

See also: [sprintf], page 267, [num2str], page 74, [mat2str], page 73.

)

5.4 Comparing Strings

Since a string is a character array, comparisons between strings work element by element
as the following example shows:

GNU = "GNU’s Not UNIX";
spaces = (GNU == " ")
= spaces =
0 0 0 0 0 1 0 0 0 1 0 0 0 0

To determine if two strings are identical it is necessary to use the strcmp function. It com-
pares complete strings and is case sensitive. strncmp compares only the first N characters
(with N given as a parameter). strcmpi and strncmpi are the corresponding functions for
case-insensitive comparison.

strcmp (s1, s2)
Return 1 if the character strings s1 and s2 are the same, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with MATLAB, Octave’s stremp function returns 1 if the
character strings are equal, and 0 otherwise. This is just the opposite of the corre-
sponding C library function.

See also: [strcmpi|, page 77, [strncmp], page 76, [strncmpi], page 77.

strncmp (s1, s2, n)
Return 1 if the first n characters of strings s1 and s2 are the same, and 0 otherwise.

strncmp ("abce", "abcd", 3)
= 1

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

strncmp ("abce", {"abcd", "bca", "abc"}, 3)
= [1, 0, 1]

Caution: For compatibility with MATLAB, Octave’s strncmp function returns 1 if
the character strings are equal, and 0 otherwise. This is just the opposite of the
corresponding C library function.

See also: [strncmpi], page 77, [stremp]|, page 76, [strempi], page 77.

Chapter 5: Strings 77

strcmpi (si, s2)
Return 1 if the character strings sl and s2 are the same, disregarding case of alpha-
betic characters, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with MATLAB, Octave’s strcmp function returns 1 if the
character strings are equal, and 0 otherwise. This is just the opposite of the corre-
sponding C library function.

Caution: National alphabets are not supported.

See also: [strcmp], page 76, [strncmp], page 76, [strncmpi], page 77.

strncmpi (si, s2, n)
Return 1 if the first n character of sl and s2 are the same, disregarding case of
alphabetic characters, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with MATLAB, Octave’s strncmpi function returns 1 if
the character strings are equal, and 0 otherwise. This is just the opposite of the
corresponding C library function.

Caution: National alphabets are not supported.

See also: [strncmp], page 76, [strcmp|, page 76, [strempi], page 77.

)

5.5 Manipulating Strings

Octave supports a wide range of functions for manipulating strings. Since a string is just a
matrix, simple manipulations can be accomplished using standard operators. The following
example shows how to replace all blank characters with underscores.

quote = ...

"First things first, but not necessarily in that order";
quote(quote == " n) = ll_u
= quote =

First_things_first,_but_not_necessarily_in_that_order

For more complex manipulations, such as searching, replacing, and general regular ex-
pressions, the following functions come with Octave.

deblank (s)
Remove trailing whitespace and nulls from s.

If 5 is a matrix, deblank trims each row to the length of longest string. If s is a cell
array of strings, operate recursively on each string element.

78 GNU Octave

Examples:
deblank (" abc ")
= " abc"
deblank ([" abc o def ")
:> I:" abc n ; n def ll]

See also: [strtrim|, page 78.

strtrim (s)
Remove leading and trailing whitespace from s.

If s is a matrix, strtrim trims each row to the length of longest string. If s is a cell
array of strings, operate recursively on each string element.

For example:

strtrim (" abc ")
= "abc"

strtrim ([" abc e def ")
= ["abc n ; n def“]

See also: [deblank], page 77.

strtrunc (s, n)
Truncate the character string s to length n.

If s is a character matrix, then the number of columns is adjusted.

If s is a cell array of strings, then the operation is performed on each cell element and
the new cell array is returned.

findstr (s, t)

findstr (s, t, overlap)
Return the vector of all positions in the longer of the two strings s and t where an
occurrence of the shorter of the two starts.

If the optional argument overlap is true (default), the returned vector can include
overlapping positions. For example:

findstr ("ababab", "a")
= [1, 3, 5];

findstr ("abababa", "aba", 0)
= [1, 5]

Caution: findstr is scheduled for deprecation. Use strfind in all new code.

See also: [strfind], page 79, [strmatch], page 80, [strcmp], page 76, [strncmp], page 76,
[strempi], page 77, [strncmpi], page 77, [find], page 437.

idx = strchr (str, chars)
idx = strchr (str, chars, n)
idx = strchr (str, chars, n, direction)
[i, jl = strchr (...)
Search for the string str for occurrences of characters from the set chars.

Chapter 5: Strings 79

The return value(s), as well as the n and direction arguments behave identically as in
find.

This will be faster than using regexp in most cases.

See also: [find], page 437.

index (s, t)

index (s, t, direction)
Return the position of the first occurrence of the string t in the string s, or 0 if no
occurrence is found.

s may also be a string array or cell array of strings.
For example:

index ("Teststring", "t")
= 4

If direction is "first", return the first element found. If direction is "last", return
the last element found.

See also: [find], page 437, [rindex], page 79.

rindex (s, t)
Return the position of the last occurrence of the character string t in the character
string s, or 0 if no occurrence is found.
s may also be a string array or cell array of strings.

For example:

rindex ("Teststring", "t")
= 6

The rindex function is equivalent to index with direction set to "last".

See also: [find], page 437, [index]|, page 79.

idx = strfind (str, pattern)

idx = strfind (cellstr, pattern)

idx = strfind (..., "overlaps", val)
Search for pattern in the string str and return the starting index of every such occur-
rence in the vector idx.

If there is no such occurrence, or if pattern is longer than str, or if pattern itself is
empty, then idx is the empty array [].

The optional argument "overlaps" determines whether the pattern can match at
every position in str (true), or only for unique occurrences of the complete pattern
(false). The default is true.

If a cell array of strings cellstr is specified then idx is a cell array of vectors, as
specified above.

Examples:

80 GNU Octave

strfind ("abababa", "aba'")

= [1, 3, 5]
strfind ("abababa", "aba", "overlaps", false)
= [1, 5]

strfind ({"abababa", "bebebe", "ab"}, "aba")

=
{
[1,1] =
1 3 5
[1,2] = [1(1x0)
[1,3] = [1(1x0)
}

See also: [findstr], page 78, [strmatch], page 80, [regexp], page 87, [regexpi], page 89,
[find], page 437.

str = strjoin (cstr)
str = strjoin (cstr, delimiter)
Join the elements of the cell string array, cstr, into a single string.

If no delimiter is specified, the elements of cstr are separated by a space.

If delimiter is specified as a string, the cell string array is joined using the string.
Escape sequences are supported.

If delimiter is a cell string array whose length is one less than cstr, then the elements of
cstr are joined by interleaving the cell string elements of delimiter. Escape sequences
are not supported.

strjoin ({’Octave’,’Scilab’,’Lush’,’Yorick’}, ’*’)
= ’0Octave*Scilab*Lush*Yorick’

See also: [strsplit], page 81.

strmatch (s, 4)
strmatch (s, 4, "exact")
Return indices of entries of A which begin with the string s.

The second argument A must be a string, character matrix, or a cell array of strings.

If the third argument "exact" is not given, then s only needs to match A up to the
length of s. Trailing spaces and nulls in s and A are ignored when matching.

For example:

Chapter 5: Strings 81

strmatch ("apple", "apple juice")

= 1

strmatch ("apple", ["apple "; "apple juice"; "an apple"])
= [1; 2]

strmatch ("apple", ["apple "; "apple juice"; "an apple"], "exact")
= [1]

Caution: strmatch is scheduled for deprecation. Use strncmp (normal case), or
strcmp ("exact" case), or regexp in all new code.

See also: [strfind], page 79, [findstr|, page 78, [strcmp]|, page 76, [strncmp|, page 76,
[strempi], page 77, [strncmpi], page 77, [find], page 437.

[tok, rem] = strtok (str)

[tok, rem] strtok (str, delim)
Find all characters in the string str up to, but not including, the first character which
is in the string delim.

str may also be a cell array of strings in which case the function executes on every
individual string and returns a cell array of tokens and remainders.

Leading delimiters are ignored. If delim is not specified, whitespace is assumed.

If rem is requested, it contains the remainder of the string, starting at the first de-
limiter.

Examples:

strtok ("this is the life")
= "this"

[tok, rem] = strtok ("14*27+31", "+-x/")
=

tok

rem

14
*27+31

See also: [index], page 79, [strsplit], page 81, [strchr], page 78, [isspace|, page 97.

[cstr] = strsplit (str)

[cstr] strsplit (str, del)

[cstr] strsplit (..., name, value)

[cstr, matches] = strsplit (...)
Split the string str using the delimiters specified by del and return a cell string array
of substrings.

If a delimiter is not specified the string is split at whitespace {" ", "\f", "\n",
"\r", "\t", "\v"}. Otherwise, the delimiter, del must be a string or cell array of
strings. By default, consecutive delimiters in the input string s are collapsed into one
resulting in a single split.

Supported name/value pair arguments are:

e collapsedelimiters which may take the value of true (default) or false.

82 GNU Octave

e delimitertype which may take the value of "simple" (default) or
"regularexpression". A simple delimiter matches the text exactly as written.
Otherwise, the syntax for regular expressions outlined in regexp is used.

The optional second output, matches, returns the delimiters which were matched in
the original string.
Examples with simple delimiters:

strsplit ("a b c")

=
{
[1,1] = a
[1,2] = Db
[1,3] = ¢
}
strsplit ("a,b,c", ",")
=
{
[1,1] = a
[1,2] =D
[1,3] = ¢
}
strsplit ("a foo b,bar c", {" ", ",", "foo", "bar"})
=
{
[1,1] = a
[1,2] = b
[1,3] = ¢
}
strsplit ("a,,b, c", {",", " "}, "collapsedelimiters", false)
=
{
[1,1] = a
[1,2] =
[1,3] = b
[1,4] =
[1,5] = ¢
}

Examples with regularexpression delimiters:

strsplit ("a foo b,bar c", ’,|\s|foolbar’, "delimitertype", "regularexpression")
=
{

[1,1] = a

[1,2] = b

[1,3]

Chapter 5: Strings 83

}
strsplit ("a,,b, c", ’[,]’, "collapsedelimiters", false, "delimitertype", "regularexpression")]j
=
{
[1,1] = a
[1,2] =
[1,3] = b
[1,4] =
[1,5] = ¢
}
strsplit ("a,\t,b, c", {’,’, ’\s’}, "delimitertype", "regularexpression")
=
{
[1,1] = a
[1,2] = b
[1,3] = ¢
}
strsplit ("a,\t,b, c", {’,’, > 7, ’\t’}, "collapsedelimiters", false)
=
{
[1,1] = a
[1,2] =
[1,3] =
[1,4] = b
[1,5] =
[1,6] = ¢
}

See also: [ostrsplit], page 83, [strjoin], page 80, [strtok|, page 81, [regexp], page 87.

[cstr] = ostrsplit (s, sep)
[cstr] = ostrsplit (s, sep, strip_empty)
Split the string s using one or more separators sep and return a cell array of strings.

Consecutive separators and separators at boundaries result in empty strings, unless
strip_empty is true. The default value of strip_empty is false.

2-D character arrays are split at separators and at the original column boundaries.

Example:

84

[a,
[a,
[a,
[a,
[a,

GNU Octave

ostrsplit ("a,b,c", ",")
=
{
[1,1] = a
[1,2] =
[1,3] = ¢
}
ostrsplit (["a,b" ; "cde"l, ",")
=
{
[1,1] = a
[1,2] =D
[1,3] = cde
}

See also: [strsplit], page 81, [strtok], page 81.

..] = strread (str)
..] = strread (str, format)
.] = strread (str, format, format_repeat)
..] = strread (str, format, propl, valuel, ...)
.] = strread (str, format, format_repeat, propl, valuel, ...)

Read data from a string.

The string str is split into words that are repeatedly matched to the specifiers in
format. The first word is matched to the first specifier, the second to the second
specifier and so forth. If there are more words than specifiers, the process is repeated
until all words have been processed.

The string format describes how the words in str should be parsed. It may contain
any combination of the following specifiers:

A The word is parsed as a string.

Y54

n The word is parsed as a number and converted to double.
%d

yAl The word is parsed as a number and converted to int32.

%*J’ 7%*f7, ’%*S
The word is skipped.
For %s and %d, %f, %n, %u and the associated %*s ... specifiers an

optional width can be specified as %Ns, etc. where N is an integer > 1.
For %f, format specifiers like %N.Mf are allowed.

literals In addition the format may contain literal character strings; these will be
skipped during reading.

Parsed word corresponding to the first specifier are returned in the first output argu-
ment and likewise for the rest of the specifiers.

Chapter 5: Strings 85

By default, format is "%f", meaning that numbers are read from str. This will do if
str contains only numeric fields.
For example, the string

str = "\

Bunny Bugs 5.5\n\
Duck Daffy -7.5e-5\n\
Penguin Tux 6"

can be read using
[a, b, c] = strread (str, "¥%s %s %f");
Optional numeric argument format_repeat can be used for limiting the number of

items read:
-1 (default) read all of the string until the end.
N Read N times nargout items. 0 (zero) is an acceptable value for for-

mat_repeat.

The behavior of strread can be changed via property-value pairs. The following
properties are recognized:

"commentstyle"
Parts of str are considered comments and will be skipped. value is the
comment style and can be any of the following.
e '"shell" Everything from # characters to the nearest end-of-line is
skipped.
e "c" Everything between /* and */ is skipped.
e "c++" Everything from // characters to the nearest end-of-line is
skipped.
e "matlab" Everything from % characters to the nearest end-of-line is
skipped.
e user-supplied. Two options: (1) One string, or 1x1 cell string: Skip
everything to the right of it; (2) 2x1 cell string array: Everything
between the left and right strings is skipped.

"delimiter"
Any character in value will be used to split str into words (default value
= any whitespace). Note that whitespace is implicitly added to the set
of delimiter characters unless a "%s" format conversion specifier is sup-
plied; see "whitespace" parameter below. The set of delimiter characters
cannot be empty; if needed Octave substitutes a space as delimiter.

"emptyvalue"
Value to return for empty numeric values in non-whitespace delimited
data. The default is NaN. When the data type does not support NaN
(int32 for example), then default is zero.

"multipledelimsasone"
Treat a series of consecutive delimiters, without whitespace in between,
as a single delimiter. Consecutive delimiter series need not be vertically
"aligned".

86 GNU Octave

"treatasempty"
Treat single occurrences (surrounded by delimiters or whitespace) of the
string(s) in value as missing values.

"returnonerror"
If value true (1, default), ignore read errors and return normally. If false
(0), return an error.

"whitespace"

Any character in value will be interpreted as whitespace and trimmed; the
string defining whitespace must be enclosed in double quotes for proper
processing of special characters like "\t". In each data field, multiple
consecutive whitespace characters are collapsed into one space and leading
and trailing whitespace is removed. The default value for whitespace is
" \b\r\n\t" (note the space). Whitespace is always added to the set of
delimiter characters unless at least one "%s" format conversion specifier is
supplied; in that case only whitespace explicitly specified in "delimiter"
is retained as delimiter and removed from the set of whitespace characters.
If whitespace characters are to be kept as-is (in e.g., strings), specify an
empty value (i.e., "") for "whitespace"; obviously, whitespace cannot be
a delimiter then.

When the number of words in str doesn’t match an exact multiple of the number of
format conversion specifiers, strread’s behavior depends on the last character of str:

last character = "\n"
Data columns are padded with empty fields or Nan so that all columns
have equal length

last character is not "\n"
Data columns are not padded; strread returns columns of unequal length

See also: [textscan|, page 256, [textread], page 254, [load], page 251, [dlmread],

9 9

page 254, [fscanf|, page 272.

newstr = strrep (str, ptn, rep)

newstr = strrep (cellstr, ptn, rep)

newstr = strrep (..., "overlaps", val)
Replace all occurrences of the pattern ptn in the string str with the string rep and
return the result.

The optional argument "overlaps" determines whether the pattern can match at
every position in str (true), or only for unique occurrences of the complete pattern
(false). The default is true.

s may also be a cell array of strings, in which case the replacement is done for each
element and a cell array is returned.

Example:
strrep ("This is a test string", "is", "&%$")
= "Th&%$ &/%$ a test string"

See also: [regexprep], page 90, [strfind], page 79, [findstr], page 78.

Chapter 5: Strings 87

substr (s, offset)
substr (s, offset, len)
Return the substring of s which starts at character number offset and is len characters

long.

Position numbering for offsets begins with 1. If offset is negative, extraction starts
that far from the end of the string.

If len is omitted, the substring extends to the end of s. A negative value for Ilen
extracts to within len characters of the end of the string

Examples:

substr ("This is a test string", 6, 9)

= "is a test"

substr ("This is a test string", -11)

= '"test string"

substr ("This is a test string", -11, -7)

= "test"

This function is patterned after the equivalent function in Perl.

[s, e, te, m, t, nm, sp] = regexp (str, pat)
[...] = regexp (str, pat, "optl", ...)
Regular expression string matching.

Search for pat in str and return the positions and substrings of any matches, or empty
values if there are none.

The matched pattern pat can include any of the standard regex operators, including:

*+ 7 {}
[...1[..
O @)

Match any character

Repetition operators, representing

* Match zero or more times

+ Match one or more times

? Match zero or one times

{n} Match exactly n times

{n,} Match n or more times

{m,n} Match between m and n times
.1

List operators. The pattern will match any character listed between " ["
and "]". If the first character is """ then the pattern is inverted and any
character except those listed between brackets will match.

Escape sequences defined below can also be used inside list operators.
For example, a template for a floating point number might be [-+.\d]+.

Grouping operator. The first form, parentheses only, also creates a token.

Alternation operator. Match one of a choice of regular expressions. The
alternatives must be delimited by the grouping operator () above.

GNU Octave

" $ Anchoring operators. Requires pattern to occur at the start (7) or end
($) of the string.

In addition, the following escaped characters have special meaning.

\d Match any digit

\D Match any non-digit

\s Match any whitespace character

\S Match any non-whitespace character
\w Match any word character

\W Match any non-word character

\< Match the beginning of a word

\> Match the end of a word

\B Match within a word

Implementation Note: For compatibility with MATLAB, escape sequences in pat (e.g.,
"\n" => newline) are expanded even when pat has been defined with single quotes.
To disable expansion use a second backslash before the escape sequence (e.g., "\\n")
or use the regexptranslate function.

The outputs of regexp default to the order given below

s The start indices of each matching substring

e The end indices of each matching substring

te The extents of each matched token surrounded by (...) in pat

m A cell array of the text of each match

t A cell array of the text of each token matched

nm A structure containing the text of each matched named token, with

the name being used as the fieldname. A named token is denoted by
(7<name>...).

Sp A cell array of the text not returned by match, i.e., what remains if you
split the string based on pat.

Particular output arguments, or the order of the output arguments, can be selected
by additional opt arguments. These are strings and the correspondence between the
output arguments and the optional argument are

’start’ s
’end’ e
’tokenExtents’ te
’match’ m
’tokens’ t
’names’ nm
’split’ sp

Additional arguments are summarized below.

‘once’ Return only the first occurrence of the pattern.

Chapter 5: Strings 89

‘matchcase’
Make the matching case sensitive. (default)

Alternatively, use (7-1) in the pattern.
‘ignorecase’
Ignore case when matching the pattern to the string.
Alternatively, use (?i) in the pattern.
‘stringanchors’

Match the anchor characters at the beginning and end of the string.
(default)

Alternatively, use (?-m) in the pattern.

‘lineanchors’
Match the anchor characters at the beginning and end of the line.
Alternatively, use (?m) in the pattern.

‘dotall’ The pattern . matches all characters including the newline character.
(default)
Alternatively, use (?s) in the pattern.

‘dotexceptnewline’
The pattern . matches all characters except the newline character.
Alternatively, use (7-s) in the pattern.

‘literalspacing’
All characters in the pattern, including whitespace, are significant and
are used in pattern matching. (default)

Alternatively, use (7-x) in the pattern.

‘freespacing’
The pattern may include arbitrary whitespace and also comments begin-
ning with the character ‘#’.

Alternatively, use (7x) in the pattern.
‘noemptymatch’

Zero-length matches are not returned. (default)
‘emptymatch’

Return zero-length matches.

regexp (’a’, ’b*’, ’emptymatch’) returns [1 2] because there are
zero or more b’ characters at positions 1 and end-of-string.

See also: [regexpi], page 89, [strfind], page 79, [regexprep], page 90.
[s, e, te, m, t, nm, sp] = regexpi (str, pat)
[...] = regexpi (str, pat, "optl", ...)

Case insensitive regular expression string matching.

Search for pat in str and return the positions and substrings of any matches, or empty
values if there are none. See [regexp], page 87, for details on the syntax of the search
pattern.

See also: [regexp], page 87.

90 GNU Octave

outstr = regexprep (string, pat, repstr)
outstr = regexprep (string, pat, repstr, "optl", ...)
Replace occurrences of pattern pat in string with repstr.
The pattern is a regular expression as documented for regexp. See [regexp|, page 87.

The replacement string may contain $i, which substitutes for the ith set of parentheses
in the match string. For example,

regexprep ("Bill Dunn", ’(\w+) (\w+)’, ’$2, $1°)
returns "Dunn, Bill"

Options in addition to those of regexp are
‘once’ Replace only the first occurrence of pat in the result.

‘warnings’

This option is present for compatibility but is ignored.
Implementation Note: For compatibility with MATLAB, escape sequences in pat (e.g.,
"\n" => newline) are expanded even when pat has been defined with single quotes.

To disable expansion use a second backslash before the escape sequence (e.g., "\\n")
or use the regexptranslate function.

See also: [regexp]|, page 87, [regexpi|, page 89, [strrep], page 86.

regexptranslate (op, s)
Translate a string for use in a regular expression.
This may include either wildcard replacement or special character escaping.

The behavior is controlled by op which can take the following values

"wildcard"
The wildcard characters ., *, and ? are replaced with wildcards that are
appropriate for a regular expression. For example:

regexptranslate ("wildcard", "*.m")
= ".x\.m"

"escape" The characters $.7[], that have special meaning for regular expressions
are escaped so that they are treated literally. For example:

regexptranslate ("escape", "12.5")
= "12\.5"

See also: [regexp|, page 87, [regexpi], page 89, [regexprep], page 90.

)

untabify (t)

untabify (t, tw)

untabify (t, tw, deblank)
Replace TAB characters in t with spaces.
The input, t, may be either a 2-D character array, or a cell array of character strings.
The output is the same class as the input.

The tab width is specified by tw, and defaults to eight.

If the optional argument deblank is true, then the spaces will be removed from the
end of the character data.

Chapter 5: Strings 91

The following example reads a file and writes an untabified version of the same file
with trailing spaces stripped.

fid = fopen ("tabbed_script.m");

text = char (fread (fid, "uchar")’);

fclose (fid);

fid = fopen ("untabified_script.m", "w");

text = untabify (strsplit (text, "\n"), 8, true);

fprintf (fid, "%s\n", text{:});

fclose (fid);

See also: [strjust], page 94, [strsplit], page 81, [deblank], page 77.

5.6 String Conversions
Octave supports various kinds of conversions between strings and numbers. As an example,

it is possible to convert a string containing a hexadecimal number to a floating point number.

hex2dec ("FF")
= 255

bin2dec (s)
Return the decimal number corresponding to the binary number represented by the
string s.

For example:

bin2dec ("1110")
= 14

Spaces are ignored during conversion and may be used to make the binary number
more readable.

bin2dec ("1000 0001")
= 129

If s is a string matrix, return a column vector with one converted number per row of
s; Invalid rows evaluate to NaN.

If s is a cell array of strings, return a column vector with one converted number per
cell element in s.

See also: [dec2bin|, page 91, [base2dec], page 92, [hex2dec], page 92.

dec2bin (d, len)
Return a binary number corresponding to the non-negative integer d, as a string of
ones and zeros.

For example:

dec2bin (14)
= "1110"

If d is a matrix or cell array, return a string matrix with one row per element in d,
padded with leading zeros to the width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the
result.

See also: [bin2dec|, page 91, [dec2base], page 92, [dec2hex], page 92.

92 GNU Octave

dec2hex (d, len)
Return the hexadecimal string corresponding to the non-negative integer d.

For example:
dec2hex (2748)
= "ABC"
If d is a matrix or cell array, return a string matrix with one row per element in d,
padded with leading zeros to the width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the
result.

See also: [hex2dec], page 92, [dec2base], page 92, [dec2bin], page 91.

hex2dec (s)
Return the integer corresponding to the hexadecimal number represented by the string
s.
For example:
hex2dec ("12B")
= 299
hex2dec ("12b")
= 299

If s is a string matrix, return a column vector with one converted number per row of
s; Invalid rows evaluate to NaN.

If s is a cell array of strings, return a column vector with one converted number per
cell element in s.

See also: [dec2hex], page 92, [base2dec], page 92, [bin2dec], page 91.

dec2base (d, base)
dec2base (d, base, len)
Return a string of symbols in base base corresponding to the non-negative integer d.
dec2base (123, 3)
= "11120"

If d is a matrix or cell array, return a string matrix with one row per element in d,
padded with leading zeros to the width of the largest value.

If base is a string then the characters of base are used as the symbols for the digits
of d. Space (’’) may not be used as a symbol.

dec2base (123, "aei")
= "eeeia"
The optional third argument, len, specifies the minimum number of digits in the
result.

See also: [base2dec], page 92, [dec2bin], page 91, [dec2hex], page 92.

base2dec (s, base)
Convert s from a string of digits in base base to a decimal integer (base 10).

base2dec ("11120", 3)
= 123

Chapter 5: Strings 93

If 5 is a string matrix, return a column vector with one value per row of s. If a row
contains invalid symbols then the corresponding value will be NaN.

If s is a cell array of strings, return a column vector with one value per cell element
in s.

If base is a string, the characters of base are used as the symbols for the digits of s.
Space () may not be used as a symbol.

base2dec ("yyyzx", "xyz")
= 123

See also: [dec2base], page 92, [bin2dec|, page 91, [hex2dec], page 92.

s = num2hex (n)
Typecast a double or single precision number or vector to a 8 or 16 character hex-
adecimal string of the IEEE 754 representation of the number.

For example:

num2hex ([-1, 1, e, Inf])

= "b£f£0000000000000
3££0000000000000
4005bf0a8b145769
7££0000000000000"

If the argument n is a single precision number or vector, the returned string has a
length of 8. For example:

num2hex (single ([-1, 1, e, Inf]))
= "b£800000

3£800000

402d£854

7£800000"

See also: [hex2num|, page 93, [hex2dec|, page 92, [dec2hex], page 92.

[n]
|

= hex2num (s)

hex2num (s, class)

Typecast the 16 character hexadecimal character string to an IEEE 754 double pre-
cision number.

[a]
I

If fewer than 16 characters are given the strings are right padded with 0’ characters.
Given a string matrix, hex2num treats each row as a separate number.

hex2num (["4005bf0a8b145769"; "4024000000000000"])
= [2.7183; 10.000]

The optional argument class can be passed as the string "single" to specify that the
given string should be interpreted as a single precision number. In this case, s should
be an 8 character hexadecimal string. For example:

hex2num (["402df854"; "41200000"], "single")
= [2.7183; 10.000]

See also: [num2hex], page 93, [hex2dec|, page 92, [dec2hex], page 92.

94

GNU Octave

str2double (s)

Convert a string to a real or complex number.
The string must be in one of the following formats where a and b are real numbers
and the complex unit is i’ or ’j’:
e a+bi
e a+ b*i
e a+i*b
e bi+a
o b*i+a
o i*b+a
If present, a and/or b are of the form [+-]d[,.]d[[eE][+-]d] where the brackets indicate

optional arguments and ’d’ indicates zero or more digits. The special input values
Inf, NaN, and NA are also accepted.

s may be a character string, character matrix, or cell array. For character arrays
the conversion is repeated for every row, and a double or complex array is returned.
Empty rows in s are deleted and not returned in the numeric array. For cell arrays
each character string element is processed and a double or complex array of the same
dimensions as s is returned.

For unconvertible scalar or character string input str2double returns a NaN. Simi-
larly, for character array input str2double returns a NaN for any row of s that could
not be converted. For a cell array, str2double returns a NaN for any element of s
for which conversion fails. Note that numeric elements in a mixed string/numeric cell
array are not strings and the conversion will fail for these elements and return NaN.

str2double can replace str2num, and it avoids the security risk of using eval on
unknown data.

See also: [str2num], page 95.

strjust (s)
strjust (s, pos)

Return the text, s, justified according to pos, which may be "left", "center", or
"right".
If pos is omitted it defaults to "right".

Null characters are replaced by spaces. All other character data are treated as non-
white space.

Example:

strjust ([nan ; "ap" ; "abc" ; "abcd"])
=
n all
n abll
n al)cll
"abcd"

See also: [deblank], page 77, [strrep], page 86, [strtrim], page 78, [untabify], page 90.

Chapter 5: Strings 95

X = str2num (s)

[x, state] = str2num (s)
Convert the string (or character array) s to a number (or an array).
Examples:

str2num ("3.141596")
= 3.141596

str2num (["1, 2, 3"; "4, 5, 6"])
=1 2 3
4 5 6
The optional second output, state, is logically true when the conversion is successful.
If the conversion fails the numeric output, x, is empty and state is false.

Caution: As str2num uses the eval function to do the conversion, str2num will
execute any code contained in the string s. Use str2double for a safer and faster
conversion.

For cell array of strings use str2double.

See also: [str2double], page 94, [eval], page 155.

toascii (s)
Return ASCII representation of s in a matrix.
For example:

toascii ("ASCII")
= [65, 83, 67, 73, 73]

See also: [char], page 71.

tolower (s)

lower (s)
Return a copy of the string or cell string s, with each uppercase character replaced
by the corresponding lowercase one; non-alphabetic characters are left unchanged.

For example:

tolower ("MiXeD cAsE 123")
= "mixed case 123"

See also: [toupper], page 95.

toupper (s)

upper (s)
Return a copy of the string or cell string s, with each lowercase character replaced by
the corresponding uppercase one; non-alphabetic characters are left unchanged.

For example:

toupper ("MiXeD cAsE 123")
= "MIXED CASE 123"

See also: [tolower|, page 95.

96 GNU Octave

do_string_escapes (string)
Convert escape sequences in string to the characters they represent.

Escape sequences begin with a leading backslash (’\?) followed by 1-3 characters
(.e.g., "\n" => newline).

See also: [undo_string_escapes|, page 96.

undo_string_escapes (s)
Convert special characters in strings back to their escaped forms.

For example, the expression
bell = "\a";

assigns the value of the alert character (control-g, ASCII code 7) to the string variable
bell. If this string is printed, the system will ring the terminal bell (if it is possible).
This is normally the desired outcome. However, sometimes it is useful to be able to
print the original representation of the string, with the special characters replaced by
their escape sequences. For example,

octave:13> undo_string_escapes (bell)
ans = \a

replaces the unprintable alert character with its printable representation.

See also: [do_string_escapes], page 96.

5.7 Character Class Functions

Octave also provides the following character class test functions patterned after the functions
in the standard C library. They all operate on string arrays and return matrices of zeros and
ones. Elements that are nonzero indicate that the condition was true for the corresponding
character in the string array. For example:

isalpha ("!Q@WERT"Y&")
= [o0,1,0,1,1,1,1, 0,1, 0]

isalnum (s)
Return a logical array which is true where the elements of s are letters or digits and
false where they are not.

This is equivalent to (isalpha (s) | isdigit (s)).

See also: [isalphal], page 96, [isdigit], page 97, [ispunct]|, page 97, [isspace], page 97,
[iscntrl], page 97.

isalpha (s)
Return a logical array which is true where the elements of s are letters and false where
they are not.

This is equivalent to (islower (s) | isupper (s)).

See also: [isdigit], page 97, [ispunct], page 97, [isspace], page 97, [iscntrl], page 97,
[isalnum], page 96, [islower]|, page 97, [isupper|, page 97.

Chapter 5: Strings 97

isletter (s)
Return a logical array which is true where the elements of s are letters and false where
they are not.
This is an alias for the isalpha function.
See also: [isalphal], page 96, [isdigit], page 97, [ispunct], page 97, [isspace], page 97,
[iscntrl], page 97, [isalnum], page 96.

islower (s)
Return a logical array which is true where the elements of s are lowercase letters and
false where they are not.

See also: [isupper|, page 97, [isalphal, page 96, [isletter|, page 97, [isalnum]|, page 96.

isupper (s)
Return a logical array which is true where the elements of s are uppercase letters and
false where they are not.

See also: [islower], page 97, [isalpha], page 96, [isletter], page 97, [isalnum], page 96.
isdigit (s)

Return a logical array which is true where the elements of s are decimal digits (0-9)

and false where they are not.

See also: [isxdigit], page 97, [isalpha], page 96, [isletter]|, page 97, [ispunct], page 97,
[isspace|, page 97, [iscntrl], page 97.

isxdigit (s)
Return a logical array which is true where the elements of s are hexadecimal digits
(0-9 and a-fA-F).
See also: [isdigit], page 97.

ispunct (s)
Return a logical array which is true where the elements of s are punctuation characters
and false where they are not.
See also: [isalphal, page 96, [isdigit], page 97, [isspace], page 97, [iscntrl], page 97.

isspace (s)
Return a logical array which is true where the elements of s are whitespace characters
(space, formfeed, newline, carriage return, tab, and vertical tab) and false where they
are not.

See also: [iscntrl], page 97, [ispunct], page 97, [isalphal, page 96, [isdigit], page 97.
iscntrl (s)

Return a logical array which is true where the elements of s are control characters
and false where they are not.

See also: [ispunct], page 97, [isspace], page 97, [isalpha], page 96, [isdigit], page 97.
isgraph (s)

Return a logical array which is true where the elements of s are printable characters

(but not the space character) and false where they are not.

See also: [isprint], page 98.

98

isprint (s)

GNU Octave

Return a logical array which is true where the elements of s are printable characters
(including the space character) and false where they are not.

See also: [isgraph|, page 97.

isascii (s)

Return a logical array which is true where the elements of s are ASCII characters (in

the range 0

to 127 decimal) and false where they are not.

isstrprop (str, prop)
Test character string properties.

For example:

isstrprop ("abc123", "alpha")
= [1, 1, 1, 0, 0, O]

If str is a cell array, isstrpop is applied recursively to each element of the cell array.

Numeric arrays are converted to character strings.

The second
n alpha n

n aln'llm"
"alphanum"

"lower"
"upper"
"digit"
"xdigit"

n Space n
"wspace"

llpunct n
"cntrl"
llgraphll

"graphic"

llprint n

"ascii"

argument prop must be one of

True for characters that are alphabetic (letters).

True for characters that are alphabetic or digits.
True for lowercase letters.

True for uppercase letters.

True for decimal digits (0-9).

True for hexadecimal digits (a-fA-F0-9).

True for whitespace characters (space, formfeed, newline, carriage return,
tab, vertical tab).

True for punctuation characters (printing characters except space or letter
or digit).

True for control characters.

True for printing characters except space.
True for printing characters including space.

True for characters that are in the range of ASCII encoding.

See also: [isalpha], page 96, [isalnum], page 96, [islower], page 97, [isupper], page 97,
[isdigit], page 97, [isxdigit], page 97, [isspace], page 97, [ispunct], page 97, [iscntrl],
page 97, [isgraph|, page 97, [isprint], page 98, [isascii], page 98.

99

6 Data Containers

Octave includes support for two different mechanisms to contain arbitrary data types in
the same variable. Structures, which are C-like, and are indexed with named fields, and
cell arrays, where each element of the array can have a different data type and or shape.
Multiple input arguments and return values of functions are organized as another data
container, the comma separated list.

6.1 Structures

Octave includes support for organizing data in structures. The current implementation
uses an associative array with indices limited to strings, but the syntax is more like C-style
structures.

6.1.1 Basic Usage and Examples

Here are some examples of using data structures in Octave.

Elements of structures can be of any value type. For example, the three expressions

x.a = 1;
x.b = [1, 2; 3, 4];
x.c = "string";

create a structure with three elements. The ‘.’ character separates the structure name from
the field name and indicates to Octave that this variable is a structure. To print the value
of the structure you can type its name, just as for any other variable:

X
= x =
{
a=1
b =
1 2
4
c = string
b

Note that Octave may print the elements in any order.

Structures may be copied just like any other variable:

100 GNU Octave

y=xX
=y =
{
a=1
b=
1 2
4
c = string

Since structures are themselves values, structure elements may reference other structures.
The following statements change the value of the element b of the structure x to be a data
structure containing the single element d, which has a value of 3.

x.b
= ans =

¢ = string

Note that when Octave prints the value of a structure that contains other structures,
only a few levels are displayed. For example:

Chapter 6: Data Containers 101

a.b.c.d.e = 1;
a
= a =
{
b =
{
c =
{
1x1 struct array containing the fields:
d: 1x1 struct
b
X
b

This prevents long and confusing output from large deeply nested structures. The number
of levels to print for nested structures may be set with the function struct_levels_to_
print, and the function print_struct_array_contents may be used to enable printing
of the contents of structure arrays.

val = struct_levels_to_print ()

old_val = struct_levels_to_print (new_val)

struct_levels_to_print (new_val, "local")
Query or set the internal variable that specifies the number of structure levels to
display.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [print_struct_array_contents], page 101.
val = print_struct_array_contents ()
old_val = print_struct_array_contents (new_val)
print_struct_array_contents (new_val, "local")

Query or set the internal variable that specifies whether to print struct array contents.

If true, values of struct array elements are printed. This variable does not affect scalar
structures whose elements are always printed. In both cases, however, printing will
be limited to the number of levels specified by struct_levels_to_print.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [struct_levels_to_print], page 101.
Functions can return structures. For example, the following function separates the real

and complex parts of a matrix and stores them in two elements of the same structure
variable.

102 GNU Octave

function y = £ (x)
y.re = real (x);
y.im = imag (x);

endfunction

When called with a complex-valued argument, £ returns the data structure containing
the real and imaginary parts of the original function argument.
f (rand (2) + rand (2) * I)
= ans =

{

im

0.26475 0.14828
0.18436 0.83669

re

0.040239 0.242160
0.238081 0.402523

}

Function return lists can include structure elements, and they may be indexed like any
other variable. For example:

[x.u, x.8(2:3,2:3), x.v] =svd ([1, 2; 3, 4]);

X
= X =
{
u=
-0.40455 -0.91451
-0.91451 0.40455
S=
0.00000 0.00000 0.00000
0.00000 5.46499 0.00000
0.00000 0.00000 0.36597
V=
-0.57605 0.81742
-0.81742 -0.57605
}

It is also possible to cycle through all the elements of a structure in a loop, using a
special form of the for statement (see Section 10.5.1 [Looping Over Structure Elements],
page 165).

Chapter 6: Data Containers 103

6.1.2 Structure Arrays

A structure array is a particular instance of a structure, where each of the fields of the
structure is represented by a cell array. Each of these cell arrays has the same dimensions.
Conceptually, a structure array can also be seen as an array of structures with identical
fields. An example of the creation of a structure array is

x(1).a = "stringl";
x(2).a = "string2";
x(1).b = 1;
x(2).b = 2;
which creates a 2-by-1 structure array with two fields. Another way to create a structure

array is with the struct function (see Section 6.1.3 [Creating Structures|, page 104). As
previously, to print the value of the structure array, you can type its name:

X
= X =
{
1x2 struct array containing the fields:
a
b
}

Individual elements of the structure array can be returned by indexing the variable like
x(1), which returns a structure with two fields:

x(1)
= ans =
{
a = stringl
b= 1
b

Furthermore, the structure array can return a comma separated list of field values (see
Section 6.3 [Comma Separated Lists], page 120), if indexed by one of its own field names.
For example:

X.a
=
ans
ans

stringl
string2

Here is another example, using this comma separated list on the left-hand side of an
assignment:
[x.a] = deal ("new stringl", "new string2");
x(1).a
= ans
x(2).a
= ans = new string?2

new stringl

Just as for numerical arrays, it is possible to use vectors as indices (see Section 8.1 [Index
Expressions], page 135):

104 GNU Octave

x(3:4) = x(1:2);
[x([1,3]).a] = deal ("other stringl", "other string2");
X.a
=
ans = other stringl
ans = new string2
ans = other string2
ans = new string?2
The function size will return the size of the structure. For the example above
size (x)
= ans =

1 4
Elements can be deleted from a structure array in a similar manner to a numerical array,
by assigning the elements to an empty matrix. For example
in = struct ("calll", {x, Inf, "last"},
"call2", {x, Inf, "first"})

= in =
{
1x3 struct array containing the fields:
calll
call2
b
in(1) = [1;
in.calll
=
ans = Inf

ans = last

6.1.3 Creating Structures

Besides the index operator ".", Octave can use dynamic naming " (var)" or the struct
function to create structures. Dynamic naming uses the string value of a variable as the
field name. For example:

a = "field2";
x.a =1;
x.(a) = 2;
X
= X =
{
a= 1
field2 = 2
}

Dynamic indexing also allows you to use arbitrary strings, not merely valid Octave identifiers
(note that this does not work on MATLAB):

Chapter 6: Data Containers 105

a = "long field with spaces (and funny char$)";
x.a = 1;
x.(a) = 2;
X
= X =
{
a= 1
long field with spaces (and funny char$) = 2
}

The warning id Octave:language-extension can be enabled to warn about this usage.
See [warning_ids|, page 221.

More realistically, all of the functions that operate on strings can be used to build the
correct field name before it is entered into the data structure.

names ["Bill"; "Mary"; "John"];
ages [37; 26; 31];
for i = 1l:rows (names)

database. (names(i,:)) = ages(i);

endfor
database
= database =
{
Bill = 37
Mary = 26
John = 31
}

The third way to create structures is the struct command. struct takes pairs of
arguments, where the first argument in the pair is the fieldname to include in the structure
and the second is a scalar or cell array, representing the values to include in the structure
or structure array. For example:

struct ("field1l", 1, "field2", 2)
= ans =
{
fieldl
field2

nn
N =

If the values passed to struct are a mix of scalar and cell arrays, then the scalar argu-
ments are expanded to create a structure array with a consistent dimension. For example:

106

9]

GNU Octave

s = struct ("fieldil", {1, "one"}, "field2", {2, "two"},
"field3", 3);
s.fieldl
=
ans =
ans = one

[
—

s.field2
=
ans = 2
ans = two
s.field3
=
ans = 3
ans = 3

If you want to create a struct which contains a cell array as an individual field, you must
wrap it in another cell array as shown in the following example:

struct ("fieldl", {{1, "one"1}}, "field2", 2)
= ans =

{
fieldl =

|
[y

[1,1] =
[1,2] = one
}

field2 = 2
b

= struct ()

struct (fieldl, valuel, field2, value2, ...)
struct (obj)
Create a scalar or array structure and initialize its values.

The fieldl, field2, . .. variables are strings specifying the names of the fields and the
valuel, value2, . .. variables can be of any type.

If the values are cell arrays, create a structure array and initialize its values. The
dimensions of each cell array of values must match. Singleton cells and non-cell values
are repeated so that they fill the entire array. If the cells are empty, create an empty
structure array with the specified field names.

If the argument is an object, return the underlying struct.

Observe that the syntax is optimized for struct arrays. Consider the following exam-
ples:

Chapter 6: Data Containers

struct ("foo", 1)
= scalar structure containing the
foo = 1

struct ("foo", {})
= 0x0 struct array containing the
foo

struct ("foo", { {} B
= scalar structure containing the
foo = {}(0x0)

struct ("foo", {1, 2, 3})
= 1x3 struct array containing the
foo

107

fields:

fields:

fields:

fields:

The first case is an ordinary scalar struct—one field, one value. The second produces
an empty struct array with one field and no values, since being passed an empty cell
array of struct array values. When the value is a cell array containing a single entry,
this becomes a scalar struct with that single entry as the value of the field. That
single entry happens to be an empty cell array.

Finally, if the value is a non-scalar cell array, then struct produces a struct array.

See also: [cell2struct], page 120, [fieldnames|, page 107, [getfield], page 109, [setfield],
page 108, [rmfield], page 109, [isfield], page 108, [orderfields], page 109, [isstruct],
page 107, [structfun], page 536.

The function isstruct can be used to test if an object is a structure or a structure

array.

isstruct (x)
Return true if x is a structure or a structure array.

See also: [ismatrix],

6.1.4 Manipulating Structures

page 62, [iscell], page 113, [isa], page 39.

Other functions that can manipulate the fields of a structure are given below.

numfields (s)
Return the number of fields of the structure s.

See also: [fieldnames]|, page 107.

names =

names
names
names

fieldnames (struct)
fieldnames (obj)

fieldnames (javaobj)
fieldnames (" javaclassname")

Return a cell array of strings with the names of the fields in the specified input.

When the input is a structure struct, the names are the elements of the structure.

108 GNU Octave

When the input is an Octave object obj, the names are the public properties of the
object.

When the input is a Java object javaobj or a string containing the name of a Java
class javaclassname, the names are the public fields (data members) of the object or
class.

See also: [numfields|, page 107, [isfield], page 108, [orderfields|, page 109, [struct],
page 106, [methods], page 769.

isfield (x, "name")
isfield (x, name)
Return true if the x is a structure and it includes an element named name.

If name is a cell array of strings then a logical array of equal dimension is returned.

See also: [fieldnames|, page 107.

sout = setfield (s, field, val)

sout = setfield (s, sidx1, fieldl, fidx1, sidx2, field2, fidx2, ..., val)
Return a copy of the structure s with the field member field set to the value val.
For example:

s = struct ();

s = setfield (s, "foo bar", 42);
This is equivalent to

s.("foo bar") = 42;
Note that ordinary structure syntax s.foo bar = 42 cannot be used here, as the
field name is not a valid Octave identifier because of the space character. Using
arbitrary strings for field names is incompatible with MATLAB, and this usage will

emit a warning if the warning ID Octave:language-extension is enabled. See
[XREFwarning_ids], page 221.

With the second calling form, set a field of a structure array. The input sidx selects
an element of the structure array, field specifies the field name of the selected element,
and fidx selects which element of the field (in the case of an array or cell array). The
sidx, field, and fidx inputs can be repeated to address nested structure array elements.
The structure array index and field element index must be cell arrays while the field
name must be a string.

For example:

s = struct ("baz", 42);
setfield (s, {1}, "foo", {1}, "bar", 54)
=
ans =
scalar structure containing the fields:
baz = 42
foo =
scalar structure containing the fields:
bar = 54
The example begins with an ordinary scalar structure to which a nested scalar struc-
ture is added. In all cases, if the structure index sidx is not specified it defaults to

Chapter 6: Data Containers 109

1 (scalar structure). Thus, the example above could be written more concisely as
setfield (s, "foo", "bar", 54)
Finally, an example with nested structure arrays:

sa.foo = 1;

sa = setfield (sa, {2}, "bar", {3}, "baz", {1, 4}, 5);

sa(2) .bar(3)

=

ans =
scalar structure containing the fields:
baz = 0 0 0 5

Here sa is a structure array whose field at elements 1 and 2 is in turn another structure
array whose third element is a simple scalar structure. The terminal scalar structure
has a field which contains a matrix value.

Note that the same result as in the above example could be achieved by:

sa.foo = 1;
sa(2) .bar(3).baz(1,4) =5

See also: [getfield], page 109, [rmfield], page 109, [orderfields], page 109, [isfield],
page 108, [fieldnames], page 107, [isstruct], page 107, [struct], page 106.

val = getfield (s, field)

val = getfield (s, sidx1, fieldl, fidx1, ...)
Get the value of the field named field from a structure or nested structure s.
If s is a structure array then sidx selects an element of the structure array, field
specifies the field name of the selected element, and fidx selects which element of
the field (in the case of an array or cell array). See setfield for a more complete
description of the syntax.

See also: [setfield], page 108, [rmfield], page 109, [orderfields|, page 109, [isfield],
page 108, [fieldnames], page 107, [isstruct], page 107, [struct], page 106.

sout = rmfield (s, "f")
sout = rmfield (s, f)
Return a copy of the structure (array) s with the field f removed.
If f is a cell array of strings or a character array, remove each of the named fields.

See also: [orderfields], page 109, [fieldnames|, page 107, [isfield], page 108.

sout = orderfields (s1)

sout = orderfields (si, s2)

sout = orderfields (s1, {cellstr})

sout = orderfields (s1, p)

[sout, p] = orderfields (...)
Return a copy of sI with fields arranged alphabetically, or as specified by the second
input.
Given one input struct sl, arrange field names alphabetically.

If a second struct argument is given, arrange field names in sl as they appear in s2.
The second argument may also specify the order in a cell array of strings cellstr. The
second argument may also be a permutation vector.

110 GNU Octave

The optional second output argument p is the permutation vector which converts the
original name order to the new name order.

Examples:

s = struct ("d", 4, "b", 2, "a", 1, "c", 3);
t1 = orderfields (s)
= tl =
{

Q0 oW
(|
S w N -

}

t = struct ("d", {F, "c<", {3}, "b", {}, "a", {});
t2 = orderfields (s, t)

= t2 =
{
d= 4
c= 3
b= 2
a= 1
}
t3 = orderfields (s, [3, 2, 4, 1])
= t3 =
{
a= 1
b= 2
c= 3
d= 4
}
[t4, p] = orderfields (s, {"d", "c", "b", "a"})
= t4 =
{
d= 4
c= 3
b= 2
a= 1
}
p =
1
4
2
3

See also: [fieldnames]|, page 107, [getfield], page 109, [setfield], page 108, [rmfield],
page 109, [isfield], page 108, [isstruct], page 107, [struct], page 106.

Chapter 6: Data Containers 111

substruct (type, subs, ...)
Create a subscript structure for use with subsref or subsasgn.

For example:

idx = substruct ("OQ", {3, ":"})
=
idx =

{

type = O

subs
{
[1,1] =
[1,2]
+

|
w

}
x=[1, 2, 3;
4, 5, 6;
7, 8, 91;
subsref (x, idx)
=7 8 9

See also: [subsref], page 773, [subsasgn|, page 774.

6.1.5 Processing Data in Structures

The simplest way to process data in a structure is within a for loop (see Section 10.5.1
[Looping Over Structure Elements|, page 165). A similar effect can be achieved with the
structfun function, where a user defined function is applied to each field of the structure.
See [structfun], page 536.

Alternatively, to process the data in a structure, the structure might be converted to
another type of container before being treated.

c = struct2cell (s)
Create a new cell array from the objects stored in the struct object.

If f is the number of fields in the structure, the resulting cell array will have a
dimension vector corresponding to [f size(s)]. For example:

112 GNU Octave

s = struct ("name", {"Peter", "Hannah", "Robert"},
"age", {23, 16, 3});
¢ = struct2cell (s)
= ¢ = {2x1x3 Cell Array}
c(1,1,:)(C:)
=
{
[1,1] = Peter
[2,1] = Hannah
[3,1] = Robert
}
c(2,1,:)(:)
=
{
[1,1] = 23
[2,1] = 16
[3,1] = 3
}

See also: [cell2struct], page 120, [fieldnames]|, page 107.

6.2 Cell Arrays

It can be both necessary and convenient to store several variables of different size or type
in one variable. A cell array is a container class able to do just that. In general cell arrays
work just like N-dimensional arrays with the exception of the use of ‘{’ and ‘}’ as allocation
and indexing operators.

6.2.1 Basic Usage of Cell Arrays

As an example, the following code creates a cell array containing a string and a 2-by-2
random matrix
c = {"a string", rand(2, 2)};
To access the elements of a cell array, it can be indexed with the { and } operators. Thus,
the variable created in the previous example can be indexed like this:
c{1}
= ans = a string
As with numerical arrays several elements of a cell array can be extracted by indexing with
a vector of indexes
c{1:2%}
= ans
= ans

a string

0.593993 0.627732
0.377037 0.033643

The indexing operators can also be used to insert or overwrite elements of a cell array.
The following code inserts the scalar 3 on the third place of the previously created cell array

Chapter 6: Data Containers 113

c{3} =3
= c =
{
[1,1] = a string
[1,2] =
0.593993 0.627732
0.377037 0.033643
[1,3] = 3
}

Details on indexing cell arrays are explained in Section 6.2.3 [Indexing Cell Arrays],
page 116.

In general nested cell arrays are displayed hierarchically as in the previous example.
In some circumstances it makes sense to reference them by their index, and this can be
performed by the celldisp function.

celldisp (c)
celldisp (c, name)
Recursively display the contents of a cell array.
By default the values are displayed with the name of the variable ¢. However, this
name can be replaced with the variable name. For example:
c =411, 2, {31, 32}};
celldisp (c, "b")
=
b{1}
1
b{2}
2
b{3}{1}
31
b{3}{2}
32

See also: [disp|, page 241.

9

To test if an object is a cell array, use the iscell function. For example:

iscell (c)
= ans =1
iscell (3)
= ans = 0
iscell (x)

Return true if x is a cell array object.

See also: [ismatrix], page 62, [isstruct], page 107, [iscellstr], page 119, [isa], page 39.

114 GNU Octave

6.2.2 Creating Cell Arrays

The introductory example (see Section 6.2.1 [Basic Usage of Cell Arrays|, page 112) showed
how to create a cell array containing currently available variables. In many situations,
however, it is useful to create a cell array and then fill it with data.

The cell function returns a cell array of a given size, containing empty matrices. This
function is similar to the zeros function for creating new numerical arrays. The following
example creates a 2-by-2 cell array containing empty matrices

c = cell (2,2)

= c =
{
[1,1] = [1(0x0)
[2,1] = [1(0x0)
[1,2] = [1(0x0)
[2,2] = [1(0x0)
}

Just like numerical arrays, cell arrays can be multi-dimensional. The cell function
accepts any number of positive integers to describe the size of the returned cell array. It is
also possible to set the size of the cell array through a vector of positive integers. In the
following example two cell arrays of equal size are created, and the size of the first one is
displayed

cl = cell (3, 4, 5);
c2 = cell ([3, 4, 5]);
size (c1)
= ans =
3 4 5

As can be seen, the [size|, page 45, function also works for cell arrays. As do other functions
describing the size of an object, such as [length], page 45, [numel], page 44, [rows], page 44,
and [columns|, page 44.

cell (n)
cell (m, n)
cell (m,n, k, ...)
cell (mn ...])
Create a new cell array object.

If invoked with a single scalar integer argument, return a square NxN cell array. If
invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with the given dimensions.

See also: [cellstr], page 119, [mat2cell], page 115, [num2cell], page 114, [struct2cell],
page 111.

As an alternative to creating empty cell arrays, and then filling them, it is possible to
convert numerical arrays into cell arrays using the num2cell, mat2cell and cellslices
functions.

Chapter 6: Data Containers 115

C = num2cell (4)
= num2cell (4, dim)
Convert the numeric matrix A to a cell array.

Q
[

If dim is defined, the value C is of dimension 1 in this dimension and the elements of
A are placed into C in slices. For example:

num2cell ([1,2;3,4])
=
{
[1,1]
[2,1] =
[1,2] =
[2,2]
}
num2cell ([1,2;3,4],1)
=
{
[1,1]
1
3
[1,2]
2
4

SN W e

}
See also: [mat2cell], page 115.

mat2cell (4, m, n)

mat2cell (4, d1,d2, ...)
mat2cell (4, r)

Convert the matrix A to a cell array.

QaQa
I

If A is 2-D, then it is required that sum (m) == size (4, 1) and sum (n) == size (4,
2). Similarly, if A is multi-dimensional and the number of dimensional arguments is
equal to the dimensions of A, then it is required that sum (di) == size (4, i).

Given a single dimensional argument r, the other dimensional arguments are assumed
to equal size (4,1).

An example of the use of mat2cell is
mat2cell (reshape (1:16,4,4), [3,1], [3,1])

=
{
[1,1] =
1 5 9
2 6 10
3 7 11

116 GNU Octave

[1,2]

13
14
15

[2,2] 16

}
See also: [num?2cell], page 114, [cell2mat], page 119.

sl = cellslices (x, 1b, ub, dim)

Given an array x, this function produces a cell array of slices from the array deter-
mined by the index vectors Ib, ub, for lower and upper bounds, respectively.
In other words, it is equivalent to the following code:

n = length (1b);

sl = cell (1, n);

for i = 1:length (1b)

s1l{i} = x(:,...,1b(1):ub(i),...,:);

endfor
The position of the index is determined by dim. If not specified, slicing is done along
the first non-singleton dimension.

See also: [cell2mat], page 119, [cellindexmat], page 118, [cellfun], page 534.
6.2.3 Indexing Cell Arrays

As shown in see Section 6.2.1 [Basic Usage of Cell Arrays|, page 112, elements can be
extracted from cell arrays using the ‘{’ and ‘}’ operators. If you want to extract or access
subarrays which are still cell arrays, you need to use the ‘(’ and ‘)’ operators. The following
example illustrates the difference:

c = {lllll, ||2||’ Il3|l; "X", Hyll’ "Z"; ||4Il, ||5||’ ll6"};

c{2,3}
= ans = z
c(2,3)
= ans =
{
[1,1] = z
}

So with ‘{}’ you access elements of a cell array, while with ()’ you access a sub array of a
cell array.

Using the ‘C and ‘)’ operators, indexing works for cell arrays like for multi-dimensional
arrays. As an example, all the rows of the first and third column of a cell array can be set
to 0 with the following command:

Chapter 6: Data Containers 117

c(:, [1, 3]) = {0}
= =
{
[1,1] =
[2,1] =
[3,1] =
[1,2] =
[2,2] = 10
[3,2] = 20
[1,3] =
[2,3] =
[3,3] =0
}

Note, that the above can also be achieved like this:

c(:, [1, 3]1) = 0;

N O O O

o O

Here, the scalar ‘0’ is automatically promoted to cell array ‘{0}’ and then assigned to the
subarray of c.

To give another example for indexing cell arrays with ()’ you can exchange the first
and the second row of a cell array as in the following command:

c =41, 2, 3; 4, 5, 6};
c(l1, 21, :) = c([2, 1],)
= =
{
[1,1] =
[2,1] =
[1,2] =
[2,2] =
[1,3] =
[2,3] =
}

Accessing multiple elements of a cell array with the ‘{” and ‘}’ operators will result in
a comma-separated list of all the requested elements (see Section 6.3 [Comma Separated
Lists|, page 120). Using the ‘{’ and ‘}’ operators the first two rows in the above example
can be swapped back like this:

[c{[1,2], :}] = deal (c{[2, 11, :})
=

W o N O~ b

{
[1,1] =
[2,1] =
[1,2] =
[2,2] =
[1,3] =
[2,3] =

D WO N -

118 GNU Octave

As for struct arrays and numerical arrays, the empty matrix ‘[1’ can be used to delete
elements from a cell array:

X = {Illll, ||2||; ll3|l, ||4ll};

x(1,) =[]
= x =
{
[1,1] = 3
[1,2] = 4
}

The following example shows how to just remove the contents of cell array elements but
not delete the space for them:

X = {||1ll’ "2"; IISII, ||4ll};

x(1,) = {0}
% =
{
[1,1] = [1(0x0)
[2,1]1 = 3
[1,2] = [1(0x0)
[2,2] = 4
}

The indexing operations operate on the cell array and not on the objects within the cell
array. By contrast, cellindexmat applies matrix indexing to the objects within each cell
array entry and returns the requested values.

y = cellindexmat (x, varargin)
Perform indexing of matrices in a cell array.

Given a cell array of matrices x, this function computes

Y = cell (size (X));
for i = 1:numel (X)

Y{i} = X{i}(varargin{:1});
endfor

See also: [cellslices], page 116, [cellfun], page 534.

6.2.4 Cell Arrays of Strings

One common use of cell arrays is to store multiple strings in the same variable. It is also
possible to store multiple strings in a character matrix by letting each row be a string. This,
however, introduces the problem that all strings must be of equal length. Therefore, it is
recommended to use cell arrays to store multiple strings. For cases, where the character
matrix representation is required for an operation, there are several functions that convert
a cell array of strings to a character array and back. char and strvcat convert cell arrays
to a character array (see Section 5.3.1 [Concatenating Strings|, page 70), while the function
cellstr converts a character array to a cell array of strings:

Chapter 6: Data Containers 119

a = ["hello"; "world"];
c = cellstr (a)
= c =
{
[1,1] = hello
[2,1] world

}

cstr = cellstr (strmat)
Create a new cell array object from the elements of the string array strmat.

Each row of strmat becomes an element of cstr. Any trailing spaces in a row are
deleted before conversion.

To convert back from a cellstr to a character array use char.

See also: [cell], page 114, [char]|, page 71.

One further advantage of using cell arrays to store multiple strings is that most functions
for string manipulations included with Octave support this representation. As an example,
it is possible to compare one string with many others using the strcmp function. If one
of the arguments to this function is a string and the other is a cell array of strings, each
element of the cell array will be compared to the string argument:

¢ = {"hello", "world"};
strcmp ("hello", c)
= ans =
1 0

The following string functions support cell arrays of strings: char, strvcat, strcat (see
Section 5.3.1 [Concatenating Strings|, page 70), strcmp, strncmp, strcmpi, strncmpi (see
Section 5.4 [Comparing Strings|, page 76), str2double, deblank, strtrim, strtrunc,
strfind, strmatch, , regexp, regexpi (see Section 5.5 [Manipulating Strings|, page 77)
and str2double (see Section 5.6 [String Conversions|, page 91).

The function iscellstr can be used to test if an object is a cell array of strings.

iscellstr (cell)
Return true if every element of the cell array cell is a character string.

See also: [ischar]|, page 68.

6.2.5 Processing Data in Cell Arrays

Data that is stored in a cell array can be processed in several ways depending on the actual
data. The simplest way to process that data is to iterate through it using one or more
for loops. The same idea can be implemented more easily through the use of the cellfun
function that calls a user-specified function on all elements of a cell array. See [cellfun],
page H534.

An alternative is to convert the data to a different container, such as a matrix or a data
structure. Depending on the data this is possible using the cell2mat and cell2struct
functions.

120 GNU Octave

m = cell2mat (c)
Convert the cell array ¢ into a matrix by concatenating all elements of ¢ into a
hyperrectangle.

Elements of ¢ must be numeric, logical, or char matrices; or cell arrays; or structs;
and cat must be able to concatenate them together.

See also: [mat2cell], page 115, [num2cell], page 114.

cell2struct (cell, fields)
cell2struct (cell, fields, dim)
Convert cell to a structure.

The number of fields in fields must match the number of elements in cell along dimen-
sion dim, that is numel (fields) == size (cell, dim). If dim is omitted, a value of
1 is assumed.

A = cell2struct ({"Peter", "Hannah", "Robert";
185, 170, 1687},
{"Name","Height"}, 1);
ACD)
=

Peter
185

Name
Height
}

See also: [struct2cell], page 111, [cell2mat], page 119, [struct], page 106.

6.3 Comma Separated Lists

Comma separated lists® are the basic argument type to all Octave functions - both for input
and return arguments. In the example

max (a, b)
‘a, b’ is a comma separated list. Comma separated lists can appear on both the right and
left hand side of an assignment. For example

x=[1010011; 000000 7];

[i, j] = find (%, 2, "last");
Here, ‘x, 2, "last"’ is a comma separated list constituting the input arguments of find.
find returns a comma separated list of output arguments which is assigned element by
element to the comma separated list ‘i, j’.

Another example of where comma separated lists are used is in the creation of a new
array with [] (see Section 4.1 [Matrices|, page 48) or the creation of a cell array with {2}
(see Section 6.2.1 [Basic Usage of Cell Arrays|, page 112). In the expressions

a=[1, 2, 3, 4];
c =44, 5, 6, 7};
both ‘1, 2, 3, 4’ and ‘4, 5, 6, 7’ are comma separated lists.

! Comma-separated lists are also sometimes informally referred to as cs-lists.

Chapter 6: Data Containers 121

Comma separated lists cannot be directly manipulated by the user. However, both
structure arrays and cell arrays can be converted into comma separated lists, and thus used
in place of explicitly written comma separated lists. This feature is useful in many ways,
as will be shown in the following subsections.

6.3.1 Comma Separated Lists Generated from Cell Arrays

As has been mentioned above (see Section 6.2.3 [Indexing Cell Arrays|, page 116), elements
of a cell array can be extracted into a comma separated list with the { and } operators. By
surrounding this list with [and], it can be concatenated into an array. For example:

a = {1, [2, 3]’ 4; 5’ 6};
b = [a{1:4}]
= b=

1 2 3 4 5

Similarly, it is possible to create a new cell array containing cell elements selected with
{}. By surrounding the list with ‘{’ and ‘}’ a new cell array will be created, as the following
example illustrates:

a = {1, rand(2, 2), "three"};

b={a{ 1, 31 }}
= b =
{
(1,11 = 1
[1,2] = three
}

Furthermore, cell elements (accessed by {}) can be passed directly to a function. The
list of elements from the cell array will be passed as an argument list to a given function
as if it is called with the elements as individual arguments. The two calls to printf in the
following example are identical but the latter is simpler and can handle cell arrays of an
arbitrary size:

c = {"GNU", "Octave", "is", "Free", "Software"};
printf ("%s ", c{1}, c{2}, c{3}, c{4}, <{61);

- GNU Octave is Free Software
printf ("%s ", c{:});

- GNU Octave is Free Software

If used on the left-hand side of an assignment, a comma separated list generated with
{} can be assigned to. An example is

122 GNU Octave

in{1} = [10, 20, 30, 40, 50, 60, 70, 80, 90];
in{2} = inf;
in{3} = "last";
in{4} = "first";
out = cell (4, 1);
[out{1:3}] = find (in{1 : 3});
[out{4:6}] = find (in{[1, 2, 4]1})
= out =
{
[1,1] = 1
[2,1]1 =9
[3,1] = 90
[4,1] = 1
[3,1] = 1
[4,1] = 10
}

6.3.2 Comma Separated Lists Generated from Structure Arrays

Structure arrays can equally be used to create comma separated lists. This is done by
addressing one of the fields of a structure array. For example:

x = ceil (randn (10, 1));
in = struct ("calll", {x, 3, "last"},
"call2", {x, inf, "first"});
out = struct ("calll", cell (2, 1), "call2", cell (2, 1));
[out.calll] = find (in.calll);
[out.call?2] = find (in.call2);

123

7 Variables

Variables let you give names to values and refer to them later. You have already seen
variables in many of the examples. The name of a variable must be a sequence of letters,
digits and underscores, but it may not begin with a digit. Octave does not enforce a limit
on the length of variable names, but it is seldom useful to have variables with names longer
than about 30 characters. The following are all valid variable names

X

x15

__foo_bar_baz__

fucnrdthsucngtagdjb
However, names like __foo_bar_baz__ that begin and end with two underscores are under-
stood to be reserved for internal use by Octave. You should not use them in code you write,
except to access Octave’s documented internal variables and built-in symbolic constants.

Case is significant in variable names. The symbols a and A are distinct variables.

A variable name is a valid expression by itself. It represents the variable’s current value.
Variables are given new values with assignment operators and increment operators. See
Section 8.6 [Assignment Expressions|, page 150.

There is one built-in variable with a special meaning. The ans variable always contains
the result of the last computation, where the output wasn’t assigned to any variable. The
code a = cos (pi) will assign the value -1 to the variable a, but will not change the value
of ans. However, the code cos (pi) will set the value of ans to -1.

Variables in Octave do not have fixed types, so it is possible to first store a numeric
value in a variable and then to later use the same name to hold a string value in the same
program. Variables may not be used before they have been given a value. Doing so results
in an error.

ans [Automatic Variable]
The most recently computed result that was not explicitly assigned to a variable.
For example, after the expression
372 + 472
is evaluated, the value returned by ans is 25.
isvarname (name)
Return true if name is a valid variable name.

See also: [iskeyword], page 953, [exist], page 130, [whol, page 128.

varname = genvarname (str)
varname = genvarname (str, exclusions)
Create valid unique variable name(s) from str.

If str is a cellstr, then a unique variable is created for each cell in str.

genvarname ({"foo", "foo"})
=
{
[1,1] = foo
[1,2] = fool

¥

124 GNU Octave

If exclusions is given, then the variable(s) will be unique to each other and to exclu-
sions (exclusions may be either a string or a cellstr).

x = 3.141;
genvarname ("x", who ())
= x1

Note that the result is a char array or cell array of strings, not the variables themselves.
To define a variable, eval () can be used. The following trivial example sets x to 42.

name = genvarname ("x");
eval ([name " = 42"]);
= x = 42
This can be useful for creating unique struct field names.

x = struct Q;
for i = 1:3

x.(genvarname ("a", fieldnames (x))) = i;
endfor

= x =

Since variable names may only contain letters, digits, and underscores, genvarname
will replace any sequence of disallowed characters with an underscore. Also, variables
may not begin with a digit; in this case an ‘x’ is added before the variable name.

Variable names beginning and ending with two underscores "__" are valid, but they
are used internally by Octave and should generally be avoided; therefore, genvarname
will not generate such names.

genvarname will also ensure that returned names do not clash with keywords such as
"for" and "if". A number will be appended if necessary. Note, however, that this
does not include function names such as "sin". Such names should be included in
exclusions if necessary.

See also: [isvarname|, page 123, [iskeyword], page 953, [exist], page 130, [who],
page 128, [tempname], page 279, [eval], page 155.

9

namelengthmax ()
Return the MATLAB compatible maximum variable name length.

Octave is capable of storing strings up to 23! — 1 in length. However for MATLAB
compatibility all variable, function, and structure field names should be shorter than
the length returned by namelengthmax. In particular, variables stored to a MATLAB
file format (*.mat) will have their names truncated to this length.

7.1 Global Variables

A variable that has been declared global may be accessed from within a function body
without having to pass it as a formal parameter.

Chapter 7: Variables 125

A variable may be declared global using a global declaration statement. The following
statements are all global declarations.

global a
global a b
global c = 2
global d =3 e £ =5
A global variable may only be initialized once in a global statement. For example, after
executing the following code
1
2

the value of the global variable gvar is 1, not 2. Issuing a ‘clear gvar’ command does not
change the above behavior, but ‘clear all’ does.

global gvar
global gvar

It is necessary declare a variable as global within a function body in order to access it.
For example,
global x
function £ O
x = 1;
endfunction
f O
does not set the value of the global variable x to 1. In order to change the value of the
global variable x, you must also declare it to be global within the function body, like this
function £ ()
global x;
x = 1;
endfunction
Passing a global variable in a function parameter list will make a local copy and not
modify the global value. For example, given the function
function f (%)
x=0
endfunction
and the definition of x as a global variable at the top level,
global x = 13
the expression
f (%)

will display the value of x from inside the function as 0, but the value of x at the top level
remains unchanged, because the function works with a copy of its argument.

isglobal (name)
Return true if name is a globally visible variable.
For example:

global x
isglobal ("x")
=1

See also: [isvarname|, page 123, [exist], page 130.

126 GNU Octave

7.2 Persistent Variables

A variable that has been declared persistent within a function will retain its contents in
memory between subsequent calls to the same function. The difference between persistent
variables and global variables is that persistent variables are local in scope to a particular
function and are not visible elsewhere.

The following example uses a persistent variable to create a function that prints the
number of times it has been called.

function count_calls ()
persistent calls = 0;
printf ("’count_calls’ has been called %d times\n",
++calls);
endfunction

for i = 1:3
count_calls ();
endfor

- ’count_calls’ has been called 1 times
- ’count_calls’ has been called 2 times
- ’count_calls’ has been called 3 times

As the example shows, a variable may be declared persistent using a persistent decla-
ration statement. The following statements are all persistent declarations.

persistent a

persistent a b
persistent ¢ = 2
persistent d = 3 e £ =5

The behavior of persistent variables is equivalent to the behavior of static variables in

C.

Like global variables, a persistent variable may only be initialized once. For example,
after executing the following code

persistent pvar = 1
persistent pvar = 2

the value of the persistent variable pvar is 1, not 2.

If a persistent variable is declared but not initialized to a specific value, it will contain an
empty matrix. So, it is also possible to initialize a persistent variable by checking whether
it is empty, as the following example illustrates.

function count_calls ()
persistent calls;
if (isempty (calls))

calls = 0;
endif
printf ("’count_calls’ has been called %d times\n",
++calls);

endfunction

Chapter 7: Variables 127

This implementation behaves in exactly the same way as the previous implementation of
count_calls.

The value of a persistent variable is kept in memory until it is explicitly cleared. As-
suming that the implementation of count_calls is saved on disk, we get the following
behavior.

for i = 1:2
count_calls ();
endfor

- ’count_calls’ has been called 1 times
- ’count_calls’ has been called 2 times

clear

for i = 1:2
count_calls ();

endfor

- ’count_calls’ has been called 3 times
- ’count_calls’ has been called 4 times

clear all
for i = 1:2
count_calls ();
endfor
- ’count_calls’ has been called 1 times
-4 ’count_calls’ has been called 2 times

clear count_calls

for i = 1:2
count_calls ();
endfor

- ’count_calls’ has been called 1 times
- ’count_calls’ has been called 2 times

That is, the persistent variable is only removed from memory when the function containing
the variable is removed. Note that if the function definition is typed directly into the Octave
prompt, the persistent variable will be cleared by a simple clear command as the entire
function definition will be removed from memory. If you do not want a persistent variable to
be removed from memory even if the function is cleared, you should use the mlock function
(see Section 11.9.6 [Function Locking], page 196).

7.3 Status of Variables

When creating simple one-shot programs it can be very convenient to see which variables
are available at the prompt. The function who and its siblings whos and whos_line_format
will show different information about what is in memory, as the following shows.

128 GNU Octave

str = "A random string";
who -variables
- **x* local user variables:

_|

- __nargin__ str

who
who pattern . ..
who option pattern . ..
C = who ("pattern", ...)
List currently defined variables matching the given patterns.

Valid pattern syntax is the same as described for the clear command. If no patterns
are supplied, all variables are listed.
By default, only variables visible in the local scope are displayed.

The following are valid options, but may not be combined.
global List variables in the global scope rather than the current scope.

-regexp The patterns are considered to be regular expressions when matching the
variables to display. The same pattern syntax accepted by the regexp
function is used.

-file The next argument is treated as a filename. All variables found within the
specified file are listed. No patterns are accepted when reading variables
from a file.

If called as a function, return a cell array of defined variable names matching the
given patterns.

See also: [whos|, page 128, [isglobal|, page 125, [isvarname]|, page 123, [exist], page 130,
[regexp], page 87.

whos
whos pattern . ..
whos option pattern . . .

S = whos ("pattern", ...)
Provide detailed information on currently defined variables matching the given pat-
terns.

Options and pattern syntax are the same as for the who command.

Extended information about each variable is summarized in a table with the following
default entries.

Attr Attributes of the listed variable. Possible attributes are:
blank Variable in local scope
a Automatic variable. An automatic variable is one created by

the interpreter, for example argn.
c Variable of complex type.

f Formal parameter (function argument).

Chapter 7: Variables 129

g Variable with global scope.
P Persistent variable.
Name The name of the variable.
Size The logical size of the variable. A scalar is 1x1, a vector is 1xN or NxI,

a 2-D matrix is MxN.
Bytes The amount of memory currently used to store the variable.

Class The class of the variable. Examples include double, single, char, uint16,
cell, and struct.

The table can be customized to display more or less information through the function
whos_line_format.

If whos is called as a function, return a struct array of defined variable names matching
the given patterns. Fields in the structure describing each variable are: name, size,
bytes, class, global, sparse, complex, nesting, persistent.

See also: [who|, page 128, [whos_line_format], page 129.

val = whos_line_format ()
old_val = whos_line_format (new_val)
whos_line_format (new_val, "local")

Query or set the format string used by the command whos.

A full format string is:
Y% [modifier]<command>[:width[:left-min[:balance]]];

The following command sequences are available:

%ha Prints attributes of variables (g=global, p=persistent, f=formal parame-
ter, a=automatic variable).

yAS) Prints number of bytes occupied by variables.
he Prints class names of variables.

he Prints elements held by variables.

n Prints variable names.

%s Prints dimensions of variables.

ht Prints type names of variables.

Every command may also have an alignment modifier:

1 Left alignment.
r Right alignment (default).
c Column-aligned (only applicable to command %s).

The width parameter is a positive integer specifying the minimum number of columns
used for printing. No maximum is needed as the field will auto-expand as required.

The parameters left-min and balance are only available when the column-aligned
modifier is used with the command ‘%s’. balance specifies the column number within

130 GNU Octave

the field width which will be aligned between entries. Numbering starts from 0 which
indicates the leftmost column. left-min specifies the minimum field width to the
left of the specified balance column.

The default format is:
"Y%a:4; %1n:6; %cs:16:6:1; %rb:12; %lc:-1;\n"

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [whos|, page 128.

Instead of displaying which variables are in memory, it is possible to determine if a given
variable is available. That way it is possible to alter the behavior of a program depending
on the existence of a variable. The following example illustrates this.

if (! exist ("meaning", "var"))
disp ("The program has no ’meaning’");
endif

c = exist (name)
exist (name, type)
Check for the existence of name as a variable, function, file, directory, or class.

Q
I

The return code ¢ is one of
1 name is a variable.

2 name is an absolute filename, an ordinary file in Octave’s path, or (after
appending ‘.m’) a function file in Octave’s path.

3 name is a ‘.oct’ or ‘.mex’ file in Octave’s path.

5 name is a built-in function.

7 name is a directory.

103 name is a function not associated with a file (entered on the command
line).

0 name does not exist.

If the optional argument type is supplied, check only for symbols of the specified type.
Valid types are

"var" Check only for variables.

"builtin"
Check only for built-in functions.

"dir" Check only for directories.
"file" Check only for files and directories.
"class" Check only for classes. (Note: This option is accepted, but not currently

implemented)

Chapter 7: Variables 131

If no type is given, and there are multiple possible matches for name, exist will
return a code according to the following priority list: variable, built-in function, oct-
file, directory, file, class.

exist returns 2 if a regular file called name is present in Octave’s search path. If you
want information about other types of files not on the search path you should use
some combination of the functions file_in_path and stat instead.

Programming Note: If name is implemented by a buggy .oct/.mex file, calling exist
may cause Octave to crash. To maintain high performance, Octave trusts .oct/.mex
files instead of sandboxing them.

See also: [file_in_loadpath], page 191, [file_in_path], page 822, [dir_in_loadpath],
page 192, [stat], page 819.

Usually Octave will manage the memory, but sometimes it can be practical to remove
variables from memory manually. This is usually needed when working with large variables
that fill a substantial part of the memory. On a computer that uses the IEEE floating point
format, the following program allocates a matrix that requires around 128 MB memory.

large_matrix = zeros (4000, 4000);
Since having this variable in memory might slow down other computations, it can be nec-
essary to remove it manually from memory. The clear function allows this.

clear [options| pattern . ..
Delete the names matching the given patterns from the symbol table.

The pattern may contain the following special characters:
? Match any single character.
* Match zero or more characters.

[1ist] Match the list of characters specified by list. If the first character is
I or 7, match all characters except those specified by list. For example,
the pattern ‘[a-zA-Z]’ will match all lowercase and uppercase alphabetic
characters.

For example, the command

clear foo b*r

clears the name foo and all names that begin with the letter b and end with the letter
r.

If clear is called without any arguments, all user-defined variables (local and global)
are cleared from the symbol table.

If clear is called with at least one argument, only the visible names matching the ar-
guments are cleared. For example, suppose you have defined a function foo, and then
hidden it by performing the assignment foo = 2. Executing the command clear foo
once will clear the variable definition and restore the definition of foo as a function.
Executing clear foo a second time will clear the function definition.

The following options are available in both long and short form

-all, -a Clear all local and global user-defined variables and all functions from
the symbol table.

132 GNU Octave

—exclusive, —-x
Clear the variables that don’t match the following pattern.

-functions, -f
Clear the function names and the built-in symbols names.

-global, -g
Clear global symbol names.

-variables, -v
Clear local variable names.

-classes, -c
Clears the class structure table and clears all objects.

-regexp, -r
The arguments are treated as regular expressions as any variables that
match will be cleared.

With the exception of exclusive, all long options can be used without the dash as
well.

See also: [who|, page 128, [whos]|, page 128, [exist], page 130.

pack ()
Consolidate workspace memory in MATLAB.

This function is provided for compatibility, but does nothing in Octave.
See also: [clear|, page 131.
Information about a function or variable such as its location in the file system can also be

acquired from within Octave. This is usually only useful during development of programs,
and not within a program.

type name ...
type -q name ...

text = type ("name", ...)
Display the contents of name which may be a file, function (m-file), variable, operator,
or keyword.

type normally prepends a header line describing the category of name such as function
or variable; The -q option suppresses this behavior.

If no output variable is used the contents are displayed on screen. Otherwise, a cell
array of strings is returned, where each element corresponds to the contents of each
requested function.

which name ...
Display the type of each name.

If name is defined from a function file, the full name of the file is also displayed.

See also: [help], page 20, [lookfor|, page 21.

Chapter 7: Variables 133

what
what dir

w = what (dir)

List the Octave specific files in directory dir.

If dir is not specified then the current directory is used.

If a return argument is requested, the files found are returned in the structure w. The
structure contains the following fields:

path
m

mat
mex
oct
mdl
slx

b
classes

packages

Full path to directory dir

Cell array of m-files

Cell array of mat files

Cell array of mex files

Cell array of oct files

Cell array of mdl files

Cell array of slx files

Cell array of p-files

Cell array of class directories (@classname/)

Cell array of package directories (+pkgname/)

Compatibility Note: Octave does not support mdl, slx, and p files; nor does it support
package directories. what will always return an empty list for these categories.

See also: [which], page 132, [Is], page 841, [exist], page 130.

9

135

8 Expressions

Expressions are the basic building block of statements in Octave. An expression evaluates
to a value, which you can print, test, store in a variable, pass to a function, or assign a new
value to a variable with an assignment operator.

An expression can serve as a statement on its own. Most other kinds of statements
contain one or more expressions which specify data to be operated on. As in other languages,
expressions in Octave include variables, array references, constants, and function calls, as
well as combinations of these with various operators.

8.1 Index Expressions

An index expression allows you to reference or extract selected elements of a matrix or
vector.

(3]

Indices may be scalars, vectors, ranges, or the special operator ‘:’, which may be used

to select entire rows or columns.

Vectors are indexed using a single index expression. Matrices (2-D) and higher multi-
dimensional arrays are indexed using either one index or N indices where N is the dimension
of the array. When using a single index expression to index 2-D or higher data the elements
of the array are taken in column-first order (like Fortran).

The output from indexing assumes the dimensions of the index expression. For example:

a(2) # result is a scalar
a(1:2) # result is a row vector
a([1; 2]) # result is a column vector

As a special case, when a colon is used as a single index, the output is a column vector
containing all the elements of the vector or matrix. For example:

a(:) # result is a column vector
a(:)’ # result is a row vector

The above two code idioms are often used in place of reshape when a simple vector,
rather than an arbitrarily sized array, is needed.

Given the matrix
a = [1, 2; 3, 4]
all of the following expressions are equivalent and select the first row of the matrix.

a(l, [1, 2]) # row 1, columns 1 and 2
a(l, 1:2) # row 1, columns in range 1-2
a(l, :) # row 1, all columns

In index expressions the keyword end automatically refers to the last entry for a partic-
ular dimension. This magic index can also be used in ranges and typically eliminates the
needs to call size or length to gather array bounds before indexing. For example:

136 GNU Octave

a=1[1, 2, 3, 4];

a(l:end/2) # first half of a => [1, 2]
a(end + 1) = 5; # append element

a(end) = []; # delete element

a(1:2:end) # odd elements of a => [1, 3]
a(2:2:end) # even elements of a => [2, 4]
a(end:-1:1) # reversal of a => [4, 3, 2 , 1]

8.1.1 Advanced Indexing

An array with ‘n’ dimensions can be indexed using ‘m’ indices. More generally, the set of
index tuples determining the result is formed by the Cartesian product of the index vectors
(or ranges or scalars).

For the ordinary and most common case, m == n, and each index corresponds to its
respective dimension. If m < n and every index is less than the size of the array in the
i*" dimension, m(i) < n(i), then the index expression is padded with trailing singleton
dimensions ([ones (m-n, 1)]). If m < n but one of the indices m(i) is outside the size of
the current array, then the last n-m+1 dimensions are folded into a single dimension with
an extent equal to the product of extents of the original dimensions. This is easiest to
understand with an example.

a = reshape (1:8, 2, 2, 2) # Create 3-D array
a =

ans(:,:,1)

1 3
2 4
ans(:,:,2) =
5 7
6 8
a(2,1,2); # Case (m == n): ans = 6
a(2,1); # Case (m < n), idx within array:
equivalent to a(2,1,1), ans = 2
a(2,4); # Case (m < n), idx outside array:
Dimension 2 & 3 folded into new dimension of size 2x2 = 4

Select 2nd row, 4th element of [2, 4, 6, 8], ans = 8

One advanced use of indexing is to create arrays filled with a single value. This can be
done by using an index of ones on a scalar value. The result is an object with the dimensions
of the index expression and every element equal to the original scalar. For example, the
following statements

a = 13;
a(ones (1, 4))
produce a vector whose four elements are all equal to 13.

Chapter 8: Expressions 137

Similarly, by indexing a scalar with two vectors of ones it is possible to create a matrix.
The following statements

a = 13;
a(ones (1, 2), ones (1, 3))

create a 2x3 matrix with all elements equal to 13.
The last example could also be written as
13(ones (2, 3))

It is more efficient to use indexing rather than the code construction scalar * ones (N,
M, ...) because it avoids the unnecessary multiplication operation. Moreover, multiplica-
tion may not be defined for the object to be replicated whereas indexing an array is always
defined. The following code shows how to create a 2x3 cell array from a base unit which is
not itself a scalar.

{"Hello"}(ones (2, 3))

It should be, noted that ones (1, n) (a row vector of ones) results in a range (with zero
increment). A range is stored internally as a starting value, increment, end value, and total
number of values; hence, it is more efficient for storage than a vector or matrix of ones
whenever the number of elements is greater than 4. In particular, when ‘r’ is a row vector,
the expressions

r(ones (1, n), :)
r(ones (n, 1), :)
will produce identical results, but the first one will be significantly faster, at least for ‘r’

and ‘n’ large enough. In the first case the index is held in compressed form as a range which
allows Octave to choose a more efficient algorithm to handle the expression.

A general recommendation, for a user unaware of these subtleties, is to use the function
repmat for replicating smaller arrays into bigger ones.

A second use of indexing is to speed up code. Indexing is a fast operation and judicious
use of it can reduce the requirement for looping over individual array elements which is a
slow operation.

Consider the following example which creates a 10-element row vector a containing the
values a; = V/i.
for i = 1:10
a(i) = sqrt (i);
endfor
It is quite inefficient to create a vector using a loop like this. In this case, it would have
been much more efficient to use the expression
a = sqrt (1:10);
which avoids the loop entirely.
In cases where a loop cannot be avoided, or a number of values must be combined to
form a larger matrix, it is generally faster to set the size of the matrix first (pre-allocate

storage), and then insert elements using indexing commands. For example, given a matrix
a?

138

GNU Octave

[nr, nc] = size (a);

x = zeros (nr, n * nc);

for i = 1:n
x(:,(i-1)*nc+l:i*nc) = a;

endfor

is considerably faster than

X = a;

for i = 1:n-1
x = [x, al;

endfor

because Octave does not have to repeatedly resize the intermediate result.

ind
ind

[s1,

sub2ind (dims, i, j)

sub2ind (dims, s1, s2, ..., sN)

Convert subscripts to linear indices.

Assume the following 3-by-3 matrices. The left matrix contains the subscript tuples
for each matrix element. Those are converted to linear indices shown in the right
matrix. The matrices are linearly indexed moving from one column to next, filling up
all rows in each column.

(1,0, 1,2), (1,3)] (1, 4, 7]
(2,1, (2,2), (2,3)] ==> [2, 5, 8]
(3,1, 3,2, (3,3)] (3, 6, 9]

The following example shows how to convert the two-dimensional indices (2,1) and
(2,3) of a 3-by-3 matrix to a linear index.

s1 = [2, 2];

s2 [1, 3];

ind = sub2ind ([3, 3], s1, s2)

= ind = 2 8

See also: [ind2sub|, page 138.

s2, ..., sN] = ind2sub (dims, ind)

Convert linear indices to subscripts.

Assume the following 3-by-3 matrices. The left matrix contains the linear indices ind
for each matrix element. Those are converted to subscript tuples shown in the right
matrix. The matrices are linearly indexed moving from one column to next, filling up
all rows in each column.

(1, 4, 7] (1,1, 1,2), (1,3)]
(2, 5, 8] ==> [(2,1), (2,2), (2,3)]
(3, 6, 9] (3,1, 3,2), (3,3)]

The following example shows how to convert the linear indices 2 and 8 in a 3-by-3
matrix into a subscripts.
ind = [2, 8];
[r, c] = ind2sub ([3, 3], ind)
=>r= 2 2
= c= 1 3

Chapter 8: Expressions 139

If the number of subscripts exceeds the number of dimensions, the exceeded dimen-
sions are treated as 1. On the other hand, if less subscripts than dimensions are
provided, the exceeding dimensions are merged. For clarity see the following exam-
ples:
ind = [2, 8];
dims = [3, 3];
% same as dims = [3, 3, 1]
[r, c, s] = ind2sub (dims, ind)
= r = 2 2
= c= 1 3
= s = 1 1
% same as dims = 9
r = ind2sub (dims, ind)
= r = 2 8

See also: [sub2ind], page 138.

isindex (ind)

isindex (ind, n)
Return true if ind is a valid index.
Valid indices are either positive integers (although possibly of real data type), or
logical arrays.
If present, n specifies the maximum extent of the dimension to be indexed. When
possible the internal result is cached so that subsequent indexing using ind will not
perform the check again.
Implementation Note: Strings are first converted to double values before the checks
for valid indices are made. Unless a string contains the NULL character "\0", it will
always be a valid index.

val = allow_noninteger_range_as_index ()

old_val = allow_noninteger_range_as_index (new_val)

allow_noninteger_range_as_index (new_val, "local")
Query or set the internal variable that controls whether non-integer ranges are allowed
as indices.
This might be useful for MATLAB compatibility; however, it is still not entirely com-
patible because MATLAB treats the range expression differently in different contexts.
When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

8.2 Calling Functions

A function is a name for a particular calculation. Because it has a name, you can ask for it
by name at any point in the program. For example, the function sqrt computes the square
root of a number.

A fixed set of functions are built-in, which means they are available in every Octave
program. The sqrt function is one of these. In addition, you can define your own functions.
See Chapter 11 [Functions and Scripts|, page 171, for information about how to do this.

140 GNU Octave

The way to use a function is with a function call expression, which consists of the function
name followed by a list of arguments in parentheses. The arguments are expressions which
give the raw materials for the calculation that the function will do. When there is more
than one argument, they are separated by commas. If there are no arguments, you can
omit the parentheses, but it is a good idea to include them anyway, to clearly indicate that
a function call was intended. Here are some examples:

sqrt (x"2 + y~2) # One argument
ones (n, m) # Two arguments
rand () # No arguments

Each function expects a particular number of arguments. For example, the sqrt function
must be called with a single argument, the number to take the square root of:

sqrt (argument)
Some of the built-in functions take a variable number of arguments, depending on the

particular usage, and their behavior is different depending on the number of arguments
supplied.

Like every other expression, the function call has a value, which is computed by the
function based on the arguments you give it. In this example, the value of sqrt (argument)
is the square root of the argument. A function can also have side effects, such as assigning
the values of certain variables or doing input or output operations.

Unlike most languages, functions in Octave may return multiple values. For example,
the following statement

[u, s, v] = svd (a)

computes the singular value decomposition of the matrix a and assigns the three result
matrices to u, s, and v.

The left side of a multiple assignment expression is itself a list of expressions, and is
allowed to be a list of variable names or index expressions. See also Section 8.1 [Index
Expressions], page 135, and Section 8.6 [Assignment Ops|, page 150.

8.2.1 Call by Value

In Octave, unlike Fortran, function arguments are passed by value, which means that each
argument in a function call is evaluated and assigned to a temporary location in memory
before being passed to the function. There is currently no way to specify that a function
parameter should be passed by reference instead of by value. This means that it is impossible
to directly alter the value of a function parameter in the calling function. It can only change
the local copy within the function body. For example, the function

function f (x, n)
while (n—- > 0)
disp (x);
endwhile
endfunction

displays the value of the first argument n times. In this function, the variable n is used as a
temporary variable without having to worry that its value might also change in the calling
function. Call by value is also useful because it is always possible to pass constants for any
function parameter without first having to determine that the function will not attempt to
modify the parameter.

Chapter 8: Expressions 141

The caller may use a variable as the expression for the argument, but the called function
does not know this: it only knows what value the argument had. For example, given a
function called as

foo = "bar";
fcn (foo)

you should not think of the argument as being “the variable foo.” Instead, think of the
argument as the string value, "bar".

Even though Octave uses pass-by-value semantics for function arguments, values are not
copied unnecessarily. For example,

x = rand (1000);
f (x);

does not actually force two 1000 by 1000 element matrices to exist unless the function f
modifies the value of its argument. Then Octave must create a copy to avoid changing the
value outside the scope of the function f, or attempting (and probably failing!) to modify
the value of a constant or the value of a temporary result.

8.2.2 Recursion

With some restrictions®, recursive function calls are allowed. A recursive function is one
which calls itself, either directly or indirectly. For example, here is an inefficient? way to
compute the factorial of a given integer:

function retval = fact (n)
if (m > 0)
retval = n * fact (n-1);
else
retval = 1;
endif
endfunction

This function is recursive because it calls itself directly. It eventually terminates because
each time it calls itself, it uses an argument that is one less than was used for the previous
call. Once the argument is no longer greater than zero, it does not call itself, and the
recursion ends.

The built-in variable max_recursion_depth specifies a limit to the recursion depth and
prevents Octave from recursing infinitely.

val = max_recursion_depth ()

old_val = max_recursion_depth (new_val)

max_recursion_depth (new_val, "local")
Query or set the internal limit on the number of times a function may be called
recursively.

1 Some of Octave’s functions are implemented in terms of functions that cannot be called recursively. For
example, the ODE solver 1sode is ultimately implemented in a Fortran subroutine that cannot be called
recursively, so 1sode should not be called either directly or indirectly from within the user-supplied
function that 1sode requires. Doing so will result in an error.

2 1t would be much better to use prod (1:n), or gamma (n+1) instead, after first checking to ensure that
the value n is actually a positive integer.

142 GNU Octave

If the limit is exceeded, an error message is printed and control returns to the top
level.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

8.3 Arithmetic Operators

The following arithmetic operators are available, and work on scalars and matrices. The
element-by-element operators and functions broadcast (see Section 19.2 [Broadcasting],
page 529).

xX+y Addition. If both operands are matrices, the number of rows and columns must
both agree, or they must be broadcastable to the same shape.

X .+y Element-by-element addition. This operator is equivalent to +.

X-y Subtraction. If both operands are matrices, the number of rows and columns
of both must agree, or they must be broadcastable to the same shape.

X -y Element-by-element subtraction. This operator is equivalent to -.

x*y Matrix multiplication. The number of columns of x must agree with the number
of rows of y, or they must be broadcastable to the same shape.

x ¥y Element-by-element multiplication. If both operands are matrices, the number
of rows and columns must both agree, or they must be broadcastable to the
same shape.

x/y Right division. This is conceptually equivalent to the expression

(inverse (y’) * x’)’
but it is computed without forming the inverse of y’.
If the system is not square, or if the coefficient matrix is singular, a minimum
norm solution is computed.

x./y Element-by-element right division.

x\y Left division. This is conceptually equivalent to the expression

inverse (x) * y
but it is computed without forming the inverse of x.
If the system is not square, or if the coefficient matrix is singular, a minimum
norm solution is computed.

x \y Element-by-element left division. Each element of y is divided by each corre-
sponding element of x.

X"y

x ¥y Power operator. If x and y are both scalars, this operator returns x raised to

the power y. If x is a scalar and y is a square matrix, the result is computed
using an eigenvalue expansion. If x is a square matrix, the result is computed
by repeated multiplication if y is an integer, and by an eigenvalue expansion if
v is not an integer. An error results if both x and y are matrices.

The implementation of this operator needs to be improved.

Chapter 8: Expressions 143

x."y

x Ky Element-by-element power operator. If both operands are matrices, the number
of rows and columns must both agree, or they must be broadcastable to the
same shape. If several complex results are possible, the one with smallest non-
negative argument (angle) is taken. This rule may return a complex root even
when a real root is also possible. Use realpow, realsqrt, cbrt, or nthroot if
a real result is preferred.

-X Negation.

+Xx Unary plus. This operator has no effect on the operand.

x’ Complex conjugate transpose. For real arguments, this operator is the same as
the transpose operator. For complex arguments, this operator is equivalent to
the expression

conj (x.”)

x. Transpose.

Note that because Octave’s element-by-element operators begin with a

possible ambiguity for statements like

1./m
because the period could be interpreted either as part of the constant or as part of the
operator. To resolve this conflict, Octave treats the expression as if you had typed

.7, there is a

1) ./ m
and not
1) /m

Although this is inconsistent with the normal behavior of Octave’s lexer, which usually
prefers to break the input into tokens by preferring the longest possible match at any given
point, it is more useful in this case.

ctranspose (x)

Return the complex conjugate transpose of x.
This function and x’ are equivalent.

See also: [transpose], page 145.
ldivide (x, y)

Return the element-by-element left division of x and y.

This function and x .\ y are equivalent.

See also: [rdivide], page 144, [mldivide], page 143, [times], page 145, [plus], page 144.
minus (x, y)

This function and x - y are equivalent.

See also: [plus|, page 144, [uminus|, page 145.

)

mldivide (x, y)
Return the matrix left division of x and y.
This function and x \ y are equivalent.

See also: [mrdivide], page 144, [Idivide], page 143, [rdivide|, page 144.

144 GNU Octave

mpower (x, y)
Return the matrix power operation of x raised to the y power.

~

This function and x ~ y are equivalent.

See also: [power|, page 144, [mtimes|, page 144, [plus], page 144, [minus|, page 143.

mrdivide (x, y)
Return the matrix right division of x and y.

This function and x / y are equivalent.

See also: [mldivide|, page 143, [rdivide|, page 144, [plus], page 144, [minus|, page 143.

mtimes (x, y)
mtimes (x1, x2, ...)
Return the matrix multiplication product of inputs.

This function and x * y are equivalent. If more arguments are given, the multiplica-
tion is applied cumulatively from left to right:

(..o ((x1 % x2) * x3) * ...)
At least one argument is required.

See also: [times]|, page 145, [plus|, page 144, [minus|, page 143, [rdivide], page 144,
[mrdivide], page 144, [mldivide|, page 143, [mpower|, page 144.

plus (x, y)
plus (x1, x2, ...)
This function and x + y are equivalent.

If more arguments are given, the summation is applied cumulatively from left to right:
(oo ((x1 + x2) +x3) + ...)

At least one argument is required.

See also: [minus|, page 143, [uplus], page 145.

power (x, y)
Return the element-by-element operation of x raised to the y power.

This function and x .~ y are equivalent.

If several complex results are possible, returns the one with smallest non-negative
argument (angle). Use realpow, realsqrt, cbrt, or nthroot if a real result is pre-
ferred.

See also: [mpower|, page 144, [realpow]|, page 468, [realsqrt], page 468, [cbrt],
page 468, [nthroot], page 468.

rdivide (x, y)
Return the element-by-element right division of x and y.

This function and x ./ y are equivalent.

See also: [ldivide|, page 143, [mrdivide], page 144, [times], page 145, [plus]|, page 144.

Chapter 8: Expressions 145

times (x, y)
times (x1, x2, ...)
Return the element-by-element multiplication product of inputs.

This function and x .* y are equivalent. If more arguments are given, the multipli-
cation is applied cumulatively from left to right:

oo ((x1 % x2) .% x3) % ...)
At least one argument is required.
See also: [mtimes], page 144, [rdivide], page 144.

transpose (x)
Return the transpose of x.

This function and x.’ are equivalent.

See also: [ctranspose|, page 143.
uminus (x)

This function and - x are equivalent.

See also: [uplus|, page 145, [minus|, page 143.
uplus (x)

This function and + x are equivalent.

See also: [uminus], page 145, [plus], page 144, [minus|, page 143.

8.4 Comparison Operators
Comparison operators compare numeric values for relationships such as equality. They are
written using relational operators.

All of Octave’s comparison operators return a value of 1 if the comparison is true, or 0
if it is false. For matrix values, they all work on an element-by-element basis. Broadcasting
rules apply. See Section 19.2 [Broadcasting], page 529. For example:

1, 2; 3, 4] == [1, 3; 2, 4]
= 1 0
0 1

According to broadcasting rules, if one operand is a scalar and the other is a matrix, the
scalar is compared to each element of the matrix in turn, and the result is the same size as
the matrix.

x<y True if x is less than y.

x<=y True if x is less than or equal to y.
x==y True if x is equal to y.

x>=y True if x is greater than or equal to y.

x>y True if x is greater than y.

MM
]
<<

=

True if x is not equal to y.

146 GNU Octave

For complex numbers, the following ordering is defined: z1 < z2 if and only if

abs (z1) < abs (z2)
[l (abs (z1) == abs (z2) && arg (z1) < arg (z2))

This is consistent with the ordering used by max, min and sort, but is not consistent
with MATLAB, which only compares the real parts.

String comparisons may also be performed with the strcmp function, not with the com-
parison operators listed above. See Chapter 5 [Strings|, page 67.

eq (x, y)
Return true if the two inputs are equal.

This function is equivalent to x == y.

See also: [nel, page 146, [isequal], page 146, [le], page 146, [ge], page 146, [gt], page 146,

[ne|, page 146, [1t], page 146.
ge (%, 5)

This function is equivalent to x >= y.

See also: [le|, page 146, [eq], page 146, [gt], page 146, [ne], page 146, [lt], page 146.
gt (%, 7)

This function is equivalent to x > y.

See also: [le], page 146, [eq|, page 146, [ge], page 146, [ne], page 146, [lt], page 146.
isequal (x1, x2, ...)

Return true if all of x1, x2, ... are equal.

See also: [isequaln], page 146.
isequaln (x1, x2, ...)

Return true if all of xI, x2, ... are equal under the additional assumption that NaN
== NaN (no comparison of NaN placeholders in dataset).

See also: [isequal], page 146.
le (x, y)

This function is equivalent to x <=y.

See also: [eq], page 146, [ge], page 146, [gt], page 146, [ne], page 146, [It], page 146.
1t (%, y)

This function is equivalent to x < y.

See also: [le], page 146, [eq], page 146, [ge|, page 146, [gt], page 146, [ne], page 146.

ne (x, y)
Return true if the two inputs are not equal.

This function is equivalent to x !=y.

See also: [eq], page 146, [isequal], page 146, [le], page 146, [ge], page 146, [lt],
page 146.

Chapter 8: Expressions 147

8.5 Boolean Expressions

8.5.1 Element-by-element Boolean Operators

An element-by-element boolean expression is a combination of comparison expressions using
the boolean operators “or” (‘|’), “and” (‘&’), and “not” (‘!’), along with parentheses to
control nesting. The truth of the boolean expression is computed by combining the truth
values of the corresponding elements of the component expressions. A value is considered
to be false if it is zero, and true otherwise.

Element-by-element boolean expressions can be used wherever comparison expressions
can be used. They can be used in if and while statements. However, a matrix value used
as the condition in an if or while statement is only true if all of its elements are nonzero.

Like comparison operations, each element of an element-by-element boolean expression
also has a numeric value (1 if true, 0 if false) that comes into play if the result of the boolean
expression is stored in a variable, or used in arithmetic.

Here are descriptions of the three element-by-element boolean operators.

booleanl & boolean2
Elements of the result are true if both corresponding elements of booleanl and
boolean2 are true.

booleanl | boolean2
Elements of the result are true if either of the corresponding elements of
booleanl or booleanZ2 is true.

! boolean
~ boolean Each element of the result is true if the corresponding element of boolean is
false.

These operators work on an element-by-element basis. For example, the expression
(1, 0; O, 11 & [1, O; 2, 3]
returns a two by two identity matrix.

For the binary operators, broadcasting rules apply. See Section 19.2 [Broadcasting],
page 529. In particular, if one of the operands is a scalar and the other a matrix, the
operator is applied to the scalar and each element of the matrix.

For the binary element-by-element boolean operators, both subexpressions booleanl and
boolean?2 are evaluated before computing the result. This can make a difference when the
expressions have side effects. For example, in the expression

a & b++
the value of the variable b is incremented even if the variable a is zero.

This behavior is necessary for the boolean operators to work as described for matrix-
valued operands.

z = and (x, y)
z = and (x1, x2, ...)
Return the logical AND of x and y.

148

N
I

N
|

GNU Octave

This function is equivalent to the operator syntax x & y. If more than two arguments
are given, the logical AND is applied cumulatively from left to right:

oo ((x1 & x2) & x3) & ...)

At least one argument is required.

See also: [or], page 148, [not], page 148, [xor], page 435.
not (x)

Return the logical NOT of x.

This function is equivalent to the operator syntax ! x.

See also: [and], page 147, [or], page 148, [xor], page 435.

= or (x,)

= or (x1,x2,...)
Return the logical OR of x and y.
This function is equivalent to the operator syntax x | y. If more than two arguments
are given, the logical OR is applied cumulatively from left to right:

oo (x1 1 x2) | x3) | ...)

At least one argument is required.

See also: [and], page 147, [not|, page 148, [xor]|, page 435.

8.5.2 Short-circuit Boolean Operators

Combined with the implicit conversion to scalar values in if and while conditions, Oc-
tave’s element-by-element boolean operators are often sufficient for performing most logical
operations. However, it is sometimes desirable to stop evaluating a boolean expression as
soon as the overall truth value can be determined. Octave’s short-circuit boolean operators
work this way.

booleanl && boolean2

The expression booleanl is evaluated and converted to a scalar using the equiv-
alent of the operation all (boolean1(:)). If it is false, the result of the overall
expression is 0. If it is true, the expression boolean2 is evaluated and converted
to a scalar using the equivalent of the operation all (boolean2(:)). If it is
true, the result of the overall expression is 1. Otherwise, the result of the overall
expression is 0.

Warning: there is one exception to the rule of evaluating all (boolean1(:)),
which is when booleanl is the empty matrix. The truth value of an empty
matrix is always false so [] && true evaluates to false even though all
([1) is true.

booleanl || boolean2

The expression booleanl is evaluated and converted to a scalar using the equiv-
alent of the operation all (boolean1(:)). If it is true, the result of the overall
expression is 1. If it is false, the expression boolean?2 is evaluated and converted
to a scalar using the equivalent of the operation all (boolean2(:)). If it is
true, the result of the overall expression is 1. Otherwise, the result of the overall
expression is 0.

Chapter 8: Expressions 149

Warning: the truth value of an empty matrix is always false, see the previous
list item for details.

The fact that both operands may not be evaluated before determining the overall truth
value of the expression can be important. For example, in the expression

a && b++
the value of the variable b is only incremented if the variable a is nonzero.
This can be used to write somewhat more concise code. For example, it is possible write

function f (a, b, c)
if (nargin > 2 && ischar (c))

instead of having to use two if statements to avoid attempting to evaluate an argument
that doesn’t exist. For example, without the short-circuit feature, it would be necessary to
write

function f (a, b, c)
if (nargin > 2)
if (ischar (c))

Writing
function f (a, b, c)
if (nargin > 2 & ischar (c))

would result in an error if £ were called with one or two arguments because Octave would
be forced to try to evaluate both of the operands for the operator ‘&’.

MATLAB has special behavior that allows the operators ‘4’ and ‘|’ to short-circuit when
used in the truth expression for if and while statements. Octave also behaves the same way
by default, though the use of the ‘&” and ‘|’ operators in this way is strongly discouraged.

Instead, you should use the ‘€&’ and ‘| |’ operators that always have short-circuit behavior.

val = do_braindead_shortcircuit_evaluation ()
old_val = do_braindead_shortcircuit_evaluation (new_val)
do_braindead_shortcircuit_evaluation (new_val, "local")
Query or set the internal variable that controls whether Octave will do short-circuit
evaluation of ‘|” and ‘&’ operators inside the conditions of if or while statements.

This feature is only provided for compatibility with MATLAB and should not be used
unless you are porting old code that relies on this feature.

To obtain short-circuit behavior for logical expressions in new programs, you should
always use the ‘€&’ and ‘||’ operators.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

Finally, the ternary operator (?7:) is not supported in Octave. If short-circuiting is not
important, it can be replaced by the ifelse function.

150 GNU Octave

merge (mask, tval, fval)
ifelse (mask, tval, fval)
Merge elements of true_val and false_val, depending on the value of mask.

If mask is a logical scalar, the other two arguments can be arbitrary values. Otherwise,
mask must be a logical array, and tval, fval should be arrays of matching class, or
cell arrays. In the scalar mask case, tval is returned if mask is true, otherwise fval is
returned.

In the array mask case, both tval and fval must be either scalars or arrays with
dimensions equal to mask. The result is constructed as follows:

result(mask) = tval(mask);
result(! mask) = fval(! mask);

mask can also be arbitrary numeric type, in which case it is first converted to logical.

See also: [logical], page 60, [diff], page 436.

8.6 Assignment Expressions

An assignment is an expression that stores a new value into a variable. For example, the
following expression assigns the value 1 to the variable z:

z =1
After this expression is executed, the variable z has the value 1. Whatever old value z had
before the assignment is forgotten. The ‘=’ sign is called an assignment operator.

Assignments can store string values also. For example, the following expression would
store the value "this food is good" in the variable message:

thing = "food"
predicate = "good"
message = ["this " , thing , " is " , predicate]
(This also illustrates concatenation of strings.)

Most operators (addition, concatenation, and so on) have no effect except to compute
a value. If you ignore the value, you might as well not use the operator. An assignment
operator is different. It does produce a value, but even if you ignore the value, the assignment
still makes itself felt through the alteration of the variable. We call this a side effect.

The left-hand operand of an assignment need not be a variable (see Chapter 7 [Variables],
page 123). It can also be an element of a matrix (see Section 8.1 [Index Expressions],
page 135) or a list of return values (see Section 8.2 [Calling Functions|, page 139). These
are all called Ivalues, which means they can appear on the left-hand side of an assignment
operator. The right-hand operand may be any expression. It produces the new value which
the assignment stores in the specified variable, matrix element, or list of return values.

It is important to note that variables do not have permanent types. The type of a
variable is simply the type of whatever value it happens to hold at the moment. In the
following program fragment, the variable foo has a numeric value at first, and a string value
later on:

I
[EY

octave:13> foo
foo =1
octave:13> foo = "bar"
foo = bar

Chapter 8: Expressions 151

When the second assignment gives foo a string value, the fact that it previously had a
numeric value is forgotten.

Assignment of a scalar to an indexed matrix sets all of the elements that are referenced
by the indices to the scalar value. For example, if a is a matrix with at least two columns,

a(:, 2) =5
sets all the elements in the second column of a to 5.

Assigning an empty matrix ‘[]’ works in most cases to allow you to delete rows or
columns of matrices and vectors. See Section 4.1.1 [Empty Matrices|, page 51. For example,
given a 4 by 5 matrix A, the assignment

A (3,) =1]

deletes the third row of A, and the assignment
A (i, 1:2:5) =[]

deletes the first, third, and fifth columns.

An assignment is an expression, so it has a value. Thus, z = 1 as an expression has the
value 1. One consequence of this is that you can write multiple assignments together:

x=y=z=20
stores the value 0 in all three variables. It does this because the value of z = 0, which is 0,
is stored into y, and then the value of y = z = 0, which is 0, is stored into x.
This is also true of assignments to lists of values, so the following is a valid expression
[a, b, c] = [u, s, v] = svd (a)
that is exactly equivalent to

[u, s, vl = svd (a)

a=u
b=s
c=v

In expressions like this, the number of values in each part of the expression need not
match. For example, the expression
[a, b] = [u, s, v] = svd (a)
is equivalent to
[u, s, vl = svd (a)
a=u
b =s
The number of values on the left side of the expression can, however, not exceed the number
of values on the right side. For example, the following will produce an error.
[a, b, ¢, d] = [u, s, v] = svd (a);
- error: element number 4 undefined in return list
The symbol ~ may be used as a placeholder in the list of lvalues, indicating that the
corresponding return value should be ignored and not stored anywhere:
[7, s, vl = svd (a);
This is cleaner and more memory efficient than using a dummy variable. The nargout
value for the right-hand side expression is not affected. If the assignment is used as an
expression, the return value is a comma-separated list with the ignored values dropped.

152 GNU Octave

A very common programming pattern is to increment an existing variable with a given
value, like this

a=a+ 2;
This can be written in a clearer and more condensed form using the += operator
a += 2;

Similar operators also exist for subtraction (-=), multiplication (*=), and division (/=). An
expression of the form

exprl op= expr2
is evaluated as

exprl = (exprl) op (expr2)
where op can be either +, -, *, or /, as long as expr2 is a simple expression with no side
effects. If expr2 also contains an assignment operator, then this expression is evaluated as

temp = expr2

exprl = (exprl) op temp
where temp is a placeholder temporary value storing the computed result of evaluating
expr2. So, the expression

a *= b+1
is evaluated as

a=a *x (b+l)
and not

a=ax*xb+1

You can use an assignment anywhere an expression is called for. For example, it is valid

to write x != (y = 1) to set y to 1 and then test whether x equals 1. But this style tends

to make programs hard to read. Except in a one-shot program, you should rewrite it to get
rid of such nesting of assignments. This is never very hard.

8.7 Increment Operators

Increment operators increase or decrease the value of a variable by 1. The operator to
increment a variable is written as ‘++’. It may be used to increment a variable either before
or after taking its value.

For example, to pre-increment the variable x, you would write ++x. This would add one
to x and then return the new value of x as the result of the expression. It is exactly the
same as the expression x = x + 1.

To post-increment a variable x, you would write x++. This adds one to the variable x,
but returns the value that x had prior to incrementing it. For example, if x is equal to 2,
the result of the expression x++ is 2, and the new value of x is 3.

For matrix and vector arguments, the increment and decrement operators work on each
element of the operand.

Here is a list of all the increment and decrement expressions.

++x This expression increments the variable x. The value of the expression is the
new value of x. It is equivalent to the expression x = x + 1.

Chapter 8: Expressions 153

--x This expression decrements the variable x. The value of the expression is the
new value of x. It is equivalent to the expression x = x - 1.

x++ This expression causes the variable x to be incremented. The value of the
expression is the old value of x.

x—= This expression causes the variable x to be decremented. The value of the
expression is the old value of x.

8.8 Operator Precedence

Operator precedence determines how operators are grouped, when different operators ap-
pear close by in one expression. For example, ‘*’ has higher precedence than ‘+’. Thus, the
expression a + b * ¢ means to multiply b and ¢, and then add a to the product (i.e., a + (b
* c)).

You can overrule the precedence of the operators by using parentheses. You can think
of the precedence rules as saying where the parentheses are assumed if you do not write
parentheses yourself. In fact, it is wise to use parentheses whenever you have an unusual
combination of operators, because other people who read the program may not remember
what the precedence is in this case. You might forget as well, and then you too could make
a mistake. Explicit parentheses will help prevent any such mistake.

When operators of equal precedence are used together, the leftmost operator groups
first, except for the assignment operators, which group in the opposite order. Thus, the
expression a - b + ¢ groups as (a - b) + ¢, but the expression a = b = c groups asa = (b =
c).

The precedence of prefix unary operators is important when another operator follows
the operand. For example, -x~2 means -(x~2), because ‘-’ has lower precedence than ‘~’.

Here is a table of the operators in Octave, in order of decreasing precedence. Unless
noted, all operators group left to right.

function call and array indexing, cell array indexing, and structure element
indexing

4()7 ({}7 [
postfix increment, and postfix decrement

I

These operators group right to left.

transpose and exponentiation
€39 6 30 6m) Lygg? ¢) L gy

unary plus, unary minus, prefix increment, prefix decrement, and logical "not"
I R BRI B A c!

multiply and divide

(*7 4/7 t\?L \74 *7(/7
add, subtract

(o

colon <

154 GNU Octave

relational

[23 ¢ P LT AN) A~

element-wise "and"
4&)
element-wise "or"
¢ | 9
logical "and"
4&&7
logical "or"
¢ | | M

assignment
L) (+=7 [y L*=? L/=’ £\=7 [RaPe i *=7 ¢ /=7 ¢ \=7 ¢~ 4|=7 ¢&=7

These operators group right to left.

155

9 Evaluation

Normally, you evaluate expressions simply by typing them at the Octave prompt, or by
asking Octave to interpret commands that you have saved in a file.

Sometimes, you may find it necessary to evaluate an expression that has been computed
and stored in a string, which is exactly what the eval function lets you do.

eval (try)
eval (try, catch)
Parse the string try and evaluate it as if it were an Octave program.

If execution fails, evaluate the optional string catch.

The string try is evaluated in the current context, so any results remain available
after eval returns.

The following example creates the variable A with the approximate value of 3.1416
in the current workspace.

eval ("A = acos(-1);");

If an error occurs during the evaluation of try then the catch string is evaluated, as
the following example shows:

eval (Perror ("This is a bad example");’,
’printf ("This error occurred:\n%s\n", lasterr ());’);
< This error occurred:
This is a bad example

Programming Note: if you are only using eval as an error-capturing mechanism,
rather than for the execution of arbitrary code strings, Consider using try/catch
blocks or unwind_protect /unwind_protect_cleanup blocks instead. These techniques
have higher performance and don’t introduce the security considerations that the
evaluation of arbitrary code does.

See also: [evalin], page 158, [evalc], page 155, [assignin], page 158, [feval], page 156.

The evalc function additionally captures any console output produced by the evaluated
expression.

s = evalc (try)

evalc (try, catch)

Parse and evaluate the string try as if it were an Octave program, while capturing
the output into the return variable s.

9]
]

If execution fails, evaluate the optional string catch.
This function behaves like eval, but any output or warning messages which would
normally be written to the console are captured and returned in the string s.

The diary is disabled during the execution of this function. When system is used,
any output produced by external programs is mot captured, unless their output is
captured by the system function itself.
s = evalc ("t = 42"), t
= s =t = 42

= t = 42

156 GNU Octave

See also: [eval], page 155, [diary], page 34.

9.1 Calling a Function by its Name

The feval function allows you to call a function from a string containing its name. This
is useful when writing a function that needs to call user-supplied functions. The feval
function takes the name of the function to call as its first argument, and the remaining
arguments are given to the function.

The following example is a simple-minded function using feval that finds the root of a
user-supplied function of one variable using Newton’s method.

function result = newtroot (fname, x)

usage: newtroot (fname, x)

#
fname : a string naming a function f(x).
00X : initial guess
delta = tol = sqrt (eps);
maxit = 200;
fx = feval (fname, x);
for i = 1:maxit
if (abs (fx) < tol)
result = x;
return;
else
fx_new = feval (fname, x + delta);
deriv = (fx_new - fx) / delta;
x = x - fx / deriv;
fx = fx_new;
endif
endfor
result = x;
endfunction

Note that this is only meant to be an example of calling user-supplied functions and
should not be taken too seriously. In addition to using a more robust algorithm, any serious
code would check the number and type of all the arguments, ensure that the supplied func-
tion really was a function, etc. See Section 4.8 [Predicates for Numeric Objects|, page 61, for
a list of predicates for numeric objects, and see Section 7.3 [Status of Variables|, page 127,
for a description of the exist function.

feval (name, ...)
Evaluate the function named name.

Any arguments after the first are passed as inputs to the named function. For example,

feval ("acos", -1)
= 3.1416

Chapter 9: Evaluation 157

calls the function acos with the argument ‘-1’

The function feval can also be used with function handles of any sort (see
Section 11.11.1 [Function Handles], page 206). Historically, feval was the only way
to call user-supplied functions in strings, but function handles are now preferred due
to the cleaner syntax they offer. For example,

f = Qexp;
feval (f, 1)
= 2.7183
£ (1)
= 2.7183

are equivalent ways to call the function referred to by f. If it cannot be predicted
beforehand whether f is a function handle, function name in a string, or inline function
then feval can be used instead.

A similar function run exists for calling user script files, that are not necessarily on the
user path

run script
run ("script")
Run script in the current workspace.

Scripts which reside in directories specified in Octave’s load path, and which end with
the extension ".m", can be run simply by typing their name. For scripts not located
on the load path, use run.

The filename script can be a bare, fully qualified, or relative filename and with or
without a file extension. If no extension is specified, Octave will first search for a script
with the ".m" extension before falling back to the script name without an extension.

Implementation Note: If script includes a path component, then run first changes the
working directory to the directory where script is found. Next, the script is executed.
Finally, run returns to the original working directory unless script has specifically
changed directories.

See also: [path], page 191, [addpath], page 189, [source|, page 199.

9.2 Evaluation in a Different Context

Before you evaluate an expression you need to substitute the values of the variables used in
the expression. These are stored in the symbol table. Whenever the interpreter starts a new
function it saves the current symbol table and creates a new one, initializing it with the list
of function parameters and a couple of predefined variables such as nargin. Expressions
inside the function use the new symbol table.

Sometimes you want to write a function so that when you call it, it modifies variables in
your own context. This allows you to use a pass-by-name style of function, which is similar
to using a pointer in programming languages such as C.

Consider how you might write save and load as m-files. For example:

158 GNU Octave

function create_data
x = linspace (0, 10, 10);
y = sin (x);
save mydata x y
endfunction

With evalin, you could write save as follows:

function save (file, namel, name2)
f = open_save_file (file);
save_var (f, namel, evalin ("caller", namel));
save_var (f, name2, evalin ("caller", name?2));
endfunction

Here, ‘caller’ is the create_data function and namel is the string "x", which evaluates
simply as the value of x.

You later want to load the values back from mydata in a different context:

function process_data
load mydata
. do work ...
endfunction

With assignin, you could write load as follows:

function load (file)
f = open_load_file (file);
[name, val] = load_var (f);
assignin ("caller", name, val);
[name, val] = load_var (f);
assignin ("caller", name, val);
endfunction

Here, ‘caller’ is the process_data function.

You can set and use variables at the command prompt using the context ‘base’ rather
than ‘caller’.

These functions are rarely used in practice. One example is the fail (‘code’,
‘pattern’) function which evaluates ‘code’ in the caller’s context and checks that the
error message it produces matches the given pattern. Other examples such as save and
load are written in C++ where all Octave variables are in the ‘caller’ context and evalin
is not needed.

evalin (context, try)

evalin (context, try, catch)
Like eval, except that the expressions are evaluated in the context context, which
may be either "caller" or "base".

See also: [eval], page 155, [assignin], page 158.

assignin (context, varname, value)
Assign value to varname in context context, which may be either "base" or "caller".

See also: [evalin], page 158.

159

10 Statements

Statements may be a simple constant expression or a complicated list of nested loops and
conditional statements.

Control statements such as if, while, and so on control the flow of execution in Octave
programs. All the control statements start with special keywords such as if and while,
to distinguish them from simple expressions. Many control statements contain other state-
ments; for example, the if statement contains another statement which may or may not be
executed.

Each control statement has a corresponding end statement that marks the end of the
control statement. For example, the keyword endif marks the end of an if statement, and
endwhile marks the end of a while statement. You can use the keyword end anywhere a
more specific end keyword is expected, but using the more specific keywords is preferred
because if you use them, Octave is able to provide better diagnostics for mismatched or
missing end tokens.

The list of statements contained between keywords like if or while and the correspond-
ing end statement is called the body of a control statement.

10.1 The if Statement

The if statement is Octave’s decision-making statement. There are three basic forms of an
if statement. In its simplest form, it looks like this:
if (condition)
then-body
endif

condition is an expression that controls what the rest of the statement will do. The then-
body is executed only if condition is true.

The condition in an if statement is considered true if its value is nonzero, and false if
its value is zero. If the value of the conditional expression in an if statement is a vector or
a matrix, it is considered true only if it is non-empty and all of the elements are nonzero.
The conceptually equivalent code when condition is a matrix is shown below.

if (matrix) = if (all (matrix(:)))
The second form of an if statement looks like this:
if (condition)
then-body
else
else-body
endif
If condition is true, then-body is executed; otherwise, else-body is executed.
Here is an example:
if (rem (x, 2) == 0)
printf ("x is even\n");
else
printf ("x is odd\n");
endif

160 GNU Octave

In this example, if the expression rem (x, 2) == 0 is true (that is, the value of x is
divisible by 2), then the first printf statement is evaluated, otherwise the second printf
statement is evaluated.

The third and most general form of the if statement allows multiple decisions to be
combined in a single statement. It looks like this:

if (condition)
then-body
elseif (condition)
elseif-body
else
else-body
endif

Any number of elseif clauses may appear. Each condition is tested in turn, and if one is
found to be true, its corresponding body is executed. If none of the conditions are true and
the else clause is present, its body is executed. Only one else clause may appear, and it
must be the last part of the statement.

In the following example, if the first condition is true (that is, the value of x is divisible
by 2), then the first printf statement is executed. If it is false, then the second condition
is tested, and if it is true (that is, the value of x is divisible by 3), then the second printf
statement is executed. Otherwise, the third printf statement is performed.

if (rem (x, 2) == 0)
printf ("x is even\n");
elseif (rem (x, 3) == 0)
printf ("x is odd and divisible by 3\n");
else
printf ("x is odd\n");
endif

Note that the elseif keyword must not be spelled else if, as is allowed in Fortran. If
it is, the space between the else and if will tell Octave to treat this as a new if statement
within another if statement’s else clause. For example, if you write

if (c1)
body-1
else if (c2)
body-2
endif

Octave will expect additional input to complete the first if statement. If you are using
Octave interactively, it will continue to prompt you for additional input. If Octave is reading
this input from a file, it may complain about missing or mismatched end statements, or, if
you have not used the more specific end statements (endif, endfor, etc.), it may simply
produce incorrect results, without producing any warning messages.

It is much easier to see the error if we rewrite the statements above like this,

Chapter 10: Statements 161

if (c1)
body-1
else
if (c2)
body-2
endif
using the indentation to show how Octave groups the statements. See Chapter 11 [Functions

and Scripts], page 171.

10.2 The switch Statement

It is very common to take different actions depending on the value of one variable. This is
possible using the if statement in the following way

if (X == 1)
do_something ();

elseif (X == 2)
do_something_else ();

else
do_something_completely_different ();

endif
This kind of code can however be very cumbersome to both write and maintain. To overcome
this problem Octave supports the switch statement. Using this statement, the above

example becomes

switch (X)
case 1
do_something ();
case 2
do_something_else ();
otherwise
do_something_completely_different ();
endswitch
This code makes the repetitive structure of the problem more explicit, making the code
easier to read, and hence maintain. Also, if the variable X should change its name, only one
line would need changing compared to one line per case when if statements are used.

The general form of the switch statement is

switch (expression)
case label
command_list
case label
command_list

otherwise
command_1list
endswitch

162 GNU Octave

where label can be any expression. However, duplicate label values are not detected, and
only the command_list corresponding to the first match will be executed. For the switch
statement to be meaningful at least one case label command_list clause must be present,
while the otherwise command_list clause is optional.

If label is a cell array the corresponding command._list is executed if any of the elements of
the cell array match expression. As an example, the following program will print ‘Variable
is either 6 or 7’.

A=17;
switch (A)
case { 6, 7 }
printf ("variable is either 6 or 7\n");
otherwise
printf ("variable is neither 6 nor 7\n");
endswitch

As with all other specific end keywords, endswitch may be replaced by end, but you
can get better diagnostics if you use the specific forms.

One advantage of using the switch statement compared to using if statements is that
the labels can be strings. If an if statement is used it is not possible to write

if (X == "a string") # This is NOT valid
since a character-to-character comparison between X and the string will be made instead of
evaluating if the strings are equal. This special-case is handled by the switch statement,
and it is possible to write programs that look like this
switch (X)
case "a string"
do_something

enaé&itch
10.2.1 Notes for the C Programmer

The switch statement is also available in the widely used C programming language. There
are, however, some differences between the statement in Octave and C

e Cases are exclusive, so they don’t ‘fall through’ as do the cases in the switch statement
of the C language.

e The command_list elements are not optional. Making the list optional would have
meant requiring a separator between the label and the command list. Otherwise,
things like

switch (foo)
case (1) -2

would produce surprising results, as would
switch (foo)
case (1)
case (2)
doit ();

Chapter 10: Statements 163

particularly for C programmers. If doit () should be executed if foo is either 1 or 2,
the above code should be written with a cell array like this

switch (foo)
case {1, 2 }
doit ();

10.3 The while Statement

In programming, a loop means a part of a program that is (or at least can be) executed
two or more times in succession.

The while statement is the simplest looping statement in Octave. It repeatedly executes
a statement as long as a condition is true. As with the condition in an if statement, the
condition in a while statement is considered true if its value is nonzero, and false if its
value is zero. If the value of the conditional expression in a while statement is a vector or
a matrix, it is considered true only if it is non-empty and all of the elements are nonzero.

Octave’s while statement looks like this:

while (condition)
body
endwhile

Here body is a statement or list of statements that we call the body of the loop, and
condition is an expression that controls how long the loop keeps running.

The first thing the while statement does is test condition. If condition is true, it executes
the statement body. After body has been executed, condition is tested again, and if it is
still true, body is executed again. This process repeats until condition is no longer true. If
condition is initially false, the body of the loop is never executed.

This example creates a variable £ib that contains the first ten elements of the Fibonacci
sequence.

fib = ones (1, 10);

i= 3;

while (i <= 10)
fib (i) = fib (i-1) + fib (i-2);
i++;

endwhile
Here the body of the loop contains two statements.

The loop works like this: first, the value of i is set to 3. Then, the while tests whether
i is less than or equal to 10. This is the case when i equals 3, so the value of the i-th
element of fib is set to the sum of the previous two values in the sequence. Then the i++
increments the value of i and the loop repeats. The loop terminates when i reaches 11.

A newline is not required between the condition and the body; but using one makes the
program clearer unless the body is very simple.

164 GNU Octave

10.4 The do-until Statement

The do-until statement is similar to the while statement, except that it repeatedly ex-
ecutes a statement until a condition becomes true, and the test of the condition is at the
end of the loop, so the body of the loop is always executed at least once. As with the
condition in an if statement, the condition in a do-until statement is considered true if
its value is nonzero, and false if its value is zero. If the value of the conditional expression
in a do—until statement is a vector or a matrix, it is considered true only if it is non-empty
and all of the elements are nonzero.

Octave’s do—until statement looks like this:

do
body
until (condition)

Here body is a statement or list of statements that we call the body of the loop, and
condition is an expression that controls how long the loop keeps running.

This example creates a variable £ib that contains the first ten elements of the Fibonacci
sequence.
fib
i =
do
it++;
fib (i) = fib (i-1) + fib (i-2);
until (i == 10)

= ones (1, 10);
2;

A newline is not required between the do keyword and the body; but using one makes
the program clearer unless the body is very simple.

10.5 The for Statement

The for statement makes it more convenient to count iterations of a loop. The general
form of the for statement looks like this:

for var = expression
body
endfor

where body stands for any statement or list of statements, expression is any valid expression,
and var may take several forms. Usually it is a simple variable name or an indexed variable.
If the value of expression is a structure, var may also be a vector with two elements. See
Section 10.5.1 [Looping Over Structure Elements|, page 165, below.

The assignment expression in the for statement works a bit differently than Octave’s
normal assignment statement. Instead of assigning the complete result of the expression, it
assigns each column of the expression to var in turn. If expression is a range, a row vector,
or a scalar, the value of var will be a scalar each time the loop body is executed. If var is a
column vector or a matrix, var will be a column vector each time the loop body is executed.

The following example shows another way to create a vector containing the first ten
elements of the Fibonacci sequence, this time using the for statement:

Chapter 10: Statements 165

fib = ones (1, 10);
for i = 3:10

fib(i) = fib(i-1) + fib(i-2);
endfor

This code works by first evaluating the expression 3:10, to produce a range of values from 3
to 10 inclusive. Then the variable i is assigned the first element of the range and the body
of the loop is executed once. When the end of the loop body is reached, the next value in
the range is assigned to the variable i, and the loop body is executed again. This process
continues until there are no more elements to assign.

Within Octave is it also possible to iterate over matrices or cell arrays using the for
statement. For example consider

disp ("Loop over a matrix")
for i = [1,3;2,4]
i
endfor
disp ("Loop over a cell array")
for i = {1,"two";"three",4}
i
endfor
In this case the variable i takes on the value of the columns of the matrix or cell matrix.
So the first loop iterates twice, producing two column vectors [1;2], followed by [3;4],
and likewise for the loop over the cell array. This can be extended to loops over multi-
dimensional arrays. For example:

a = [1,3;2,4]; ¢ = cat (3, a, 2%*a);
for i = ¢

i
endfor

In the above case, the multi-dimensional matrix c is reshaped to a two-dimensional matrix as
reshape (c, rows (c), prod (size (c)(2:end))) and then the same behavior as a loop
over a two-dimensional matrix is produced.

Although it is possible to rewrite all for loops as while loops, the Octave language has
both statements because often a for loop is both less work to type and more natural to
think of. Counting the number of iterations is very common in loops and it can be easier
to think of this counting as part of looping rather than as something to do inside the loop.

10.5.1 Looping Over Structure Elements
A special form of the for statement allows you to loop over all the elements of a structure:

for [val, key] = expression
body
endfor

In this form of the for statement, the value of expression must be a structure. If it is, key
and val are set to the name of the element and the corresponding value in turn, until there
are no more elements. For example:

166 GNU Octave

x.a =1
x.b = [1, 2; 3, 4]
x.c = "string"
for [val, key] = x
key
val
endfor
- key = a
- val =1
- key =D
- val =
_|
- 1 2
- 3 4
_{
- key = ¢
- val = string

The elements are not accessed in any particular order. If you need to cycle through
the list in a particular way, you will have to use the function fieldnames and sort the list
yourself.

10.6 The break Statement

The break statement jumps out of the innermost while, do—until, or for loop that encloses
it. The break statement may only be used within the body of a loop. The following example
finds the smallest divisor of a given integer, and also identifies prime numbers:

num = 103;
div = 2;
while (div*div <= num)
if (rem (num, div) == 0)
break;
endif
div++;
endwhile
if (rem (num, div) == 0)
printf ("Smallest divisor of ’d is %d\n", num, div)
else
printf ("%d is prime\n", num);
endif

When the remainder is zero in the first while statement, Octave immediately breaks
out of the loop. This means that Octave proceeds immediately to the statement following
the loop and continues processing. (This is very different from the exit statement which
stops the entire Octave program.)

Here is another program equivalent to the previous one. It illustrates how the condition
of a while statement could just as well be replaced with a break inside an if:

Chapter 10: Statements 167

num = 103;
div = 2;
while (1)
if (rem (num, div) == 0)
printf ("Smallest divisor of %d is %d\n", num, div);
break;
endif
div++;
if (div*div > num)
printf ("%d is prime\n", num);
break;
endif
endwhile

10.7 The continue Statement

The continue statement, like break, is used only inside while, do-until, or for loops.
It skips over the rest of the loop body, causing the next cycle around the loop to begin
immediately. Contrast this with break, which jumps out of the loop altogether. Here is an
example:

print elements of a vector of random
integers that are even.

first, create a row vector of 10 random
integers with values between O and 100:

vec = round (rand (1, 10) * 100);
print what we’re interested in:

for x = vec
if (rem (x, 2) !'= 0)
continue;
endif
printf ("%d\n", x);
endfor

If one of the elements of vec is an odd number, this example skips the print statement
for that element, and continues back to the first statement in the loop.

This is not a practical example of the continue statement, but it should give you a clear
understanding of how it works. Normally, one would probably write the loop like this:

for x = vec
if (rem (x, 2) == 0)
printf ("%d\n", x);
endif
endfor

168 GNU Octave

10.8 The unwind_protect Statement

Octave supports a limited form of exception handling modeled after the unwind-protect
form of Lisp.

The general form of an unwind_protect block looks like this:

unwind_protect
body
unwind_protect_cleanup
cleanup
end_unwind_protect

where body and cleanup are both optional and may contain any Octave expressions or
commands. The statements in cleanup are guaranteed to be executed regardless of how
control exits body.

This is useful to protect temporary changes to global variables from possible errors. For
example, the following code will always restore the original value of the global variable
frobnosticate even if an error occurs in the first part of the unwind_protect block.

save_frobnosticate = frobnosticate;
unwind_protect
frobnosticate = true;

unwind_protect_cleanup
frobnosticate = save_frobnosticate;
end_unwind_protect

Without unwind_protect, the value of frobnosticate would not be restored if an error occurs
while evaluating the first part of the unwind_protect block because evaluation would stop
at the point of the error and the statement to restore the value would not be executed.

In addition to unwind_protect, Octave supports another form of exception handling, the
try block.

10.9 The try Statement
The original form of a try block looks like this:

try

body
catch

cleanup
end_try_catch

where body and cleanup are both optional and may contain any Octave expressions or
commands. The statements in cleanup are only executed if an error occurs in body.

No warnings or error messages are printed while body is executing. If an error does
occur during the execution of body, cleanup can use the functions lasterr or lasterror
to access the text of the message that would have been printed, as well as its identifier. The
alternative form,

Chapter 10: Statements 169

try
body
catch err
cleanup
end_try_catch

will automatically store the output of lasterror in the structure err. See Chapter 12
[Errors and Warnings|, page 213, for more information about the lasterr and lasterror
functions.

10.10 Continuation Lines

In the Octave language, most statements end with a newline character and you must tell
Octave to ignore the newline character in order to continue a statement from one line to
the next. Lines that end with the characters ... are joined with the following line before
they are divided into tokens by Octave’s parser. For example, the lines

x = long_variable_name
+ longer_variable_name ...
- 42
form a single statement.

Any text between the continuation marker and the newline character is ignored. For
example, the statement

x = long_variable_name ... # comment one
+ longer_variable_name ...comment two
- 42 # last comment

is equivalent to the one shown above.

Inside double-quoted string constants, the character \ has to be used as continuation
marker. The \ must appear at the end of the line just before the newline character:

s = "This text starts in the first line \
and is continued in the second line."

Input that occurs inside parentheses can be continued to the next line without having to
use a continuation marker. For example, it is possible to write statements like
if (fine_dining_destination == on_a_boat
|| fine_dining destination == on_a_train)
seuss (i, will, not, eat, them, sam, i, am, i,
will, not, eat, green, eggs, and, ham);
endif

without having to add to the clutter with continuation markers.

171

11 Functions and Scripts

Complicated Octave programs can often be simplified by defining functions. Functions can
be defined directly on the command line during interactive Octave sessions, or in external
files, and can be called just like built-in functions.

11.1 Introduction to Function and Script Files

There are seven different things covered in this section.

1. Typing in a function at the command prompt.
Storing a group of commands in a file — called a script file.
Storing a function in a file—called a function file.
Subfunctions in function files.
Multiple functions in one script file.

Private functions.

NSO W N

Nested functions.

Both function files and script files end with an extension of .m, for MATLAB compatibility.
If you want more than one independent functions in a file, it must be a script file (see
Section 11.10 [Script Files|, page 198), and to use these functions you must execute the
script file before you can use the functions that are in the script file.

11.2 Defining Functions

In its simplest form, the definition of a function named name looks like this:

function name
body
endfunction

A valid function name is like a valid variable name: a sequence of letters, digits and under-
scores, not starting with a digit. Functions share the same pool of names as variables.

The function body consists of Octave statements. It is the most important part of the
definition, because it says what the function should actually do.

For example, here is a function that, when executed, will ring the bell on your terminal
(assuming that it is possible to do so):

function wakeup
printf ("\a");
endfunction
The printf statement (see Chapter 14 [Input and Output|, page 241) simply tells Octave
to print the string "\a". The special character ‘\a’ stands for the alert character (ASCII
7). See Chapter 5 [Strings], page 67.

Once this function is defined, you can ask Octave to evaluate it by typing the name of
the function.

Normally, you will want to pass some information to the functions you define. The
syntax for passing parameters to a function in Octave is

172 GNU Octave

function name (arg-list)
body
endfunction

where arg-list is a comma-separated list of the function’s arguments. When the function is
called, the argument names are used to hold the argument values given in the call. The list
of arguments may be empty, in which case this form is equivalent to the one shown above.

To print a message along with ringing the bell, you might modify the wakeup to look
like this:

function wakeup (message)
printf ("\alks\n", message);
endfunction

Calling this function using a statement like this
wakeup ("Rise and shine!");

will cause Octave to ring your terminal’s bell and print the message ‘Rise and shine!’,
followed by a newline character (the ‘\n’ in the first argument to the printf statement).

In most cases, you will also want to get some information back from the functions you
define. Here is the syntax for writing a function that returns a single value:

function ret-var = name (arg-list)
body
endfunction

The symbol ret-var is the name of the variable that will hold the value to be returned by
the function. This variable must be defined before the end of the function body in order
for the function to return a value.

Variables used in the body of a function are local to the function. Variables named
in arg-list and ret-var are also local to the function. See Section 7.1 [Global Variables],
page 124, for information about how to access global variables inside a function.

For example, here is a function that computes the average of the elements of a vector:

function retval = avg (v)
retval = sum (v) / length (v);
endfunction

If we had written avg like this instead,

function retval = avg (v)
if (isvector (v))
retval = sum (v) / length (v);
endif
endfunction

and then called the function with a matrix instead of a vector as the argument, Octave
would have printed an error message like this:

error: value on right hand side of assignment is undefined

because the body of the if statement was never executed, and retval was never defined.
To prevent obscure errors like this, it is a good idea to always make sure that the return

Chapter 11: Functions and Scripts 173

variables will always have values, and to produce meaningful error messages when problems
are encountered. For example, avg could have been written like this:

function retval = avg (v)
retval = 0;
if (isvector (v))
retval = sum (v) / length (v);
else
error ("avg: expecting vector argument");
endif
endfunction

There is still one additional problem with this function. What if it is called without an
argument? Without additional error checking, Octave will probably print an error message
that won'’t really help you track down the source of the error. To allow you to catch errors
like this, Octave provides each function with an automatic variable called nargin. Each
time a function is called, nargin is automatically initialized to the number of arguments
that have actually been passed to the function. For example, we might rewrite the avg
function like this:

function retval = avg (v)
retval = 0;
if (nargin != 1)
usage ("avg (vector)");
endif
if (isvector (v))
retval = sum (v) / length (v);
else
error ("avg: expecting vector argument");
endif
endfunction

Although Octave does not automatically report an error if you call a function with more
arguments than expected, doing so probably indicates that something is wrong. Octave
also does not automatically report an error if a function is called with too few arguments,
but any attempt to use a variable that has not been given a value will result in an error.
To avoid such problems and to provide useful messages, we check for both possibilities and
issue our own error message.

nargin ()
nargin (fcn)
Report the number of input arguments to a function.

Called from within a function, return the number of arguments passed to the function.
At the top level, return the number of command line arguments passed to Octave.

If called with the optional argument fcn—a function name or handle—return the
declared number of arguments that the function can accept.

If the last argument to fcn is varargin the returned value is negative. For example,
the function union for sets is declared as

174 GNU Octave

function [y, ia, ib] = union (a, b, varargin)
and

nargin ("union")

= -3
Programming Note: nargin does not work on compiled functions (.oct files) such as
built-in or dynamically loaded functions.

See also: [nargout|, page 176, [narginchk], page 177, [varargin|, page 182, [inputname],
page 174.

inputname (n)
Return the name of the n-th argument to the calling function.
If the argument is not a simple variable name, return an empty string. As an example,
a reference to a field in a structure such as s.field is not a simple name and will
return "".

inputname is only useful within a function. When used at the command line it always
returns an empty string.

See also: [nargin], page 173, [nthargout|, page 175.

val = silent_functions ()

old_val = silent_functions (new_val)

silent_functions (new_val, "local")
Query or set the internal variable that controls whether internal output from a func-
tion is suppressed.

If this option is disabled, Octave will display the results produced by evaluating
expressions within a function body that are not terminated with a semicolon.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

11.3 Multiple Return Values

Unlike many other computer languages, Octave allows you to define functions that return
more than one value. The syntax for defining functions that return multiple values is

function [ret-list] = name (arg-list)
body
endfunction

where name, arg-list, and body have the same meaning as before, and ret-list is a comma-
separated list of variable names that will hold the values returned from the function. The
list of return values must have at least one element. If ret-list has only one element, this
form of the function statement is equivalent to the form described in the previous section.

Here is an example of a function that returns two values, the maximum element of a
vector and the index of its first occurrence in the vector.

Chapter 11: Functions and Scripts 175

function [max, idx] = vmax (v)

idx = 1;
max = v (idx);
for i = 2:length (v)

if (v (i) > max)
max = v (i);
idx = 1i;
endif
endfor
endfunction

In this particular case, the two values could have been returned as elements of a single
array, but that is not always possible or convenient. The values to be returned may not
have compatible dimensions, and it is often desirable to give the individual return values
distinct names.

It is possible to use the nthargout function to obtain only some of the return values or
several at once in a cell array. See Section 3.1.5 [Cell Array Objects|, page 44.

nthargout (n, func, ...)

nthargout (n, ntot, func, ...)
Return the nth output argument of the function specified by the function handle or
string func.

Any additional arguments are passed directly to func. The total number of arguments
to call func with can be passed in ntot; by default ntot is n. The input n can also be
a vector of indices of the output, in which case the output will be a cell array of the
requested output arguments.

The intended use nthargout is to avoid intermediate variables. For example, when
finding the indices of the maximum entry of a matrix, the following two compositions
of nthargout
m = magic (5);
cell2mat (nthargout ([1, 2], @ind2sub, size (m),
nthargout (2, @max, m(:))))
= b 3

are completely equivalent to the following lines:
m = magic (5);
[, idx] = max (M(:));
[i, j] = ind2sub (size (m), idx);
[i, jl
= b 3

It can also be helpful to have all output arguments in a single cell in the following
manner:

USV = nthargout ([1:3], @svd, hilb (5));

See also: [nargin|, page 173, [nargout], page 176, [varargin], page 182, [varargout],
page 182, [isargout], page 184.

176 GNU Octave

In addition to setting nargin each time a function is called, Octave also automatically
initializes nargout to the number of values that are expected to be returned. This allows
you to write functions that behave differently depending on the number of values that the
user of the function has requested. The implicit assignment to the built-in variable ans
does not figure in the count of output arguments, so the value of nargout may be zero.

The svd and lu functions are examples of built-in functions that behave differently
depending on the value of nargout.

It is possible to write functions that only set some return values. For example, calling
the function

function [x, y, z] = £ ()
x =1;
z = 2;
endfunction
as
la, b, cl] = O
produces:

a=1

b

[1(0x0)

c =2

along with a warning.

nargout ()
nargout (fcn)
Report the number of output arguments from a function.

Called from within a function, return the number of values the caller expects to
receive. At the top level, nargout with no argument is undefined and will produce
an error.

If called with the optional argument fcn—a function name or handle—return the
number of declared output values that the function can produce.

If the final output argument is varargout the returned value is negative.

For example,

f 0O
will cause nargout to return 0 inside the function £ and
s, t] = £ O

will cause nargout to return 2 inside the function f.
In the second usage,
nargout (@histc) \% or nargout ("histc")
will return 2, because histc has two outputs, whereas
nargout (@imread)

will return -2, because imread has two outputs and the second is varargout.

Chapter 11: Functions and Scripts 177

Programming Note. nargout does not work for built-in functions and returns -1 for
all anonymous functions.

See also: [nargin], page 173, [varargout|, page 182, [isargout], page 184, [nthargout],
page 175.

It is good practice at the head of a function to verify that it has been called correctly.
In Octave the following idiom is seen frequently

if (nargin < min_#_inputs || nargin > max_#_inputs)
print_usage O;
endif

which stops the function execution and prints a message about the correct way to call the
function whenever the number of inputs is wrong.

For compatibility with MATLAB, narginchk and nargoutchk are available which provide
similar error checking.

narginchk (minargs, maxargs)
Check for correct number of input arguments.

Generate an error message if the number of arguments in the calling function is outside
the range minargs and maxargs. Otherwise, do nothing.

Both minargs and maxargs must be scalar numeric values. Zero, Inf, and negative
values are all allowed, and minargs and maxargs may be equal.

Note that this function evaluates nargin on the caller.

See also: [nargoutchk], page 177, [error|, page 213, [nargout|, page 176, [nargin],
page 173.

nargoutchk (minargs, maxargs)

msgstr = nargoutchk (minargs, maxargs, nargs)

msgstr = nargoutchk (minargs, maxargs, nargs, "string")

msgstruct = nargoutchk (minargs, maxargs, nargs, "struct")
Check for correct number of output arguments.

In the first form, return an error if the number of arguments is not between minargs
and maxargs. Otherwise, do nothing. Note that this function evaluates the value of
nargout on the caller so its value must have not been tampered with.

Both minargs and maxargs must be numeric scalars. Zero, Inf, and negative are all
valid, and they can have the same value.

For backwards compatibility, the other forms return an appropriate error message
string (or structure) if the number of outputs requested is invalid.

This is useful for checking to that the number of output arguments supplied to a
function is within an acceptable range.

See also: [narginchk], page 177, [error]|, page 213, [nargout], page 176, [nargin],
page 173.

Besides the number of arguments, inputs can be checked for various properties.
validatestring is used for string arguments and validateattributes for numeric
arguments.

178

GNU Octave

validstr = validatestring (str, strarray)

validstr = validatestring (str, strarray, funcname)
validstr = validatestring (str, strarray, funcname, varname)
validstr = validatestring (..., position)

Verify that str is an element, or substring of an element, in strarray.

When str is a character string to be tested, and strarray is a cellstr of valid values,
then validstr will be the validated form of str where validation is defined as str being
a member or substring of validstr. This is useful for both verifying and expanding
short options, such as "r", to their longer forms, such as "red". If str is a substring
of validstr, and there are multiple matches, the shortest match will be returned if all
matches are substrings of each other. Otherwise, an error will be raised because the
expansion of str is ambiguous. All comparisons are case insensitive.

The additional inputs funcname, varname, and position are optional and will make
any generated validation error message more specific.

Examples:

validatestring ("r", {"red", "green", "blue"})
= "red"

validatestring ("b", {"red", "green", "blue", "black"})
= error: validatestring: multiple unique matches were found for ’b’:
blue, black

See also: [strcmp], page 76, [strcmpi]
[inputParser]|, page 180.

page 77, [validateattributes|, page 178,

)

validateattributes (4, classes, attributes)

validateattributes (4, classes, attributes, arg_idx)

validateattributes (4, classes, attributes, func_name)

validateattributes (4, classes, attributes, func_name, arg_name)

validateattributes (4, classes, attributes, func_name, arg_name,
arg_idx)

Check validity of input argument.

Confirms that the argument A is valid by belonging to one of classes, and holding
all of the attributes. If it does not, an error is thrown, with a message formatted
accordingly. The error message can be made further complete by the function name
fun_name, the argument name arg_name, and its position in the input arg_idx.
classes must be a cell array of strings (an empty cell array is allowed) with the name
of classes (remember that a class name is case sensitive). In addition to the class
name, the following categories names are also valid:

"float" Floating point value comprising classes "double" and "single".

"integer"
Integer value comprising classes (u)int8, (u)int16, (u)int32, (u)int64.

"numeric"
Numeric value comprising either a floating point or integer value.

attributes must be a cell array with names of checks for A. Some of them require an
additional value to be supplied right after the name (see details for each below).

=" All values are less than or equal to the following value in attributes.

Chapter 11: Functions and Scripts 179

g All values are less than the following value in attributes.

n>=n All values are greater than or equal to the following value in attributes.
> All values are greater than the following value in attributes.

"4 A 2-dimensional matrix. Note that vectors and empty matrices have 2

dimensions, one of them being of length 1, or both length 0.

"3q4" Has no more than 3 dimensions. A 2-dimensional matrix is a 3-D matrix
whose 3rd dimension is of length 1.

"binary" All values are either 1 or 0.
"column" Values are arranged in a single column.

"decreasing"
No value is NaN, and each is less than the preceding one.

"diag" Value is a diagonal matrix.
"even" All values are even numbers.
"finite" All values are finite.

"increasing"
No value is NaN, and each is greater than the preceding one.

"integer"
All values are integer. This is different than using isinteger which only
checks its an integer type. This checks that each value in A is an integer
value, i.e., it has no decimal part.
"ncols" Has exactly as many columns as the next value in attributes.
"ndims" Has exactly as many dimensions as the next value in attributes.
"nondecreasing"
No value is NaN, and each is greater than or equal to the preceding one.
"nonempty"
It is not empty.
"nonincreasing"

No value is NaN, and each is less than or equal to the preceding one.
"nonnan" No value is a NaN.

"nonnegative"
All values are non negative.

"nonsparse"
It is not a sparse matrix.

"nonzero"
No value is zero.

"nrows" Has exactly as many rows as the next value in attributes.

"numel" Has exactly as many elements as the next value in attributes.

180 GNU Octave

"odd" All values are odd numbers.
"positive"

All values are positive.
"real" It is a non-complex matrix.

"row" Values are arranged in a single row.

"scalar" It is a scalar.

"size" Its size has length equal to the values of the next in attributes. The next
value must is an array with the length for each dimension. To ignore the
check for a certain dimension, the value of NaN can be used.

"square" Is a square matrix.

"vector" Values are arranged in a single vector (column or vector).
See also: [isa|, page 39, [validatestring], page 177, [inputParser|, page 180.

If none of the preceding functions is sufficient there is also the class inputParser which
can perform extremely complex input checking for functions.

p = inputParser ()
Create object p of the inputParser class.

This class is designed to allow easy parsing of function arguments. The class supports
four types of arguments:

1. mandatory (see addRequired);
2. optional (see addOptional);
3. named (see addParameter);
4. switch (see addSwitch).
After defining the function API with these methods, the supplied arguments can be

parsed with the parse method and the parsing results accessed with the Results
aCcCcessor.

inputParser.Parameters
Return list of parameter names already defined.

inputParser.Results
Return structure with argument names as fieldnames and corresponding values.

inputParser.Unmatched
Return structure similar to Results, but for unmatched parameters. See the
KeepUnmatched property.

inputParser.UsingDefaults
Return cell array with the names of arguments that are using default values.

inputParser.CaseSensitive = boolean
Set whether matching of argument names should be case sensitive. Defaults to false.

Chapter 11: Functions and Scripts 181

inputParser.FunctionName — name
Set function name to be used in error messages; Defaults to empty string.

inputParser.KeepUnmatched = boolean
Set whether an error should be given for non-defined arguments. Defaults to false. If
set to true, the extra arguments can be accessed through Unmatched after the parse
method. Note that since Switch and Parameter arguments can be mixed, it is not
possible to know the unmatched type. If argument is found unmatched it is assumed
to be of the Parameter type and it is expected to be followed by a value.

inputParser.StructExpand = boolean
Set whether a structure can be passed to the function instead of parameter/value
pairs. Defaults to true.

The following example shows how to use this class:

function check (varargin)
p = inputParser ();
p.FunctionName = "check";
p.addRequired ("pack", @ischar);
p.addOptional ("path", pwd(), @ischar);

create object

set function name
mandatory argument
optional argument

H H H R

create a function handle to anonymous functions for validators
val_mat = @(x) isvector (x) && all (x <= 1) && all (x >= 0);
p-addOptional ("mat", [0 O], val_mat);

create two arguments of type "Parameter"

val_type = @(x) any (strcmp (x, {"linear", "quadratic"}));
p-addParameter ("type", "linear", val_type);

val_verb = @(x) any (strcmp (x, {"low", "medium", "high"}));
p.addParameter ("tolerance", "low", val_verb);

create a switch type of argument
p-addSwitch ("verbose");

p.parse (varargin{:}); # Run created parser on inputs
the rest of the function can access inputs by using p.Results.

for example, get the tolerance input with p.Results.tolerance
endfunction

182 GNU Octave

check ("mech"); # valid, use defaults for other arguments
check (); # error, one argument is mandatory

check (1); # error, since ! ischar

check ("mech", "“/dev"); # valid, use defaults for other arguments

check ("mech", "7“/dev", [0 1 0 0], "type", "linear"); # valid

following is also valid. Note how the Switch argument type can
be mixed into or before the Parameter argument type (but it

must still appear after any Optional argument) .

check ("mech", "7/dev", [0 1 0 0], "verbose", "tolerance", "high");

following returns an error since not all optional arguments,
‘path’ and ‘mat’, were given before the named argument ‘type’.
check ("mech", "7/dev", "type", "linear");
Note 1: A function can have any mixture of the four API types but they must appear
in a specific order. Required arguments must be first and can be followed by any
Optional arguments. Only the Parameter and Switch arguments may be mixed
together and they must appear at the end.
Note 2: If both Optional and Parameter arguments are mixed in a function API
then once a string Optional argument fails to validate it will be considered the end
of the Optional arguments. The remaining arguments will be compared against any
Parameter or Switch arguments.

See also: [nargin], page 173, [validateattributes], page 178, [validatestring], page 177,
[varargin], page 182.

11.4 Variable-length Argument Lists

Sometimes the number of input arguments is not known when the function is defined. As
an example think of a function that returns the smallest of all its input arguments. For
example:

a = smallest (1, 2, 3);

b = smallest (1, 2, 3, 4);
In this example both a and b would be 1. One way to write the smallest function is

function val = smallest (argl, arg2, arg3, arg4, argb)
body
endfunction
and then use the value of nargin to determine which of the input arguments should be
considered. The problem with this approach is that it can only handle a limited number of
input arguments.

If the special parameter name varargin appears at the end of a function parameter list
it indicates that the function takes a variable number of input arguments. Using varargin
the function looks like this

function val = smallest (varargin)

body
endfunction

Chapter 11: Functions and Scripts 183

In the function body the input arguments can be accessed through the variable varargin.
This variable is a cell array containing all the input arguments. See Section 6.2 [Cell Arrays],
page 112, for details on working with cell arrays. The smallest function can now be defined
like this

function val = smallest (varargin)
val = min ([varargin{:}]);
endfunction

This implementation handles any number of input arguments, but it’s also a very simple
solution to the problem.

A slightly more complex example of varargin is a function print_arguments that prints
all input arguments. Such a function can be defined like this

function print_arguments (varargin)
for i = 1:length (varargin)
printf ("Input argument %d: ", i);
disp (varargin{i});
endfor
endfunction

This function produces output like this

print_arguments (1, "two", 3);
- Input argument 1: 1
- Input argument 2: two
- Input argument 3: 3

[reg, prop] = parseparams (params)

[reg, varl, ...] = parseparams (params, namel, defaultl, ...)
Return in reg the cell elements of param up to the first string element and in prop
all remaining elements beginning with the first string element.

For example:

[reg, prop] = parseparams ({1, 2, "linewidth", 10})

reg =
{
[1,1] = 1
[1,2] = 2
}
prop =
{
[1,1] = linewidth
[1,2] = 10
}

The parseparams function may be used to separate regular numeric arguments from
additional arguments given as property/value pairs of the varargin cell array.

In the second form of the call, available options are specified directly with their default
values given as name-value pairs. If params do not form name-value pairs, or if an
option occurs that does not match any of the available options, an error occurs.

184 GNU Octave

When called from an m-file function, the error is prefixed with the name of the caller
function.

The matching of options is case-insensitive.

See also: [varargin|, page 182, [inputParser|, page 180.

11.5 Ignoring Arguments

In the formal argument list, it is possible to use the dummy placeholder ~ instead of a name.
This indicates that the corresponding argument value should be ignored and not stored to
any variable.

function val = pick2nd (7, arg2)
val = arg2;
endfunction

The value of nargin is not affected by using this declaration.

Return arguments can also be ignored using the same syntax. Functions may take
advantage of ignored outputs to reduce the number of calculations performed. To do so,
use the isargout function to query whether the output argument is wanted. For example:

function [outl, out2] = long_function (x, y, z)
if (isargout (1))
Long calculation

outl = result;
endif

endfunction

isargout (k)
Within a function, return a logical value indicating whether the argument k will be
assigned to a variable on output.

If the result is false, the argument has been ignored during the function call through
the use of the tilde (™) special output argument. Functions can use isargout to avoid
performing unnecessary calculations for outputs which are unwanted.

If k is outside the range 1:max (nargout), the function returns false. k can also be
an array, in which case the function works element-by-element and a logical array is
returned. At the top level, isargout returns an error.

See also: [nargout], page 176, [varargout], page 182, [nthargout], page 175.

11.6 Variable-length Return Lists

It is possible to return a variable number of output arguments from a function using a
syntax that’s similar to the one used with the special varargin parameter name. To let a
function return a variable number of output arguments the special output parameter name
varargout is used. As with varargin, varargout is a cell array that will contain the
requested output arguments.

Chapter 11: Functions and Scripts 185

As an example the following function sets the first output argument to 1, the second to
2, and so on.
function varargout = one_to_n ()
for i = l:nargout
varargout{i} = i;
endfor
endfunction
When called this function returns values like this

[a, b, c] = one_to_n ()

= a= 1
= b= 2
= c= 3

If varargin (varargout) does not appear as the last element of the input (output)
parameter list, then it is not special, and is handled the same as any other parameter name.

[r1, r2, ..., rn] = deal (a)
[r1, r2, ..., rn] deal (al, a2, ..., an)
Copy the input parameters into the corresponding output parameters.

If only a single input parameter is supplied, its value is copied to each of the outputs.
For example,
[a, b, c]

is equivalent to

deal (x, y, 2);

a = x;
b =1y;
c = z;

and
[a, b, c] = deal (x);

is equivalent to
a=>b=c=x;
Programming Note: deal is often used with comma separated lists derived from cell

arrays or structures. This is unnecessary as the interpreter can perform the same
action without the overhead of a function call. For example:

c = {[1 2], "Three", 4};
[x, vy, z1 = c{:}

=
X:
1 2
y = Three
z= 4

See also: [cell2struct], page 120, [struct2cell], page 111, [repmat], page 450.

186 GNU Octave

11.7 Returning from a Function

The body of a user-defined function can contain a return statement. This statement returns
control to the rest of the Octave program. It looks like this:

return

Unlike the return statement in C, Octave’s return statement cannot be used to return
a value from a function. Instead, you must assign values to the list of return variables that
are part of the function statement. The return statement simply makes it easier to exit
a function from a deeply nested loop or conditional statement.

Here is an example of a function that checks to see if any elements of a vector are nonzero.

function retval = any_nonzero (v)
retval = 0;
for i = 1:length (v)
if (v (1) = 0)
retval = 1;
return;
endif
endfor
printf ("no nonzero elements found\n");
endfunction

Note that this function could not have been written using the break statement to exit
the loop once a nonzero value is found without adding extra logic to avoid printing the
message if the vector does contain a nonzero element.

return [Keyword|
When Octave encounters the keyword return inside a function or script, it returns
control to the caller immediately. At the top level, the return statement is ignored.
A return statement is assumed at the end of every function definition.

11.8 Default Arguments

Since Octave supports variable number of input arguments, it is very useful to assign default
values to some input arguments. When an input argument is declared in the argument list
it is possible to assign a default value to the argument like this

function name (argl = vall, ...)
body
endfunction
If no value is assigned to argl by the user, it will have the value vall.
As an example, the following function implements a variant of the classic “Hello, World”
program.
function hello (who = "World")
printf ("Hello, %s!\n", who);
endfunction
When called without an input argument the function prints the following

hello O;
-4 Hello, World!

Chapter 11: Functions and Scripts 187

and when it’s called with an input argument it prints the following

hello ("Beautiful World of Free Software");
< Hello, Beautiful World of Free Software!

Sometimes it is useful to explicitly tell Octave to use the default value of an input
argument. This can be done writing a ‘:’ as the value of the input argument when calling
the function.

hello (:);
- Hello, World!

11.9 Function Files

Except for simple one-shot programs, it is not practical to have to define all the functions
you need each time you need them. Instead, you will normally want to save them in a file
so that you can easily edit them, and save them for use at a later time.

Octave does not require you to load function definitions from files before using them.
You simply need to put the function definitions in a place where Octave can find them.

When Octave encounters an identifier that is undefined, it first looks for variables or
functions that are already compiled and currently listed in its symbol table. If it fails to
find a definition there, it searches a list of directories (the path) for files ending in .m that
have the same base name as the undefined identifier.! Once Octave finds a file with a name
that matches, the contents of the file are read. If it defines a single function, it is compiled
and executed. See Section 11.10 [Script Files|, page 198, for more information about how
you can define more than one function in a single file.

When Octave defines a function from a function file, it saves the full name of the file it
read and the time stamp on the file. If the time stamp on the file changes, Octave may reload
the file. When Octave is running interactively, time stamp checking normally happens at
most once each time Octave prints the prompt. Searching for new function definitions also
occurs if the current working directory changes.

Checking the time stamp allows you to edit the definition of a function while Octave is
running, and automatically use the new function definition without having to restart your
Octave session.

To avoid degrading performance unnecessarily by checking the time stamps on functions
that are not likely to change, Octave assumes that function files in the directory tree octave-
home/share/octave/version/m will not change, so it doesn’t have to check their time
stamps every time the functions defined in those files are used. This is normally a very
good assumption and provides a significant improvement in performance for the function
files that are distributed with Octave.

If you know that your own function files will not change while you are running Octave,
you can improve performance by calling ignore_function_time_stamp ("all"), so that
Octave will ignore the time stamps for all function files. Passing "system" to this function
resets the default behavior.

edit name
edit field value

! The ‘.m’ suffix was chosen for compatibility with MATLAB.

188 GNU Octave

value = edit ("get", field)
value = edit ("get", "all")
Edit the named function, or change editor settings.

If edit is called with the name of a file or function as its argument it will be opened
in the text editor defined by EDITOR.

e If the function name is available in a file on your path and that file is modifiable,
then it will be edited in place. If it is a system function, then it will first be
copied to the directory HOME (see below) and then edited. If no file is found, then
the m-file variant, ending with ".m", will be considered. If still no file is found,
then variants with a leading "@" and then with both a leading "@" and trailing
".m" will be considered.

e If name is the name of a function defined in the interpreter but not in an m-file,
then an m-file will be created in HOME to contain that function along with its
current definition.

e If name.cc is specified, then it will search for name.cc in the path and try to
modify it, otherwise it will create a new .cc file in the current directory. If name
happens to be an m-file or interpreter defined function, then the text of that
function will be inserted into the .cc file as a comment.

e If name.ext is on your path then it will be edited, otherwise the editor will be
started with name.ext in the current directory as the filename. If name.ext is
not modifiable, it will be copied to HOME before editing.

Warning: You may need to clear name before the new definition is available. If
you are editing a .cc file, you will need to execute mkoctfile name.cc before the
definition will be available.

If edit is called with field and value variables, the value of the control field field will
be set to value.

If an output argument is requested and the first input argument is get then edit
will return the value of the control field field. If the control field does not exist, edit
will return a structure containing all fields and values. Thus, edit ("get", "all")
returns a complete control structure.

The following control fields are used:

‘home’ This is the location of user local m-files. Be sure it is in your path. The
default is “/octave.

‘author’ This is the name to put after the "## Author:" field of new functions.
By default it guesses from the gecos field of the password database.

‘email’ This is the e-mail address to list after the name in the author field. By
default it guesses <$LOGNAMEQ@$HOSTNAME>, and if $HOSTNAME is not de-
fined it uses uname -n. You probably want to override this. Be sure to
use the format user@host.

‘license’
‘epl’ GNU General Public License (default).

‘bsd’ BSD-style license without advertising clause.

mailto:user@host

Chapter 11: Functions and Scripts 189

‘pd’ Public domain.
‘"text"’ Your own default copyright and license.

Unless you specify ‘pd’, edit will prepend the copyright statement with
"Copyright (C) YYYY Author".

‘mode’ This value determines whether the editor should be started in async mode
(editor is started in the background and Octave continues) or sync mode
(Octave waits until the editor exits). Set it to "sync" to start the editor
in sync mode. The default is "async" (see [system], page 831).
‘editinplace’
Determines whether files should be edited in place, without regard to
whether they are modifiable or not. The default is false.

mfilename ()
mfilename ("fullpath")
mfilename ("fullpathext")
Return the name of the currently executing file.

When called from outside an m-file return the empty string.

Given the argument "fullpath", include the directory part of the filename, but not
the extension.

Given the argument "fullpathext", include the directory part of the filename and
the extension.

val = ignore_function_time_stamp ()

old_val = ignore_function_time_stamp (new_val)
Query or set the internal variable that controls whether Octave checks the time stamp
on files each time it looks up functions defined in function files.

If the internal variable is set to "system", Octave will not automatically recompile
function files in subdirectories of octave-home/lib/version if they have changed
since they were last compiled, but will recompile other function files in the search
path if they change.

If set to "all", Octave will not recompile any function files unless their definitions
are removed with clear.

If set to "none", Octave will always check time stamps on files to determine whether
functions defined in function files need to recompiled.

11.9.1 Manipulating the Load Path

When a function is called, Octave searches a list of directories for a file that contains the
function declaration. This list of directories is known as the load path. By default the
load path contains a list of directories distributed with Octave plus the current working
directory. To see your current load path call the path function without any input or output
arguments.

It is possible to add or remove directories to or from the load path using addpath and
rmpath. As an example, the following code adds ‘~/0Octave’ to the load path.

addpath ("~/Octave")
After this the directory ‘~/0ctave’ will be searched for functions.

190 GNU Octave

addpath (diri, ...)

addpath (dirli, ..., option)
Add named directories to the function search path.
If option is "-begin" or 0 (the default), prepend the directory name to the current
path. If option is "-end" or 1, append the directory name to the current path.
Directories added to the path must exist.

In addition to accepting individual directory arguments, lists of directory names sep-
arated by pathsep are also accepted. For example:

addpath ("dirl:/dir2:~/dir3")
For each directory that is added, and that was not already in the path, addpath
checks for the existence of a file named PKG_ADD (note lack of .m extension) and runs
it if it exists.
See also: [path]|, page 191, [rmpath]|, page 190, [genpath], page 190, [pathdef],
page 191, [savepath], page 190, [pathsep], page 191.

genpath (dir)

genpath (dir, skip, ...)
Return a path constructed from dir and all its subdirectories.
If additional string parameters are given, the resulting path will exclude directories
with those names.

rmpath (diri, ...)
Remove dirl, ... from the current function search path.

In addition to accepting individual directory arguments, lists of directory names sep-
arated by pathsep are also accepted. For example:

rmpath ("dirl:/dir2:7/dir3")
For each directory that is removed, rmpath checks for the existence of a file named
PKG_DEL (note lack of .m extension) and runs it if it exists.

See also: [path], page 191, [addpath]|, page 189, [genpath], page 190, [pathdef],
page 191, [savepath], page 190, [pathsep], page 191.

savepath ()

savepath (file)

status = savepath (...)
Save the unique portion of the current function search path that is not set during
Octave’s initialization process to file.

If file is omitted, Octave looks in the current directory for a project-specific .octaverc
file in which to save the path information. If no such file is present then the user’s
configuration file ~/.octaverc is used.

If successful, savepath returns 0.

The savepath function makes it simple to customize a user’s configuration file to
restore the working paths necessary for a particular instance of Octave. Assuming no
filename is specified, Octave will automatically restore the saved directory paths from
the appropriate .octaverc file when starting up. If a filename has been specified
then the paths may be restored manually by calling source file.

Chapter 11: Functions and Scripts 191

See also: [path], page 191, [addpath], page 189, [rmpath]|, page 190, [genpath],
page 190, [pathdef], page 191.

path ()
str = path ()
str = path (pathi, ...)
Modify or display Octave’s load path.

If nargin and nargout are zero, display the elements of Octave’s load path in an easy
to read format.

If nargin is zero and nargout is greater than zero, return the current load path.

If nargin is greater than zero, concatenate the arguments, separating them with
pathsep. Set the internal search path to the result and return it.

No checks are made for duplicate elements.

See also: [addpath], page 189, [rmpath], page 190, [genpath], page 190, [pathdef],
page 191, [savepath], page 190, [pathsep], page 191.

val = pathdef ()
Return the default path for Octave.

The path information is extracted from one of four sources. The possible sources, in
order of preference, are:

1. .octaverc
2. ~/.octaverc
3. <OCTAVE_HOME>/.../<version>/m/startup/octaverc
4. Octave’s path prior to changes by any octaverc file.
See also: [path], page 191, [addpath], page 189, [rmpath], page 190, [genpath],
page 190, [savepath], page 190.
val = pathsep ()

old_val = pathsep (new_val)
Query or set the character used to separate directories in a path.

See also: [filesep], page 823.

rehash ()
Reinitialize Octave’s load path directory cache.

file_in_loadpath (file)

file_in_loadpath (file, "all")
Return the absolute name of file if it can be found in the list of directories specified
by path.

If no file is found, return an empty character string.

If the first argument is a cell array of strings, search each directory of the loadpath
for element of the cell array and return the first that matches.

If the second optional argument "all" is supplied, return a cell array containing the
list of all files that have the same name in the path. If no files are found, return an
empty cell array.

See also: [file_in_path], page 822, [dir_in_loadpath], page 192, [path], page 191.

192 GNU Octave

restoredefaultpath (...)
Restore Octave’s path to its initial state at startup.
See also: [path], page 191, [addpath]|, page 189, [rmpath], page 190, [genpath],
page 190, [pathdef], page 191, [savepath], page 190, [pathsep|, page 191.

)

command_line_path (...)
Return the command line path variable.

See also: [path], page 191, [addpath], page 189, [rmpath]|, page 190, [genpath],
page 190, [pathdef], page 191, [savepath], page 190, [pathsep], page 191.

dir_in_loadpath (dir)

dir_in_loadpath (dir, "all")
Return the full name of the path element matching dir.
The match is performed at the end of each path element. For example, if dir
is "foo/bar", it matches the path element "/some/dir/foo/bar", but not
"/some/dir/foo/bar/baz" "/some/dir/allfoo/bar".
If the optional second argument is supplied, return a cell array containing all name
matches rather than just the first.

See also: [file_in_path], page 822, [file_in_loadpath], page 191, [path], page 191.
11.9.2 Subfunctions

A function file may contain secondary functions called subfunctions. These secondary func-
tions are only visible to the other functions in the same function file. For example, a file
f.m containing

function £ ()
printf ("in f, calling g\n");
g O
endfunction
function g ()
printf ("in g, calling h\n");
h O
endfunction
function h ()
printf ("in h\n")
endfunction
defines a main function £ and two subfunctions. The subfunctions g and h may only be
called from the main function f or from the other subfunctions, but not from outside the
file £.m.

localfunctions ()
Return a list of all local functions, i.e., subfunctions, within the current file.
The return value is a column cell array of function handles to all local functions
accessible from the function from which localfunctions is called. Nested functions
are not included in the list.
If the call is from the command line, an anonymous function, or a script, the return
value is an empty cell array.

Chapter 11: Functions and Scripts 193

Compatibility Note: Subfunctions which contain nested functions are not included in
the list. This is a known issue.

11.9.3 Private Functions

In many cases one function needs to access one or more helper functions. If the helper
function is limited to the scope of a single function, then subfunctions as discussed above
might be used. However, if a single helper function is used by more than one function,
then this is no longer possible. In this case the helper functions might be placed in a
subdirectory, called "private", of the directory in which the functions needing access to this
helper function are found.

As a simple example, consider a function funci, that calls a helper function func2 to
do much of the work. For example:

function y = funcl (x)
y = func2 (x);
endfunction

Then if the path to funcl is <directory>/funcl.m, and if func2 is found in the directory
<directory>/private/func2.m, then func?2 is only available for use of the functions, like
funcl, that are found in <directory>.

11.9.4 Nested Functions

Nested functions are similar to subfunctions in that only the main function is visible outside
the file. However, they also allow for child functions to access the local variables in their
parent function. This shared access mimics using a global variable to share information —
but a global variable which is not visible to the rest of Octave. As a programming strategy,
sharing data this way can create code which is difficult to maintain. It is recommended to
use subfunctions in place of nested functions when possible.

As a simple example, consider a parent function foo, that calls a nested child function
bar, with a shared variable x.

function y = foo ()

x = 10;
bar O;
y = %5

function bar ()
x = 20;
endfunction
endfunction

foo ()
= 20

Notice that there is no special syntax for sharing x. This can lead to problems with acci-
dental variable sharing between a parent function and its child. While normally variables
are inherited, child function parameters and return values are local to the child function.

194 GNU Octave

Now consider the function foobar that uses variables x and y. foobar calls a nested
function foo which takes x as a parameter and returns y. foo then calls bat which does

some computation.

function z = foobar ()

x = 0;
y =0;
z = foo (5);
zZ += x + V;

function y = foo (x)
y = x + bat ();

function z = bat ()
Z = X;
endfunction
endfunction
endfunction

foobar ()
= 10
It is important to note that the x and y in foobar remain zero, as in foo they are a return
value and parameter respectively. The x in bat refers to the x in foo.
Variable inheritance leads to a problem for eval and scripts. If a new variable is created
in a parent function, it is not clear what should happen in nested child functions. For
example, consider a parent function foo with a nested child function bar:

function y = foo (to_eval)
bar ();
eval (to_eval);

function bar ()
eval ("x = 100;");
eval ("y = x;");
endfunction
endfunction

foo ("x = 5;")
= error: can not add variable "x" to a static workspace

foo ("y = 10;")
= 10

fOO (u ||)
= 100
The parent function foo is unable to create a new variable x, but the child function bar
was successful. Furthermore, even in an eval statement y in bar is the same y as in its
parent function foo. The use of eval in conjunction with nested functions is best avoided.

Chapter 11: Functions and Scripts 195

As with subfunctions, only the first nested function in a file may be called from the
outside. Inside a function the rules are more complicated. In general a nested function may
call:

0. Globally visible functions

1. Any function that the nested function’s parent can call
2. Sibling functions (functions that have the same parents)
3. Direct children

As a complex example consider a parent function ex_top with two child functions, ex_a
and ex_b. In addition, ex_a has two more child functions, ex_aa and ex_ab. For example:

function ex_top (O
Can call: ex_top, ex_a, and ex_b
Can NOT call: ex_aa and ex_ab

function ex_a ()
Call call everything

function ex_aa ()
Can call everything
endfunction

function ex_ab ()
Can call everything
endfunction
endfunction

function ex_b ()
Can call: ex_top, ex_a, and ex_b
Can NOT call: ex_aa and ex_ab
endfunction
endfunction

11.9.5 Overloading and Autoloading

Functions can be overloaded to work with different input arguments. For example, the oper-
ator '+’ has been overloaded in Octave to work with single, double, uint8, int32, and many
other arguments. The preferred way to overload functions is through classes and object
oriented programming (see Section 34.4.1 [Function Overloading], page 777). Occasionally,
however, one needs to undo user overloading and call the default function associated with
a specific type. The builtin function exists for this purpose.

[...] = builtin (£, ...)
Call the base function f even if f is overloaded to another function for the given type
signature.

This is normally useful when doing object-oriented programming and there is a re-
quirement to call one of Octave’s base functions rather than the overloaded one of a
new class.

196 GNU Octave

A trivial example which redefines the sin function to be the cos function shows how
builtin works.

sin (0)
= 0
function y = sin (x), y = cos (x); endfunction
sin (0)
=1
builtin ("sin", 0)
= 0

A single dynamically linked file might define several functions. However, as Octave
searches for functions based on the functions filename, Octave needs a manner in which to
find each of the functions in the dynamically linked file. On operating systems that support
symbolic links, it is possible to create a symbolic link to the original file for each of the
functions which it contains.

However, there is at least one well known operating system that doesn’t support symbolic
links. Making copies of the original file for each of the functions is undesirable as it increases
the amount of disk space used by Octave. Instead Octave supplies the autoload function,
that permits the user to define in which file a certain function will be found.

autoload_map = autoload ()
autoload (function, file)
autoload (..., "remove")

Define function to autoload from file.

The second argument, file, should be an absolute filename or a file name in the same
directory as the function or script from which the autoload command was run. file
should not depend on the Octave load path.

Normally, calls to autoload appear in PKG_ADD script files that are evaluated when
a directory is added to Octave’s load path. To avoid having to hardcode directory
names in file, if file is in the same directory as the PKG_ADD script then

autoload ("foo", "bar.oct");

will load the function foo from the file bar.oct. The above usage when bar.oct is
not in the same directory, or usages such as

autoload ("foo", file_in_loadpath ("bar.oct"))
are strongly discouraged, as their behavior may be unpredictable.
With no arguments, return a structure containing the current autoload map.

If a third argument "remove" is given, the function is cleared and not loaded anymore
during the current Octave session.

See also: [PKG_ADD], page 856.

11.9.6 Function Locking

It is sometime desirable to lock a function into memory with the mlock function. This is
typically used for dynamically linked functions in Oct-files or mex-files that contain some
initialization, and it is desirable that calling clear does not remove this initialization.

Chapter 11: Functions and Scripts 197

As an example,

function my_function ()
mlock ();

prevents my_function from being removed from memory after it is called, even if clear is
called. It is possible to determine if a function is locked into memory with the mislocked,
and to unlock a function with munlock, which the following illustrates.
my_function O ;
mislocked ("my_function")
= ans =1
munlock ("my_function");
mislocked ("my_function")
= ans =0
A common use of mlock is to prevent persistent variables from being removed from
memory, as the following example shows:
function count_calls ()
mlock ();
persistent calls = O;

printf ("’count_calls’ has been called %d times\n",
++calls);
endfunction

count_calls ();
- ’count_calls’ has been called 1 times

clear count_calls
count_calls ();
- ’count_calls’ has been called 2 times
mlock might equally be used to prevent changes to a function from having effect in
Octave, though a similar effect can be had with the ignore_function_time_stamp function.

mlock ()
Lock the current function into memory so that it can’t be cleared.
See also: [munlock], page 197, [mislocked], page 197, [persistent|, page 126.

munlock ()
munlock (fcn)
Unlock the named function fen.

If no function is named then unlock the current function.
See also: [mlock], page 197, [mislocked], page 197, [persistent|, page 126.

mislocked ()
mislocked (fcn)
Return true if the named function fen is locked.

If no function is named then return true if the current function is locked.

See also: [mlock], page 197, [munlock|, page 197, [persistent]|, page 126.

198 GNU Octave

11.9.7 Function Precedence

Given the numerous different ways that Octave can define a function, it is possible and even
likely that multiple versions of a function, might be defined within a particular scope. The
precedence of which function will be used within a particular scope is given by

1. Subfunction A subfunction with the required function name in the given scope.

2. Private function A function defined within a private directory of the directory which
contains the current function.

3. Class constructor A function that constructs a user class as defined in chapter
Chapter 34 [Object Oriented Programming], page 767.

4. Class method An overloaded function of a class as in chapter Chapter 34 [Object
Oriented Programming], page 767.

5. Command-line Function A function that has been defined on the command-line.

6. Autoload function A function that is marked as autoloaded with See [autoload],
page 196.

7. A Function on the Path A function that can be found on the users load-path. There can
also be Oct-file, mex-file or m-file versions of this function and the precedence between
these versions are in that order.

8. Built-in function A function that is a part of core Octave such as numel, size, etc.

11.10 Script Files

A script file is a file containing (almost) any sequence of Octave commands. It is read and
evaluated just as if you had typed each command at the Octave prompt, and provides a
convenient way to perform a sequence of commands that do not logically belong inside a
function.

Unlike a function file, a script file must not begin with the keyword function. If it does,
Octave will assume that it is a function file, and that it defines a single function that should
be evaluated as soon as it is defined.

A script file also differs from a function file in that the variables named in a script file
are not local variables, but are in the same scope as the other variables that are visible on
the command line.

Even though a script file may not begin with the function keyword, it is possible to
define more than one function in a single script file and load (but not execute) all of them
at once. To do this, the first token in the file (ignoring comments and other white space)
must be something other than function. If you have no other statements to evaluate, you
can use a statement that has no effect, like this:

Prevent Octave from thinking that this
is a function file:

1;
Define function one:

function one ()

Chapter 11: Functions and Scripts 199

To have Octave read and compile these functions into an internal form, you need to
make sure that the file is in Octave’s load path (accessible through the path function), then
simply type the base name of the file that contains the commands. (Octave uses the same
rules to search for script files as it does to search for function files.)

If the first token in a file (ignoring comments) is function, Octave will compile the func-
tion and try to execute it, printing a message warning about any non-whitespace characters
that appear after the function definition.

Note that Octave does not try to look up the definition of any identifier until it needs
to evaluate it. This means that Octave will compile the following statements if they appear
in a script file, or are typed at the command line,

not a function file:

1;

function foo ()
do_something ();

endfunction

function do_something ()
do_something_else ();

endfunction

even though the function do_something is not defined before it is referenced in the function
foo. This is not an error because Octave does not need to resolve all symbols that are
referenced by a function until the function is actually evaluated.

Since Octave doesn’t look for definitions until they are needed, the following code will
always print ‘bar = 3’ whether it is typed directly on the command line, read from a script
file, or is part of a function body, even if there is a function or script file called bar.m in
Octave’s path.

eval ("bar = 3");
bar

Code like this appearing within a function body could fool Octave if definitions were
resolved as the function was being compiled. It would be virtually impossible to make
Octave clever enough to evaluate this code in a consistent fashion. The parser would have
to be able to perform the call to eval at compile time, and that would be impossible unless
all the references in the string to be evaluated could also be resolved, and requiring that
would be too restrictive (the string might come from user input, or depend on things that
are not known until the function is evaluated).

Although Octave normally executes commands from script files that have the name
file.m, you can use the function source to execute commands from any file.

source (file)
source (file, context)
Parse and execute the contents of file.

Without specifying context, this is equivalent to executing commands from a script
file, but without requiring the file to be named file.m or to be on the execution path.

Instead of the current context, the script may be executed in either the context of
the function that called the present function ("caller"), or the top-level context
("base").

200 GNU Octave

See also: [run|, page 157.

11.10.1 Publish Octave Script Files

The function publish provides a dynamic possibility to document your script file. Unlike
static documentation, publish runs the script file, saves any figures and output while
running the script, and presents them alongside static documentation in a desired output
format. The static documentation can make use of Section 11.10.2 [Publishing Markup],
page 202, to enhance and customize the output.

publish (filename)

publish (filename, output_format)

publish (filename, optionl, valuel, ...)

publish (filename, options)

output_file = publish (filename, ...)
Generate reports from Octave script files in several output formats.
The generated reports consider Publishing Markup in comments, which is explained
in detail in the GNU Octave manual. Assume the following example, using some
Publishing Markup, to be the content of a script file named ‘example.m’:

%% Headline title

pA

% Some *bold*, _italic_, or |monospaced| Text with
% a <http://www.octave.org link to *GNU Octave*>.
Dot

"Real" Octave commands to be evaluated
sombrero ()

Octave comment style supported as well

#

*x Bulleted list item 1
* Bulleted list item 2
#
#

Numbered list item 1
Numbered list item 2

To publish this script file, type publish ("example.m").

With only filename given, a HTML report is generated in a subdirectory ‘html’ rel-
ative to the current working directory. The Octave commands are evaluated in a
separate context and any figures created while executing the script file are included
in the report. All formatting syntax of filename is treated according to the specified
output format and included in the report.

Using publish (filename, output_format) is equivalent to the function call using
a structure

options.format = output_format;
publish (filename, options)

which is described below. The same holds for using option-value-pairs

Chapter 11: Functions and Scripts 201

options.optionl = valuel;
publish (filename, options)

The structure options can have the following field names. If a field name is not
specified, the default value is considered:

e ‘format’ — Output format of the published script file, one of
‘html’ (default), ‘doc’, ‘latex’, ‘ppt’, ‘xml’, or ‘pdf’.
The output formats ‘doc’, ‘ppt’, and ‘xml’ are currently not supported. To
generate a ‘doc’ report, open a generated ‘html’ report with your office suite.

e ‘outputDir’ — Full path string of a directory, where the generated report will be
located. If no directory is given, the report is generated in a subdirectory ‘html’
relative to the current working directory.

e ‘stylesheet’ — Not supported, only for MATLAB compatibility.
e ‘createThumbnail’ — Not supported, only for MATLAB compatibility.
e ‘figureSnapMethod’ — Not supported, only for MATLAB compatibility.

e ‘imageFormat’ — Desired format for images produced, while evaluating the code.
The allowed image formats depend on the output format:

e ‘html’ and ‘xml’ — ‘png’ (default), any other image format supported by
Octave

e ‘latex’ — ‘epsc2’ (default), any other image format supported by Octave
e ‘pdf’ — ‘jpg’ (default) or ‘bmp’, note MATLAB uses ‘bmp’ as default
e ‘doc’ or ‘ppt’ — ‘png’ (default), ‘jpg’, ‘bmp’, or ‘tiff’

e ‘maxHeight’ and ‘maxWidth’ — Maximum height (width) of the produced images

in pixels. An empty value means no restriction. Both values have to be set, to
work properly.

‘[1’ (default), integer value > 0

e ‘useNewFigure’ — Use a new figure window for figures created by the evaluated
code. This avoids side effects with already opened figure windows.

‘true’ (default) or ‘false’
e ‘evalCode’ — Evaluate code of the Octave source file
‘true’ (default) or ‘false’
e ‘catchError’ — Catch errors while code evaluation and continue

‘true’ (default) or ‘false’

e ‘codeToEvaluate’ — Octave commands that should be evaluated prior to pub-
lishing the script file. These Octave commands do not appear in the generated
report.

e ‘maxQutputLines’ — Maximum number of shown output lines of the code eval-
uation

‘Inf’ (default) or integer value > 0
e ‘showCode’ — Show the evaluated Octave commands in the generated report

‘true’ (default) or ‘false’

202 GNU Octave

The returned output_file is a string with the path and file name of the generated
report.

See also: [grabcode], page 202.
The counterpart to publish is grabcode:

grabcode (url)
code_str = grabcode (url)
Grab by the publish function generated HTML reports from Octave script files.

The input parameter url must point to a local or remote HTML file with extension
“.htm’ or ‘.html’ which was generated by the publish function. With any other
HTML file this will not work!

If no return value is given, the grabbed code is saved to a temporary file and opened
in the default editor.

NOTE: You have to save the file at another location with arbitrary name, otherwise
any grabbed code will be lost!

With a return value given, the grabbed code will be returned as string code_str.
An example:

publish ("my_script.m");
grabcode ("html/my_script.html");

The example above publishes ‘my_script.m’ by default to ‘html/my_script.html’.
Afterwards this published Octave script is grabbed to edit its content in a new tem-
porary file.

See also: [publish], page 200.

11.10.2 Publishing Markup

11.10.2.1 Using Publishing Markup in Script Files

To use Publishing Markup, start by typing ‘##’ or ‘%%’ at the beginning of a new line. For
MATLAB compatibility ‘%%’ is treated the same way as ‘##’.

The lines following ‘##’ or ‘%%’ start with one of either ‘#’ or ‘%’ followed by at least one
space. These lines are interpreted as section. A section ends at the first line not starting
with ‘#’ or ‘%’, or when the end of the document is reached.

A section starting in the first line of the document, followed by another start of a section
that might be empty, is interpreted as a document title and introduction text.

See the example below for clarity:

Chapter 11: Functions and Scripts 203

%% Headline title

pA

% Some *boldx, _italic_, or |monospaced| Text with
% a <http://www.octave.org link to GNU Octave>.

Dot

"Real" Octave commands to be evaluated
sombrero ()

Octave comment style supported as well

* Bulleted list item 1
* Bulleted list item 2

Numbered list item 1

#
#
#
#
#
Numbered list item 2

11.10.2.2 Text Formatting

Basic text formatting is supported inside sections, see the example given below:
#i#
bold, _italic_, or |monospaced| Text
Additionally two trademark symbols are supported, just embrace the letters ‘TM’ or ‘R’.

##
(TM) or (R)

11.10.2.3 Sections

A section is started by typing ‘## or ‘%%’ at the beginning of a new line. A section title can
be provided by writing it, separated by a space, in the first line after ‘## or ‘%%’. Without
a section title, the section is interpreted as a continuation of the previous section. For
MATLAB compatibility ‘%%’ is treated the same way as ‘%% .

some_code ();

Section 1
#
Section 2

some_code ();

it
Still in section 2

some_code ();
Section 3

#
#

204 GNU Octave

11.10.2.4 Preformatted Code

To write preformatted code inside a section, indent the code by three spaces after ‘#” at the
beginning of each line and leave the lines above and below the code blank, except for ‘# at
the beginning of those lines.

##
This is a syntax highlighted for-loop:

#

for i = 1:5
disp (i);
endfor

#

#

And more usual text.

11.10.2.5 Preformatted Text

To write preformatted text inside a section, indent the code by two spaces after ‘# at the
beginning of each line and leave the lines above and below the preformatted text blank,
except for ‘#’ at the beginning of those lines.

##
This following text is preformatted:

#

#

"To be, or not to be: that is the question:

Whether ’tis nobler in the mind to suffer

The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,

And by opposing end them? To die: to sleep;"
#
#

--"Hamlet" by W. Shakespeare

11.10.2.6 Bulleted Lists
To create a bulleted list, type

#i#t
#
* Bulleted list item 1
* Bulleted list item 2
#

to get output like

e Bulleted list item 1
e Bulleted list item 2

Notice the blank lines, except for the ‘#” or ‘)’ before and after the bulleted list!

11.10.2.7 Numbered Lists

To create a numbered list, type

Chapter 11: Functions and Scripts 205

##
#
Numbered list item 1
Numbered list item 2
#
to get output like
1. Numbered list item 1

2. Numbered list item 2

Notice the blank lines, except for the ‘#’ or ‘)%’ before and after the numbered list!

11.10.2.8 Including File Content

To include the content of an external file, e.g., a file called ‘my_function.m’ at the same
location as the published Octave script, use the following syntax to include it with Octave
syntax highlighting.
Alternatively, you can write the full or relative path to the file.

#it

#

<include>my_function.m</include>

#

<include>/full/path/to/my_function.m</include>

#

<include>../relative/path/to/my_function.m</include>

#

11.10.2.9 Including Graphics

To include external graphics, e.g., a graphic called ‘my_graphic.png’ at the same location
as the published Octave script, use the following syntax.
Alternatively, you can write the full path to the graphic.

##

#

<<my_graphic.png>>

#

<</full/path/to/my_graphic.png>>

#

<<../relative/path/to/my_graphic.png>>

#

11.10.2.10 Including URLs

Basically, a URL is written between an opening ‘<’ and a closing ‘>’ angle.
##
<http://www.octave.org>
Text that is within these angles and separated by at least one space from the URL is a
displayed text for the link.
##
<http://www.octave.org GNU Octave>

206 GNU Octave

A link starting with ‘<octave:’ followed by the name of a GNU Octave function, op-
tionally with a displayed text, results in a link to the online GNU Octave documentations
function index.

##
<octave:DISP The display function>

11.10.2.11 Mathematical Equations

One can insert ITEX inline math, surrounded by single ‘$’ signs, or displayed math, sur-
rounded by double ‘$$’ signs, directly inside sections.

##

Some shorter inline equation $e”{ix} = \cos x + i\sin x$.

#

Or more complicated formulas as displayed math:

$$e"x = \lim_{n\rightarrow\infty}\left (1+\dfrac{x}{n}\right) "{n}.$$

11.10.2.12 HTML Markup

If the published output is a HTML report, you can insert HTML markup, that is only
visible in this kind of output.
##
<html>
<table style="border:1px solid black;">
<tr><td>1</td><td>2</td></tr>
<tr><td>3</td><td>3</td></tr>
</html>

11.10.2.13 LaTeX Markup

If the published output is a IMTEX or PDF report, you can insert IXTEX markup, that is
only visible in this kind of output.

##
<latex>
Some output only visible in LaTeX or PDF reports.
\begin{equation}
e"x = \lim\limits_{n\rightarrow\infty}\left (1+\dfrac{x}HnI\right) "{n}
\end{equation}
</latex>

11.11 Function Handles, Anonymous Functions, Inline
Functions

It can be very convenient store a function in a variable so that it can be passed to a different
function. For example, a function that performs numerical minimization needs access to
the function that should be minimized.

11.11.1 Function Handles

A function handle is a pointer to another function and is defined with the syntax

@function—-name

Chapter 11: Functions and Scripts 207

For example,
f = @sin;
creates a function handle called £ that refers to the function sin.

Function handles are used to call other functions indirectly, or to pass a function as an
argument to another function like quad or fsolve. For example:

f = @sin;
quad (f, 0, pi)
= 2

You may use feval to call a function using function handle, or simply write the name
of the function handle followed by an argument list. If there are no arguments, you must
use an empty argument list ‘()’. For example:

f = @sin;
feval (f, pi/4)
= 0.70711
f (pi/4)
= 0.70711

is_function_handle (x)
Return true if x is a function handle.
See also: [isa], page 39, [typeinfo], page 39, [class]|, page 39, [functions|, page 207.

s = functions (fcn_handle)
Return a structure containing information about the function handle fcn_handle.

The structure s always contains these three fields:

function ~ The function name. For an anonymous function (no name) this will be
the actual function definition.

type Type of the function.

anonymous
The function is anonymous.

private The function is private.

overloaded
The function overloads an existing function.

simple The function is a built-in or m-file function.

subfunction
The function is a subfunction within an m-file.

file The m-file that will be called to perform the function. This field is empty
for anonymous and built-in functions.
In addition, some function types may return more information in additional fields.

Warning: functions is provided for debugging purposes only. Its behavior may
change in the future and programs should not depend on a particular output.

208 GNU Octave

func2str (fcn_handle)
Return a string containing the name of the function referenced by the function handle
fen_handle.

See also: [str2func], page 208, [functions]|, page 207.

str2func (fcn_name)

str2func (fcn_name, "global")
Return a function handle constructed from the string fen_name.
If the optional "global" argument is passed, locally visible functions are ignored in
the lookup.

See also: [func2str], page 208, [inline], page 209.

11.11.2 Anonymous Functions

Anonymous functions are defined using the syntax

Q@(argument-list) expression
Any variables that are not found in the argument list are inherited from the enclosing scope.
Anonymous functions are useful for creating simple unnamed functions from expressions or
for wrapping calls to other functions to adapt them for use by functions like quad. For
example,

f =0() x.72;

quad (f, 0, 10)

= 333.33

creates a simple unnamed function from the expression x.~2 and passes it to quad,

quad (@(x) sin (x), 0, pi)
= 2
wraps another function, and
a=1;
b = 2;
quad (@(x) betainc (x, a, b), 0, 0.4)
= 0.13867
adapts a function with several parameters to the form required by quad. In this example,
the values of a and b that are passed to betainc are inherited from the current environment.
Note that for performance reasons it is better to use handles to existing Octave functions,
rather than to define anonymous functions which wrap an existing function. The integration
of sin (%) is 5X faster if the code is written as
quad (@sin, 0, pi)
rather than using the anonymous function @(x) sin (x). There are many operators which
have functional equivalents that may be better choices than an anonymous function. Instead
of writing
f=0(x, y) x+y
this should be coded as
f = @plus
See Section 34.4.2 [Operator Overloading], page 778, for a list of operators which also
have a functional form.

Chapter 11: Functions and Scripts 209

11.11.3 Inline Functions

An inline function is created from a string containing the function body using the inline
function. The following code defines the function f(x) = z? + 2.

f = inline ("x"2 + 2");
After this it is possible to evaluate f at any x by writing £ (x).

Caution: MATLAB has begun the process of deprecating inline functions. At some point
in the future support will be dropped and eventually Octave will follow MATLAB and also
remove inline functions. Use anonymous functions in all new code.

inline (str)

inline (str, argl, ...)

inline (str, n)
Create an inline function from the character string str.
If called with a single argument, the arguments of the generated function are extracted
from the function itself. The generated function arguments will then be in alphabetical
order. It should be noted that i and j are ignored as arguments due to the ambiguity
between their use as a variable or their use as an built-in constant. All arguments
followed by a parenthesis are considered to be functions. If no arguments are found,
a function taking a single argument named x will be created.

If the second and subsequent arguments are character strings, they are the names of
the arguments of the function.
If the second argument is an integer n, the arguments are "x", "P1", ..., "PN".

Programming Note: The use of inline is discouraged and it may be removed from
a future version of Octave. The preferred way to create functions from strings is
through the use of anonymous functions (see Section 11.11.2 [Anonymous Functions],
page 208) or str2func.

See also: [argnames|, page 209, [formula], page 209, [vectorize|, page 528, [str2func],
page 208.

argnames (fun)
Return a cell array of character strings containing the names of the arguments of the
inline function fun.

See also: [inline], page 209, [formulal, page 209, [vectorize], page 528.

formula (fun)
Return a character string representing the inline function fun.

Note that char (fun) is equivalent to formula (fun).

See also: [char], page 71, [argnames], page 209, [inline], page 209, [vectorize],
page 528.

vars = symvar (str)
Identify the symbolic variable names in the string str.

Common constant names such as i, j, pi, Inf and Octave functions such as sin or
plot are ignored.

210 GNU Octave

Any names identified are returned in a cell array of strings. The array is empty if no
variables were found.

Example:
symvar ("x"2 + y~2 == 4")
= {
[1,1] = x
[2,1] =¥y
}

11.12 Commands

Commands are a special class of functions that only accept string input arguments. A
command can be called as an ordinary function, but it can also be called without the
parentheses. For example,

my_command hello world
is equivalent to
my_command ("hello", "world")
The general form of a command call is
cmdname argl arg2 ...
which translates directly to
cmdname ("argl", "arg2", ...)

Any regular function can be used as a command if it accepts string input arguments.
For example:

toupper lower_case_arg
= ans = LOWER_CASE_ARG

One difficulty of commands occurs when one of the string input arguments is stored in a
variable. Because Octave can’t tell the difference between a variable name and an ordinary
string, it is not possible to pass a variable as input to a command. In such a situation a
command must be called as a function. For example:

strvar = "hello world";
toupper strvar

= ans = STRVAR
toupper (strvar)

= ans = HELLO WORLD

11.13 Organization of Functions Distributed with Octave

Many of Octave’s standard functions are distributed as function files. They are loosely
organized by topic, in subdirectories of octave-home/lib/octave/version/m, to make it
easier to find them.

The following is a list of all the function file subdirectories, and the types of functions
you will find there.

audio Functions for playing and recording sounds.

211

deprecated
Out-of-date functions which will eventually be removed from Octave.

elfun Elementary functions, principally trigonometric.
@ftp Class functions for the FTP object.

general Miscellaneous matrix manipulations, like f1ipud, rot90, and triu, as well as
other basic functions, like ismatrix, narginchk, etc.

geometry Functions related to Delaunay triangulation.

help Functions for Octave’s built-in help system.
image Image processing tools. These functions require the X Window System.
io Input-output functions.

linear-algebra
Functions for linear algebra.

miscellaneous
Functions that don’t really belong anywhere else.
optimization
Functions related to minimization, optimization, and root finding.

path Functions to manage the directory path Octave uses to find functions.
pkg Package manager for installing external packages of functions in Octave.
plot Functions for displaying and printing two- and three-dimensional graphs.
polynomial

Functions for manipulating polynomials.

prefs Functions implementing user-defined preferences.

set Functions for creating and manipulating sets of unique values.
signal Functions for signal processing applications.

sparse Functions for handling sparse matrices.

specfun Special functions such as bessel or factor.

special-matrix
Functions that create special matrix forms such as Hilbert or Vandermonde
matrices.

startup Octave’s system-wide startup file.

statistics
Statistical functions.

strings Miscellaneous string-handling functions.
testfun Functions for performing unit tests on other functions.

time Functions related to time and date processing.

213

12 Errors and Warnings

Octave includes several functions for printing error and warning messages. When you write
functions that need to take special action when they encounter abnormal conditions, you
should print the error messages using the functions described in this chapter.

Since many of Octave’s functions use these functions, it is also useful to understand
them, so that errors and warnings can be handled.

12.1 Handling Errors

An error is something that occurs when a program is in a state where it doesn’t make sense
to continue. An example is when a function is called with too few input arguments. In this
situation the function should abort with an error message informing the user of the lacking
input arguments.

Since an error can occur during the evaluation of a program, it is very convenient to be
able to detect that an error occurred, so that the error can be fixed. This is possible with
the try statement described in Section 10.9 [The try Statement|, page 168.

12.1.1 Raising Errors

The most common use of errors is for checking input arguments to functions. The following
example calls the error function if the function £ is called without any input arguments.

function f (argl)
if (nargin == 0)
error ("not enough input arguments");
endif
endfunction

When the error function is called, it prints the given message and returns to the Octave
prompt. This means that no code following a call to error will be executed.

It is also possible to assign an identification string to an error. If an error has such
an ID the user can catch this error as will be described in the next section. To assign
an ID to an error, simply call error with two string arguments, where the first is the
identification string, and the second is the actual error. Note that error IDs are in the format
"NAMESPACE:ERROR-NAME". The namespace "Octave" is used for Octave’s own errors. Any
other string is available as a namespace for user’s own errors.

error (template, ...)
error (id, template, ...)
Display an error message and stop m-file execution.

Format the optional arguments under the control of the template string template
using the same rules as the printf family of functions (see Section 14.2.4 [Formatted
Output], page 266) and print the resulting message on the stderr stream. The
message is prefixed by the character string ‘error: ’

Calling error also sets Octave’s internal error state such that control will return to
the top level without evaluating any further commands. This is useful for aborting
from functions or scripts.

214 GNU Octave

If the error message does not end with a newline character, Octave will print a trace-
back of all the function calls leading to the error. For example, given the following
function definitions:

function £ () g (); end
function g () h (); end
function h () nargin == 1 || error ("nargin != 1"); end

calling the function £ will result in a list of messages that can help you to quickly
locate the exact location of the error:

£f 0

error: nargin !=1

error: called from:

error: error at line -1, column -1
error: h at line 1, column 27
error: g at line 1, column 15
error: f at line 1, column 15

If the error message ends in a newline character, Octave will print the message but
will not display any traceback messages as it returns control to the top level. For
example, modifying the error message in the previous example to end in a newline
causes Octave to only print a single message:

function h () nargin == 1 || error ("nargin != 1\n"); end
£ 0
error: nargin !=1

A null string ("") input to error will be ignored and the code will continue running
as if the statement were a NOP. This is for compatibility with MATLAB. It also makes
it possible to write code such as

err_msg = "";
if (CONDITION 1)
err_msg = "CONDITION 1 found";
elseif (CONDITION2)
err_msg = "CONDITION 2 found";
endif
error (err_msg);
which will only stop execution if an error has been found.

Implementation Note: For compatibility with MATLAB, escape sequences in template
(e.g., "\n" => newline) are processed regardless of whether template has been defined
with single quotes, as long as there are two or more input arguments. To disable escape
sequence expansion use a second backslash before the sequence (e.g., "\\n") or use
the regexptranslate function.

See also: [warning], page 220, [lasterror]|, page 216.

Since it is common to use errors when there is something wrong with the input to a
function, Octave supports functions to simplify such code. When the print_usage function
is called, it reads the help text of the function calling print_usage, and presents a useful
error. If the help text is written in Texinfo it is possible to present an error message that

Chapter 12: Errors and Warnings 215

only contains the function prototypes as described by the @deftypefn parts of the help
text. When the help text isn’t written in Texinfo, the error message contains the entire
help message.
Consider the following function.
—*- texinfo —*-
@deftypefn {} f (@var{argil})
Function help text goes here...
Qend deftypefn
function f (argl)
if (nargin == 0)
print_usage O;
endif
endfunction

When it is called with no input arguments it produces the following error.

£ 0

- error: Invalid call to f. Correct usage is:

_|

- -- f (ARG1)

4|

_|

- Additional help for built-in functions and operators is

- available in the online version of the manual. Use the command
- ’doc <topic>’ to search the manual index.

_|

- Help and information about Octave is also available on the WWW
- at http://www.octave.org and via the help@octave.org

- mailing list.

print_usage ()

print_usage (name)
Print the usage message for the function name.
When called with no input arguments the print_usage function displays the usage
message of the currently executing function.

See also: [help]|, page 20.

beep ()
Produce a beep from the speaker (or visual bell).

This function sends the alarm character "\a" to the terminal. Depending on the
user’s configuration this may produce an audible beep, a visual bell, or nothing at all.

See also: [puts], page 265, [fputs], page 265, [printf], page 266, [fprintf], page 267.

val = beep_on_error ()

old_val = beep_on_error (new_val)

beep_on_error (new_val, "local")
Query or set the internal variable that controls whether Octave will try to ring the
terminal bell before printing an error message.

216 GNU Octave

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

12.1.2 Catching Errors

When an error occurs, it can be detected and handled using the try statement as described
in Section 10.9 [The try Statement]|, page 168. As an example, the following piece of code
counts the number of errors that occurs during a for loop.

number_of_errors = 0;
for n = 1:100
try
catch
number_of_errors++;

end_try_catch
endfor

The above example treats all errors the same. In many situations it can however be
necessary to discriminate between errors, and take different actions depending on the error.
The lasterror function returns a structure containing information about the last error
that occurred. As an example, the code above could be changed to count the number of
errors related to the ‘*’ operator.

number_of_errors = 0;
for n = 1:100
try
catch
msg = lasterror.message;
if (strfind (msg, "operator *"))
number_of_errors++;
endif

end_try_catch
endfor

Alternatively, the output of the lasterror function can be found in a variable indicated
immediately after the catch keyword, as in the example below showing how to redirect an
error as a warning:

try
catch err
warning(err.identifier, err.message);

end_try_catch

lasterr = lasterror ()
lasterror (err)
lasterror ("reset")
Query or set the last error message structure.

Chapter 12: Errors and Warnings 217

When called without arguments, return a structure containing the last error message
and other information related to this error. The elements of the structure are:

message The text of the last error message

identifier
The message identifier of this error message
stack A structure containing information on where the message occurred. This

may be an empty structure if the information cannot be obtained. The
fields of the structure are:

file The name of the file where the error occurred

name The name of function in which the error occurred

line The line number at which the error occurred

column An optional field with the column number at which the error
occurred

The last error structure may be set by passing a scalar structure, err, as input. Any
fields of err that match those above are set while any unspecified fields are initialized
with default values.

If lasterror is called with the argument "reset", all fields are set to their default
values.

See also: [lasterr], page 217, [error|, page 213, [lastwarn], page 221.

[msg, msgid] = lasterr ()

lasterr (msg)

lasterr (msg, msgid)
Query or set the last error message.
When called without input arguments, return the last error message and message
identifier.

With one argument, set the last error message to msg.

With two arguments, also set the last message identifier.

See also: [lasterror|, page 216, [error]|, page 213, [lastwarn|, page 221.

The next example counts indexing errors. The errors are caught using the field identifier
of the structure returned by the function lasterror.

number_of_errors = 0;
for n = 1:100
try
catch
id = lasterror.identifier;
if (strcmp (id, "Octave:invalid-indexing"))
number_of_errors++;
endif

end_try_catch
endfor

218 GNU Octave

The functions distributed with Octave can issue one of the following errors.

Octave:invalid-context
Indicates the error was generated by an operation that cannot be executed in
the scope from which it was called. For example, the function print_usage ()
when called from the Octave prompt raises this error.

Octave:invalid-input-arg
Indicates that a function was called with invalid input arguments.

Octave:invalid-fun-call
Indicates that a function was called in an incorrect way, e.g., wrong number of
input arguments.

Octave:invalid-indexing
Indicates that a data-type was indexed incorrectly, e.g., real-value index for
arrays, nonexistent field of a structure.

Octave:bad-alloc
Indicates that memory couldn’t be allocated.

Octave:undefined-function
Indicates a call to a function that is not defined. The function may exist but
Octave is unable to find it in the search path.

When an error has been handled it is possible to raise it again. This can be useful when
an error needs to be detected, but the program should still abort. This is possible using
the rethrow function. The previous example can now be changed to count the number of
errors related to the ‘*’ operator, but still abort if another kind of error occurs.

number_of_errors = 0;
for n = 1:100
try
catch
msg = lasterror.message;
if (strfind (msg, "operator *"))
number_of_errors++;
else
rethrow (lasterror);
endif

end_try_catch
endfor

rethrow (err)
Reissue a previous error as defined by err.

err is a structure that must contain at least the "message" and "identifier" fields.
err can also contain a field "stack" that gives information on the assumed location
of the error. Typically err is returned from lasterror.

See also: [lasterror], page 216, [lasterr|, page 217, [error], page 213.

Chapter 12: Errors and Warnings 219

err = errno ()

err = errno (val)

err = errno (name)
Return the current value of the system-dependent variable errno, set its value to
val and return the previous value, or return the named error code given name as a
character string, or -1 if name is not found.

See also: [errno_list], page 219.

errno_list ()
Return a structure containing the system-dependent errno values.

See also: [errno], page 219.

12.1.3 Recovering From Errors

Octave provides several ways of recovering from errors. There are try/catch blocks,
unwind_protect/unwind_protect_cleanup blocks, and finally the onCleanup command.

The onCleanup command associates an ordinary Octave variable (the trigger) with an
arbitrary function (the action). Whenever the Octave variable ceases to exist—whether
due to a function return, an error, or simply because the variable has been removed with
clear—then the assigned function is executed.

The function can do anything necessary for cleanup such as closing open file handles,
printing an error message, or restoring global variables to their initial values. The last
example is a very convenient idiom for Octave code. For example:

function rand42
old_state = rand ("state");
restore_state = onCleanup (@() rand ("state", old_state));
rand ("state", 42);

endfunction # rand generator state restored by onCleanup

obj = onCleanup (function)
Create a special object that executes a given function upon destruction.

If the object is copied to multiple variables (or cell or struct array elements) or
returned from a function, function will be executed after clearing the last copy of
the object. Note that if multiple local onCleanup variables are created, the order in
which they are called is unspecified. For similar functionality See Section 10.8 [The
unwind_protect Statement], page 168.

12.2 Handling Warnings

Like an error, a warning is issued when something unexpected happens. Unlike an error,
a warning doesn’t abort the currently running program. A simple example of a warning is
when a number is divided by zero. In this case Octave will issue a warning and assign the
value Inf to the result.
a=1/0
-| warning: division by zero
= a = Inf

220 GNU Octave

12.2.1 Issuing Warnings

It is possible to issue warnings from any code using the warning function. In its most simple
form, the warning function takes a string describing the warning as its input argument. As
an example, the following code controls if the variable ‘a’ is non-negative, and if not issues
a warning and sets ‘a’ to zero.
a=-1;
if (a < 0)
warning ("’a’ must be non-negative. Setting ’a’ to zero.");
a=0;
endif
- ’a’ must be non-negative. Setting ’a’ to zero.

Since warnings aren’t fatal to a running program, it is not possible to catch a warning
using the try statement or something similar. It is however possible to access the last
warning as a string using the lastwarn function.

It is also possible to assign an identification string to a warning. If a warning has such an
ID the user can enable and disable this warning as will be described in the next section. To
assign an ID to a warning, simply call warning with two string arguments, where the first
is the identification string, and the second is the actual warning. Note that warning IDs are
in the format "NAMESPACE:WARNING-NAME". The namespace "Octave" is used for Octave’s
own warnings. Any other string is available as a namespace for user’s own warnings.

warning (template, ...)

warning (id, template, .. .)

warning ("on", id)

warning ("off", id)

warning ("query", id)

warning ("error", id)

warning (state, "backtrace")

warning (state, id, "local")
Display a warning message or control the behavior of Octave’s warning system.
Format the optional arguments under the control of the template string template
using the same rules as the printf family of functions (see Section 14.2.4 [Formatted
Output], page 266) and print the resulting message on the stderr stream. The
message is prefixed by the character string ‘warning: ’. You should use this function
when you want to notify the user of an unusual condition, but only when it makes
sense for your program to go on.
The optional message identifier allows users to enable or disable warnings tagged by
id. A message identifier is of the form "NAMESPACE:WARNING-NAME". Octave’s
own warnings use the "Octave" namespace (see [XREFwarning_ids|, page 221). The
special identifier "all" may be used to set the state of all warnings.

If the first argument is "on" or "off", set the state of a particular warning using
the identifier id. If the first argument is "query", query the state of this warning
instead. If the identifier is omitted, a value of "all" is assumed. If you set the state
of a warning to "error", the warning named by id is handled as if it were an error
instead. So, for example, the following handles all warnings as errors:

warning ("error");

Chapter 12: Errors and Warnings 221

If the state is "on" or "off" and the third argument is "backtrace", then a stack
trace is printed along with the warning message when warnings occur inside function
calls. This option is enabled by default.

If the state is "on", "off", or "error" and the third argument is "local", then the
warning state will be set temporarily, until the end of the current function. Changes to
warning states that are set locally affect the current function and all functions called
from the current scope. The previous warning state is restored on return from the
current function. The "local" option is ignored if used in the top-level workspace.

Implementation Note: For compatibility with MATLAB, escape sequences in template
(e.g., "\n" => newline) are processed regardless of whether template has been defined
with single quotes, as long as there are two or more input arguments. To disable escape
sequence expansion use a second backslash before the sequence (e.g., "\\n") or use
the regexptranslate function.

See also: [warning_ids|, page 221, [lastwarn], page 221, [error], page 213.

[msg, msgid] = lastwarn ()
lastwarn (msg)
lastwarn (msg, msgid)
Query or set the last warning message.

When called without input arguments, return the last warning message and message
identifier.

With one argument, set the last warning message to msg.

With two arguments, also set the last message identifier.

See also: [warning], page 220, [lasterror], page 216, [lasterr], page 217.

The functions distributed with Octave can issue one of the following warnings.

Octave:

Octave:

Octave:

Octave:

Octave:

abbreviated-property-match
By default, the Octave:abbreviated-property-match warning is enabled.

array-as-logical
If the Octave:array-as-logical warning is enabled, Octave will warn when
an array of size greater than 1x1 is used as a truth value in an if, while or until
statement. By default, the Octave:array-as-logical warning is disabled.

array-to-scalar
If the Octave:array-to-scalar warning is enabled, Octave will warn when an
implicit conversion from an array to a scalar value is attempted. By default,
the Octave:array-to-scalar warning is disabled.

array-to-vector
If the Octave:array-to-vector warning is enabled, Octave will warn when an
implicit conversion from an array to a vector value is attempted. By default,
the Octave:array-to-vector warning is disabled.

assign-as-truth-value
If the Octave:assign-as-truth-value warning is enabled, a warning is issued
for statements like
if (s = t)

222

Octave

Octave

Octave

Octave

GNU Octave

since such statements are not common, and it is likely that the intent was to
write

if (s == t)

instead.

There are times when it is useful to write code that contains assignments within
the condition of a while or if statement. For example, statements like

while (¢ = getc O))

are common in C programming.

It is possible to avoid all warnings about such statements by disabling the

Octave:assign-as-truth-value warning, but that may also let real errors
like
if (x = 1) # intended to test (x == 1)!

slip by.
In such cases, it is possible suppress errors for specific statements by writing

them with an extra set of parentheses. For example, writing the previous ex-
ample as

while ((c = getc)))

will prevent the warning from being printed for this statement, while allowing
Octave to warn about other assignments used in conditional contexts.

By default, the Octave:assign-as-truth-value warning is enabled.

:associativity-change

If the Octave:associativity-change warning is enabled, Octave will warn
about possible changes in the meaning of some code due to changes in associa-
tivity for some operators. Associativity changes have typically been made for
MATLAB compatibility. By default, the Octave:associativity-change warn-
ing is enabled.

autoload-relative-file—name

If the Octave:autoload-relative-file-name is enabled, Octave will warn
when parsing autoload() function calls with relative paths to function files.
This usually happens when using autoload() calls in PKG_ADD files, when the
PKG_ADD file is not in the same directory as the .oct file referred to by the
autoload() command. By default, the Octave:autoload-relative-file-name
warning is enabled.

:built-in-variable-assignment

By default, the Octave:built-in-variable-assignment warning is enabled.

:deprecated-function

If the Octave:deprecated-function warning is enabled, a warning is issued
when Octave encounters a function that is obsolete and scheduled for removal

Chapter 12: Errors and Warnings 223

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

Octave:

from Octave. By default, the Octave:deprecated-function warning is en-
abled.

deprecated-keyword
If the Octave:deprecated-keyword warning is enabled, a warning is issued
when Octave encounters a keyword that is obsolete and scheduled for removal
from Octave. By default, the Octave:deprecated-keyword warning is enabled.

deprecated-property
If the Octave:deprecated-property warning is enabled, a warning is issued
when Octave encounters a graphics property that is obsolete and scheduled for
removal from Octave. By default, the Octave:deprecated-property warning
is enabled.

divide-by-zero
If the Octave:divide-by-zero warning is enabled, a warning is issued when
Octave encounters a division by zero. By default, the Octave:divide-by-zero
warning is enabled.

fopen-file-in-path
By default, the Octave:fopen-file-in-path warning is enabled.

function-name-clash
If the Octave:function-name-clash warning is enabled, a warning is issued
when Octave finds that the name of a function defined in a function file differs
from the name of the file. (If the names disagree, the name declared inside
the file is ignored.) By default, the Octave:function-name-clash warning is
enabled.

future-time-stamp
If the Octave:future-time-stamp warning is enabled, Octave will print a
warning if it finds a function file with a time stamp that is in the future. By
default, the Octave:future-time-stamp warning is enabled.

glyph-render
By default, the Octave:glyph-render warning is enabled.

imag-to-real
If the Octave:imag-to-real warning is enabled, a warning is printed for
implicit conversions of complex numbers to real numbers. By default, the
Octave:imag-to-real warning is disabled.

language-extension
Print warnings when using features that are unique to the Octave
language and that may still be missing in MATLAB. By default, the
Octave:language-extension warning is disabled. The --traditional or
--braindead startup options for Octave may also be of use, see Section 2.1.1
[Command Line Options|, page 15.

load-file-in-path
By default, the Octave:load-file-in-path warning is enabled.

logical-conversion
By default, the Octave:logical-conversion warning is enabled.

224

Octave

Octave

Octave

Octave:

Octave:

Octave

Octave:

Octave:

Octave:

GNU Octave

:missing-glyph

By default, the Octave:missing-glyph warning is enabled.

:missing-semicolon

If the Octave:missing-semicolon warning is enabled, Octave will warn when
statements in function definitions don’t end in semicolons. By default the
Octave:missing-semicolon warning is disabled.

:mixed-string-concat

If the Octave:mixed-string-concat warning is enabled, print a warning when
concatenating a mixture of double and single quoted strings. By default, the
Octave:mixed-string-concat warning is disabled.

neg-dim-as-zero
If the Octave:neg-dim-as-zero warning is enabled, print a warning for ex-
pressions like

eye (-1)

By default, the Octave:neg-dim-as-zero warning is disabled.

nested-functions-coerced
By default, the Octave:nested-functions-coerced warning is enabled.

:noninteger-range—as-index

By default, the Octave:noninteger-range-as-index warning is enabled.

num-to-str

If the Octave:num-to-str warning is enable, a warning is printed for implicit
conversions of numbers to their ASCII character equivalents when strings are
constructed using a mixture of strings and numbers in matrix notation. For
example,

[£, 111, 111]

: "fooll
elicits a warning if the Octave :num-to-str warning is enabled. By default, the
Octave:num-to-str warning is enabled.

possible-matlab-short-circuit-operator
If the Octave:possible-matlab-short-circuit-operator warning is
enabled, Octave will warn about using the not short circuiting operators &
and | inside if or while conditions. They normally never short circuit, but
MATLAB always short circuits if any logical operators are used in a condition.
You can turn on the option

do_braindead_shortcircuit_evaluation (1)

if you would like to enable this short-circuit evaluation in Octave. Note that
the && and || operators always short circuit in both Octave and MATLAB,
so it’s only necessary to enable MATLAB-style short-circuiting if it’s too ar-
duous to modify existing code that relies on this behavior. By default, the
Octave:possible-matlab-short-circuit-operator warning is enabled.

precedence-change
If the Octave:precedence-change warning is enabled, Octave will warn about
possible changes in the meaning of some code due to changes in precedence

Chapter 12: Errors and Warnings 225

Octave:

Octave:

Octave:

Octave:

Octave

Octave:

Octave:

Octave

Octave:

Octave:

for some operators. Precedence changes have typically been made for MATLAB
compatibility. By default, the Octave:precedence-change warning is enabled.

recursive-path-search
By default, the Octave:recursive-path-search warning is enabled.

remove—-init-dir
The path function changes the search path that Octave uses to find functions.
It is possible to set the path to a value which excludes Octave’s own built-in
functions. If the Octave:remove-init-dir warning is enabled then Octave will
warn when the path function has been used in a way that may render Octave
unworkable. By default, the Octave:remove-init-dir warning is enabled.

reload-forces-clear
If several functions have been loaded from the same file, Octave must
clear all the functions before any one of them can be reloaded. If the
Octave:reload-forces-clear warning is enabled, Octave will warn you
when this happens, and print a list of the additional functions that it is forced
to clear. By default, the Octave:reload-forces-clear warning is enabled.

resize-on-range-error
If the Octave:resize-on-range-error warning is enabled, print a warning
when a matrix is resized by an indexed assignment with indices outside the
current bounds. By default, the ## Octave:resize-on-range-error warning

is disabled.

:separator-insert

Print warning if commas or semicolons might be inserted automatically in literal
matrices. By default, the Octave:separator-insert warning is disabled.

shadowed-function
By default, the Octave:shadowed-function warning is enabled.

single-quote-string
Print warning if a single quote character is used to introduce a string constant.
By default, the Octave:single-quote-string warning is disabled.

:nearly-singular-matrix
Octave:

singular-matrix
By default, the Octave:nearly-singular-matrix and Octave:singular-matrix]j
warnings are enabled.

sqrtm:SingularMatrix
By default, the Octave:sqrtm:SingularMatrix warning is enabled.

str-to-num
If the Octave:str-to-num warning is enabled, a warning is printed for implicit
conversions of strings to their numeric ASCII equivalents. For example,
"abc" + 0
= 97 98 99

elicits a warning if the Octave: str-to-num warning is enabled. By default, the
Octave:str-to-num warning is disabled.

226 GNU Octave

Octave:undefined-return-values
If the Octave:undefined-return-values warning is disabled, print a warning
if a function does not define all the values in the return list which are expected.
By default, the Octave:undefined-return-values warning is enabled.

Octave:variable-switch-label
If the Octave:variable-switch-label warning is enabled, Octave will print a
warning if a switch label is not a constant or constant expression. By default,
the Octave:variable-switch-label warning is disabled.

12.2.2 Enabling and Disabling Warnings

The warning function also allows you to control which warnings are actually printed to
the screen. If the warning function is called with a string argument that is either "on" or
"off" all warnings will be enabled or disabled.

It is also possible to enable and disable individual warnings through their string identi-
fications. The following code will issue a warning
warning ("example:non-negative-variable",
"’a’ must be non-negative. Setting ’a’ to zero.");
while the following won’t issue a warning
warning ("off", "example:non-negative-variable");
warning ("example:non-negative-variable",
"’a’ must be non-negative. Setting ’a’ to zero.");

227

13 Debugging

Octave includes a built-in debugger to aid in the development of scripts. This can be used
to interrupt the execution of an Octave script at a certain point, or when certain conditions
are met. Once execution has stopped, and debug mode is entered, the symbol table at the
point where execution has stopped can be examined and modified to check for errors.

The normal command-line editing and history functions are available in debug mode.

13.1 Entering Debug Mode

There are two basic means of interrupting the execution of an Octave script. These are
breakpoints (see Section 13.3 [Breakpoints|, page 228), discussed in the next section, and
interruption based on some condition.

Octave supports three means to stop execution based on the values set in the functions
debug_on_interrupt, debug_on_warning, and debug_on_error.

val = debug_on_interrupt ()

old_val = debug_on_interrupt (new_val)

debug_on_interrupt (new_val, "local")
Query or set the internal variable that controls whether Octave will try to enter
debugging mode when it receives an interrupt signal (typically generated with C-c).

If a second interrupt signal is received before reaching the debugging mode, a normal
interrupt will occur.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [debug_on_error], page 227, [debug_on_warning], page 227.

val = debug_on_warning ()

old_val = debug_on_warning (new_val)

debug_on_warning (new_val, "local")
Query or set the internal variable that controls whether Octave will try to enter the
debugger when a warning is encountered.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [debug_on_error], page 227, [debug_on_interrupt|, page 227.

val = debug_on_error ()

old_val = debug_on_error (new_val)

debug_on_error (new_val, "local")
Query or set the internal variable that controls whether Octave will try to enter the
debugger when an error is encountered.

This will also inhibit printing of the normal traceback message (you will only see the
top-level error message).

228 GNU Octave

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [debug_on_warning], page 227, [debug_on_interrupt|, page 227.

13.2 Leaving Debug Mode

Use either dbcont or return to leave the debug mode and continue the normal execution
of the script.

dbcont
Leave command-line debugging mode and continue code execution normally.

See also: [dbstep], page 233, [dbquit], page 228.

To quit debug mode and return directly to the prompt without executing any additional
code use dbquit.

dbquit
Quit debugging mode immediately without further code execution and return to the
Octave prompt.

See also: [dbcont], page 228, [dbstep], page 233.

Finally, typing exit or quit at the debug prompt will result in Octave terminating
normally.

13.3 Breakpoints

Breakpoints can be set in any m-file function by using the dbstop function.

dbstop func
dbstop func line
dbstop func linel line2 ...
dbstop linel ...
dbstop in func
dbstop in func at line
dbstop in func at line if "condition"
dbstop if event
dbstop if event ID
dbstop (bp_struct)
rline = dbstop ...
Set breakpoints for the built-in debugger.

func is the name of a function on the current path. When already in debug mode the
func argument can be omitted and the current function will be used. Breakpoints
at subfunctions are set with the scope operator ‘>’. For example, If file.m has a
subfunction func2, then a breakpoint in func2 can be specified by file>func?2.

line is the line number at which to break. If line is not specified, it defaults to the
first executable line in the file func.m. Multiple lines can be specified in a single

Chapter 13: Debugging 229

command; when function syntax is used, the lines may also be passed as a single
vector argument ([linel, line2, ...]).

condition is any Octave expression that can be evaluated in the code context that
exists at the breakpoint. When the breakpoint is encountered, condition will be eval-
uated, and execution will stop if condition is true. If condition cannot be evaluated,
for example because it refers to an undefined variable, an error will be thrown. Ex-
pressions with side effects (such as y++ > 1) will alter variables, and should generally
be avoided. Conditions containing quotes (‘"’, “*’) or comment characters (‘#’, ‘%’)
must be enclosed in quotes. (This does not apply to conditions entered from the
editor’s context menu.) For example:

dbstop in strread at 209 if ’any (format == "yf")’

The form specifying event does not cause a specific breakpoint at a given function and
line number. Instead it causes debug mode to be entered when certain unexpected
events are encountered. Possible values are

error Stop when an error is reported. This is equivalent to specifying both
debug_on_error (true) and debug_on_interrupt (true).

caught error
Stop when an error is caught by a try-catch block (not yet implemented).

interrupt
Stop when an interrupt (Ctrl-C) occurs.

naninf Stop when code returns a non-finite value (not yet implemented).

warning Stop when a warning is reported. This is equivalent to specifying debug_
on_warning (true).

The events error, caught error, and warning can all be followed by a string speci-
fying an error ID or warning ID. If that is done, only errors with the specified 1D will
cause execution to stop. To stop on one of a set of IDs, multiple dbstop commands
must be issued.

Breakpoints and events can be removed using the dbclear command with the same
syntax.

It is possible to save all breakpoints and restore them at once by issuing the commands
bp_state = dbstatus; ...; dbstop (bp_state).

The optional output rline is the real line number where the breakpoint was set. This
can differ from the specified line if the line is not executable. For example, if a
breakpoint attempted on a blank line then Octave will set the real breakpoint at the
next executable line.

When a file is re-parsed, such as when it is modified outside the GUI, all breakpoints
within the file are cleared.

See also: [dbclear|, page 230, [dbstatus], page 230, [dbstep], page 233,
[debug_on_error|, page 227, [debug_on_warning], page 227, [debug_on_interrupt],
page 227.

230 GNU Octave

Breakpoints in class methods are also supported (e.g., dbstop ("@class/method")). How-
ever, breakpoints cannot be set in built-in functions (e.g., sin, etc.) or dynamically loaded
functions (i.e., oct-files).

To set a breakpoint immediately upon entering a function use line number 1, or omit
the line number entirely and just give the function name. When setting the breakpoint
Octave will ignore the leading comment block, and the breakpoint will be set on the first
executable statement in the function. For example:

dbstop ("asind", 1)

= 29
Note that the return value of 29 means that the breakpoint was effectively set to line 29.
The status of breakpoints in a function can be queried with dbstatus.

dbstatus

dbstatus func

bp_list = dbstatus ...
Report the location of active breakpoints.
When called with no input or output arguments, print the list of all functions with
breakpoints and the line numbers where those breakpoints are set.
If a function name func is specified then only report breakpoints for the named func-
tion and its subfunctions.

The optional return argument bp_list is a struct array with the following fields.

name The name of the function with a breakpoint. A subfunction, say func?2
within an m-file, say file.m, is specified as file>func2.

file The name of the m-file where the function code is located.
line The line number with the breakpoint.
cond The condition that must be satisfied for the breakpoint to be active, or

the empty string for unconditional breakpoints.

If dbstop if error is true but no explicit IDs are specified, the return value will have
an empty field called "errs". If IDs are specified, the errs field will have one row
per ID. If dbstop if error is false, there is no "errs" field. The "warn" field is set
similarly by dbstop if warning.

See also: [dbstop]|, page 228, [dbclear], page 230, [dbwhere], page 232, [dblist],
page 232, [dbstack], page 233.

Reusing the previous example, dbstatus ("asind") will return 29. The breakpoints listed
can then be cleared with the dbclear function.

dbclear func

dbclear func line

dbclear func linel line2 ...
dbclear line ...

dbclear all

dbclear in func

dbclear in func at line

Chapter 13: Debugging 231

dbclear if event
dbclear (
dbclear (
dbclear ("func", linel, 1ine2, ...)
dbclear ("func", linel, ...)
dbclear (line, ...)
dbclear ("all")

Delete a breakpoint at line number line in the function func.

Arguments are

func Function name as a string variable. When already in debug mode this
argument can be omitted and the current function will be used.

line Line number from which to remove a breakpoint. Multiple lines may be
given as separate arguments or as a vector.

event An event such as error, interrupt, or warning (see [dbstop]./ page 228,
for details).

When called without a line number specification all breakpoints in the named function
are cleared.

If the requested line is not a breakpoint no action is performed.

The special keyword "all" will clear all breakpoints from all files.

See also: [dbstop|, page 228, [dbstatus], page 230, [dbwhere], page 232.

A breakpoint may also be set in a subfunction. For example, if a file contains the
functions

function y = funcl (x)
y = func2 (x);

endfunction

function y = func2 (x)
y =x + 1;

endfunction

then a breakpoint can be set at the start of the subfunction directly with

dbstop (["funcl", filemarker(), "func2"])
= 5
Note that filemarker returns the character that marks subfunctions from the file con-
taining them. Unless the default has been changed this character is ‘>’. Thus, a quicker
and more normal way to set the breakpoint would be
dbstop funcl>func2

Another simple way of setting a breakpoint in an Octave script is the use of the keyboard
function.

keyboard ()
keyboard ("prompt")
Stop m-file execution and enter debug mode.

232 GNU Octave

When the keyboard function is executed, Octave prints a prompt and waits for user
input. The input strings are then evaluated and the results are printed. This makes it
possible to examine the values of variables within a function, and to assign new values
if necessary. To leave the prompt and return to normal execution type ‘return’ or
‘dbcont’. The keyboard function does not return an exit status.

If keyboard is invoked without arguments, a default prompt of ‘debug> ’ is used.

See also: [dbstop], page 228, [dbcont], page 228, [dbquit], page 228.

The keyboard function is placed in a script at the point where the user desires that the
execution be stopped. It automatically sets the running script into the debug mode.

13.4 Debug Mode

There are three additional support functions that allow the user to find out where in the
execution of a script Octave entered the debug mode, and to print the code in the script
surrounding the point where Octave entered debug mode.

dbwhere
In debugging mode, report the current file and line number where execution is
stopped.

See also: [dbstack|, page 233, [dblist], page 232, [dbstatus]|, page 230, [dbcont],
page 228, [dbstep]|, page 233, [dbup], page 234, [dbdown], page 234.

dbtype
dbtype lineno
dbtype startl:endl
dbtype startl:end
dbtype func
dbtype func lineno
dbtype func startl:endl
dbtype func startl:end
Display a script file with line numbers.

When called with no arguments in debugging mode, display the script file currently
being debugged.

An optional range specification can be used to list only a portion of the file. The
special keyword "end" is a valid line number specification for the last line of the file.

When called with the name of a function, list that script file with line numbers.

See also: [dblist], page 232, [dbwhere], page 232, [dbstatus]|, page 230, [dbstop],
page 228.

dblist

dblist n
In debugging mode, list n lines of the function being debugged centered around the
current line to be executed.

If unspecified n defaults to 10 (+/- 5 lines)
See also: [dbwhere], page 232, [dbtype], page 232, [dbstack], page 233.

Chapter 13: Debugging 233

You may also use isdebugmode to determine whether the debugger is currently active.

isdebugmode ()
Return true if in debugging mode, otherwise false.

See also: [dbwhere], page 232, [dbstack], page 233, [dbstatus], page 230.

Debug mode also allows single line stepping through a function using the command
dbstep.

dbstep
dbstep n
dbstep in
dbstep out
dbnext ...
In debugging mode, execute the next n lines of code.

If n is omitted, execute the next single line of code. If the next line of code is itself
defined in terms of an m-file remain in the existing function.

Using dbstep in will cause execution of the next line to step into any m-files defined
on the next line.

Using dbstep out will cause execution to continue until the current function returns.

dbnext is an alias for dbstep.

See also: [dbcont], page 228, [dbquit], page 228.

When in debug mode the RETURN key will execute the last entered command. This is
useful, for example, after hitting a breakpoint and entering dbstep once. After that, one
can advance line by line through the code with only a single key stroke.

13.5 Call Stack

The function being debugged may be the leaf node of a series of function calls. After
examining values in the current subroutine it may turn out that the problem occurred in
earlier pieces of code. Use dbup and dbdown to move up and down through the series of
function calls to locate where variables first took on the wrong values. dbstack shows the
entire series of function calls and at what level debugging is currently taking place.

dbstack
dbstack n
dbstack -completenames
[stack, idx] = dbstack (...)
Display or return current debugging function stack information.

With optional argument n, omit the n innermost stack frames.

Although accepted, the argument -completenames is silently ignored. Octave always
returns absolute filenames.

The arguments n and -completenames can be both specified in any order.

The optional return argument stack is a struct array with the following fields:

file The name of the m-file where the function code is located.

234 GNU Octave

name The name of the function with a breakpoint.

line The line number of an active breakpoint.

column The column number of the line where the breakpoint begins.
scope Undocumented.

context Undocumented.

The return argument idx specifies which element of the stack struct array is currently
active.

See also: [dbup]|, page 234, [dbdown], page 234, [dbwhere], page 232, [dblist], page 232,
[dbstatus], page 230.

dbup
dbup n
In debugging mode, move up the execution stack n frames.

If n is omitted, move up one frame.

See also: [dbstack], page 233, [dbdown], page 234.

dbdown
dbdown n
In debugging mode, move down the execution stack n frames.

If n is omitted, move down one frame.

See also: [dbstack], page 233, [dbup], page 234.

13.6 Profiling

Octave supports profiling of code execution on a per-function level. If profiling is enabled,
each call to a function (supporting built-ins, operators, functions in oct- and mex-files, user-
defined functions in Octave code and anonymous functions) is recorded while running Octave
code. After that, this data can aid in analyzing the code behavior, and is in particular helpful
for finding “hot spots” in the code which use up a lot of computation time and are the best
targets to spend optimization efforts on.

The main command for profiling is profile, which can be used to start or stop the
profiler and also to query collected data afterwards. The data is returned in an Octave data
structure which can then be examined or further processed by other routines or tools.

profile on
profile off
profile resume
profile clear
S = profile ("status")
T = profile ("info")
Control the built-in profiler.

profile on
Start the profiler, clearing all previously collected data if there is any.

Chapter 13: Debugging 235

profile off
Stop profiling. The collected data can later be retrieved and examined
with T = profile ("info").

profile clear
Clear all collected profiler data.

profile resume
Restart profiling without clearing the old data. All newly collected statis-
tics are added to the existing ones.

S = profile ("status")
Return a structure with information about the current status of the pro-
filer. At the moment, the only field is ProfilerStatus which is either
"on" or "off".

T = profile ("info")

Return the collected profiling statistics in the structure T. The flat profile
is returned in the field FunctionTable which is an array of structures,
each entry corresponding to a function which was called and for which pro-
filing statistics are present. In addition, the field Hierarchical contains
the hierarchical call tree. Each node has an index into the FunctionTable
identifying the function it corresponds to as well as data fields for number
of calls and time spent at this level in the call tree.

See also: [profshow]|, page 235, [profexplore|, page 236.

An easy way to get an overview over the collected data is profshow. This function takes
the profiler data returned by profile as input and prints a flat profile, for instance:

Function Attr Time (s) Calls

>myfib R 2.195 13529
binary <= 0.061 13529
binary - 0.050 135628
binary + 0.026 6764

This shows that most of the run time was spent executing the function ‘myfib’, and
some minor proportion evaluating the listed binary operators. Furthermore, it is shown
how often the function was called and the profiler also records that it is recursive.

profshow (data)
profshow (data, n)
profshow ()
profshow (n)
Display flat per-function profiler results.

Print out profiler data (execution time, number of calls) for the most critical n func-
tions. The results are sorted in descending order by the total time spent in each
function. If n is unspecified it defaults to 20.

The input data is the structure returned by profile ("info"). If unspecified,
profshow will use the current profile dataset.

236 GNU Octave

The attribute column displays ‘R’ for recursive functions, and is blank for all other
function types.

See also: [profexplore|, page 236, [profile|, page 234.

profexport (dir)
profexport (dir, data)
profexport (dir, name)

profexport (dir, name, data)
Export profiler data as HTML.
Export the profiling data in data into a series of HTML files in the folder dir. The
initial file will be data/index.html.

If name is specified, it must be a string that contains a “name” for the profile being
exported. This name is included in the HTML.

The input data is the structure returned by profile ("info"). If unspecified,
profexport will use the current profile dataset.

See also: [profshow]|, page 235, [profexplore|, page 236, [profile], page 234.

profexplore ()
profexplore (data)
Interactively explore hierarchical profiler output.

Assuming data is the structure with profile data returned by profile ("info"),
this command opens an interactive prompt that can be used to explore the call-tree.
Type help to get a list of possible commands. If data is omitted, profile ("info")
is called and used in its place.

See also: [profile|, page 234, [profshow]|, page 235.

13.7 Profiler Example

Below, we will give a short example of a profiler session. See Section 13.6 [Profiling]
page 234, for the documentation of the profiler functions in detail. Consider the code:

9

global N A;
N = 300;
A = rand (N, N);

function xt = timesteps (steps, x0, expM)
global N;

if (steps == 0)

xt = NA (N, 0);
else

xt = NA (N, steps);

xl = expM * x0;

xt(:, 1) = x1;

xt(:, 2 : end) = timesteps (steps - 1, x1, expM);
endif

Chapter 13: Debugging 237

endfunction

function foo ()
global N A;

initial = @(x) sin (x);
x0 = (initial (linspace (0, 2 * pi, N)))’;

expA = expm (A);
xt = timesteps (100, x0, expA);

endfunction

function fib = bar (N)

if (N <= 2)
fib = 1;
else
fib = bar (N - 1) + bar (N - 2);
endif
endfunction

If we execute the two main functions, we get:

tic; foo; toc;
= Elapsed time is 2.37338 seconds.

tic; bar (20); toc;
= Elapsed time is 2.04952 seconds.

But this does not give much information about where this time is spent; for instance,
whether the single call to expm is more expensive or the recursive time-stepping itself. To
get a more detailed picture, we can use the profiler.

profile on;
foo;
profile off;

data = profile ("info");
profshow (data, 10);

This prints a table like:

238 GNU Octave

Function Attr Time (s) Calls
7 expm 1.034 1
3 binary * 0.823 117
41 binary \ 0.188 1
38 binary ~ 0.126 2
43 timesteps R 0.111 101
44 NA 0.029 101
39 binary + 0.024 8
34 norm 0.011 1
40 binary - 0.004 101

33 balance

o

.003 1

The entries are the individual functions which have been executed (only the 10 most
important ones), together with some information for each of them. The entries like ‘binary
*’ denote operators, while other entries are ordinary functions. They include both built-
ins like expm and our own routines (for instance timesteps). From this profile, we can
immediately deduce that expm uses up the largest proportion of the processing time, even
though it is only called once. The second expensive operation is the matrix-vector product
in the routine timesteps.!

Timing, however, is not the only information available from the profile. The attribute
column shows us that timesteps calls itself recursively. This may not be that remarkable
in this example (since it’s clear anyway), but could be helpful in a more complex setting.
As to the question of why is there a ‘binary \’ in the output, we can easily shed some
light on that too. Note that data is a structure array (Section 6.1.2 [Structure Arrays|,
page 103) which contains the field FunctionTable. This stores the raw data for the profile
shown. The number in the first column of the table gives the index under which the shown
function can be found there. Looking up data.FunctionTable(41) gives:

scalar structure containing the fields:

FunctionName = binary \
TotalTime = 0.18765
NumCalls = 1
IsRecursive = 0

Parents = 7

Children = [](1x0)

Here we see the information from the table again, but have additional fields Parents
and Children. Those are both arrays, which contain the indices of functions which have
directly called the function in question (which is entry 7, expm, in this case) or been called
by it (no functions). Hence, the backslash operator has been used internally by expm.

Now let’s take a look at bar. For this, we start a fresh profiling session (profile on
does this; the old data is removed before the profiler is restarted):

L We only know it is the binary multiplication operator, but fortunately this operator appears only at one
place in the code and thus we know which occurrence takes so much time. If there were multiple places,
we would have to use the hierarchical profile to find out the exact place which uses up the time which is
not covered in this example.

profile on;
bar (20);
profile off;

profshow (profile ("info"));
This gives:

bar R
binary <=
binary -
binary +
profile
false
nargin
binary !=
__profiler_enable__

~N O 00 Ok WN -

©

o

O OO OO OoOoOoOoN

239

Unsurprisingly, bar is also recursive. It has been called 13,529 times in the course of
recursively calculating the Fibonacci number in a suboptimal way, and most of the time

was spent in bar itself.

Finally, let’s say we want to profile the execution of both foo and bar together. Since
we already have the run-time data collected for bar, we can restart the profiler without

clearing the existing data and collect the missing statistics about foo. This is done by:

profile resume;
foo;
profile off;

profshow (profile ("info"), 10);

As you can see in the table below, now we have both profiles mixed together.

Calls

Function Attr Time (s)
1 bar R 091
16 expm 122
12 Dbinary * 798
46 Dbinary \ 185
45 binary ~ 124

48 timesteps R
2 binary <=

3 binary -

4 binary +
49 NA

O O O O OO OO N
-
=
ol

241

14 Input and Output

Octave supports several ways of reading and writing data to or from the prompt or a file.
The simplest functions for data Input and Output (I/O) are easy to use, but only provide
limited control of how data is processed. For more control, a set of functions modeled after
the C standard library are also provided by Octave.

14.1 Basic Input and Output

14.1.1 Terminal Output

Since Octave normally prints the value of an expression as soon as it has been evaluated, the
simplest of all I/O functions is a simple expression. For example, the following expression
will display the value of ‘pi’

pi
-4 pi = 3.1416

This works well as long as it is acceptable to have the name of the variable (or ‘ans’)
printed along with the value. To print the value of a variable without printing its name,
use the function disp.

The format command offers some control over the way Octave prints values with disp
and through the normal echoing mechanism.

disp (x)
Display the value of x.
For example:
disp ("The value of pi is:"), disp (pi)
- the value of pi is:
- 3.1416
Note that the output from disp always ends with a newline.

If an output value is requested, disp prints nothing and returns the formatted output
in a string.

See also: [fdisp], page 252.

list_in_columns (arg, width, prefix)
Return a string containing the elements of arg listed in columns with an overall
maximum width of width and optional prefix prefix.

The argument arg must be a cell array of character strings or a character array.

If width is not specified or is an empty matrix, or less than or equal to zero, the width
of the terminal screen is used. Newline characters are used to break the lines in the
output string. For example:

242

GNU Octave

list_in_columns ({"abc", "def", "ghijkl", "mnop", "qrs", "tuv"}, 20)

= abc mnop
def qrs
ghijkl tuv
whos ans
=

Variables in the current scope:

Attr Name Size Bytes Class

ans 1x37 37 char

Total is 37 elements using 37 bytes

See also: [terminal_size|, page 242.

terminal_size ()
Return a two-element row vector containing the current size of the terminal window
in characters (rows and columns).

See also: [list_in_columns|, page 241.

format

format options
Reset or specify the format of the output produced by disp and Octave’s normal
echoing mechanism.

This command only affects the display of numbers but not how they are stored or
computed. To change the internal representation from the default double use one of
the conversion functions such as single, uint8, int64, etc.

By default, Octave displays 5 significant digits in a human readable form (option
‘short’ paired with ‘loose’ format for matrices). If format is invoked without any
options, this default format is restored.

Valid formats for floating point numbers are listed in the following table.

short

long

short e
long e

Fixed point format with 5 significant figures in a field that is a maximum
of 10 characters wide. (default).

If Octave is unable to format a matrix so that columns line up on the
decimal point and all numbers fit within the maximum field width then
it switches to an exponential ‘e’ format.

Fixed point format with 15 significant figures in a field that is a maximum
of 20 characters wide.

As with the ‘short’ format, Octave will switch to an exponential ‘e’
format if it is unable to format a matrix properly using the current format.

Exponential format. The number to be represented is split between a
mantissa and an exponent (power of 10). The mantissa has 5 significant
digits in the short format and 15 digits in the long format. For example,
with the ‘short e’ format, pi is displayed as 3.1416e+00.

Chapter 14: Input and Output 243

short E
long E Identical to ‘short e’ or ‘long e’ but displays an uppercase ‘E’ to indicate
the exponent. For example, with the ‘long E’ format, pi is displayed as
3.14159265358979E+00.
short g
long g Optimally choose between fixed point and exponential format based on
the magnitude of the number. For example, with the ‘short g’ format,
pi .~ [2; 4; 8; 16; 32] is displayed as
ans =
9.8696
97.409
9488.5
9.0032e+07
8.1058e+15
short eng

long eng Identical to ‘short e’ or ‘long e’ but displays the value using an engi-
neering format, where the exponent is divisible by 3. For example, with
the ‘short eng’ format, 10 * pi is displayed as 31.4159e+00.

long G
short G Identical to ‘short g’ or ‘long g’ but displays an uppercase ‘E’ to indicate
the exponent.

free

none Print output in free format, without trying to line up columns of matrices
on the decimal point. This also causes complex numbers to be format-
ted as numeric pairs like this ‘(0.60419, 0.60709)’ instead of like this
‘0.60419 + 0.607091’.

The following formats affect all numeric output (floating point and integer types).

ll+ll

"+" chars

plus

plus chars
Print a ‘+’ symbol for matrix elements greater than zero, a ‘-’ symbol for
elements less than zero and a space for zero matrix elements. This format
can be very useful for examining the structure of a large sparse matrix.

The optional argument chars specifies a list of 3 characters to use for
printing values greater than zero, less than zero and equal to zero. For
example, with the ‘"+" "+-_"’ format, [1, 0, -1; -1, 0, 1] is displayed
as

bank Print in a fixed format with two digits to the right of the decimal point.

244 GNU Octave

native-hex
Print the hexadecimal representation of numbers as they are stored in
memory. For example, on a workstation which stores 8 byte real values
in IEEE format with the least significant byte first, the value of pi when
printed in native-hex format is 400921fb54442d18.

hex The same as native-hex, but always print the most significant byte first.

native-bit
Print the bit representation of numbers as stored in memory. For example,
the value of pi is

01000000000010010010000111111011
01010100010001000010110100011000

(shown here in two 32 bit sections for typesetting purposes) when printed
in native-bit format on a workstation which stores 8 byte real values in
IEEE format with the least significant byte first.

bit The same as native-bit, but always print the most significant bits first.

rat Print a rational approximation, i.e., values are approximated as the ratio
of small integers. For example, with the ‘rat’ format, pi is displayed as
355/113.

The following two options affect the display of all matrices.

compact Remove blank lines around column number labels and between matrices
producing more compact output with more data per page.

loose Insert blank lines above and below column number labels and between
matrices to produce a more readable output with less data per page.
(default).

See also: [fixed_point_format], page 51, [output_max_field_width], page 49,
[output_precision]|, page 50, [split_long_rows|, page 50, [print_empty_dimensions],
page 51, [rats], page 492.

14.1.1.1 Paging Screen Output

When running interactively, Octave normally sends any output intended for your terminal
that is more than one screen long to a paging program, such as less or more. This avoids
the problem of having a large volume of output stream by before you can read it. With
less (and some versions of more) you can also scan forward and backward, and search for
specific items.

Normally, no output is displayed by the pager until just before Octave is ready to print
the top level prompt, or read from the standard input (for example, by using the fscanf or
scanf functions). This means that there may be some delay before any output appears on
your screen if you have asked Octave to perform a significant amount of work with a single
command statement. The function fflush may be used to force output to be sent to the
pager (or any other stream) immediately.

You can select the program to run as the pager using the PAGER function, and you can
turn paging off by using the function more.

Chapter 14: Input and Output 245

more
more
more

on
off

Turn output pagination on or off.
Without an argument, more toggles the current state.

The current state can be determined via page_screen_output.

See also: [page_screen_output|, page 245, [page_output_immediately], page 246,
[PAGER], page 245, [PAGER_FLAGS], page 245.

val = PAGER ()
old_val = PAGER (new_val)
PAGER (new_val, "local")

Query or set the internal variable that specifies the program to use to display terminal
output on your system.

The default value is normally "less", "more", or "pg", depending on what programs
are installed on your system. See Appendix E [Installation], page 931.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [PAGER_FLAGS], page 245, [page-output_immediately|, page 246, [more],
page 244, [page_screen_output], page 245.

val = PAGER_FLAGS ()
old_val = PAGER_FLAGS (new_val)
PAGER_FLAGS (new_val, "local")

val

Query or set the internal variable that specifies the options to pass to the pager.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [PAGER], page 245, [more|, page 244, [page_screen_output], page 245,
[page_output_immediately|, page 246.

= page_screen_output ()

old_val = page_screen_output (new_val)
page_screen_output (new_val, "local")

Query or set the internal variable that controls whether output intended for the
terminal window that is longer than one page is sent through a pager.

This allows you to view one screenful at a time. Some pagers (such as less—see
Appendix E [Installation|, page 931) are also capable of moving backward on the
output.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [more|, page 244, [page_output_immediately], page 246, [PAGER], page 245,
[PAGER_FLAGS], page 245.

246 GNU Octave

val = page_output_immediately ()

old_val = page_output_immediately (new_val)

page_output_immediately (new_val, "local")
Query or set the internal variable that controls whether Octave sends output to the
pager as soon as it is available.
Otherwise, Octave buffers its output and waits until just before the prompt is printed
to flush it to the pager.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [page_screen_output], page 245, [more|, page 244, [PAGER]|, page 245,
[PAGER_FLAGS], page 245.

fflush (fid)
Flush output to file descriptor fid.
fflush returns 0 on success and an OS dependent error value (—1 on Unix) on error.
Programming Note: Flushing is useful for ensuring that all pending output makes it
to the screen before some other event occurs. For example, it is always a good idea
to flush the standard output stream before calling input.

See also: [fopen|, page 263, [fclose], page 264.
14.1.2 Terminal Input

Octave has three functions that make it easy to prompt users for input. The input and
menu functions are normally used for managing an interactive dialog with a user, and the
keyboard function is normally used for doing simple debugging.

ans = input (prompt)
ans = input (prompt, "s")
Print prompt and wait for user input.

For example,

input ("Pick a number, any number! ")
prints the prompt

Pick a number, any number!

and waits for the user to enter a value. The string entered by the user is evaluated
as an expression, so it may be a literal constant, a variable name, or any other valid
Octave code.

The number of return arguments, their size, and their class depend on the expression
entered.

If you are only interested in getting a literal string value, you can call input with the
character string "s" as the second argument. This tells Octave to return the string
entered by the user directly, without evaluating it first.

Because there may be output waiting to be displayed by the pager, it is a good idea to
always call £flush (stdout) before calling input. This will ensure that all pending
output is written to the screen before your prompt.

Chapter 14: Input and Output 247

See also: [yes_or_no|, page 247, [kbhit], page 247, [pause], page 811, [menu], page 247,
[listdlg], page 790.

choice = menu (title, optl, ...)
choice = menu (title, {optl, ...})
Display a menu with heading title and options optl, ..., and wait for user input.

If the GUI is running, the menu is displayed graphically using 1istdlg. Otherwise,
the title and menu options are printed on the console.

title is a string and the options may be input as individual strings or as a cell array
of strings.

The return value choice is the number of the option selected by the user counting
from 1. If the user aborts the dialog or makes an invalid selection then 0 is returned.

This function is useful for interactive programs. There is no limit to the number of
options that may be passed in, but it may be confusing to present more than will fit
easily on one screen.

See also: [input], page 246, [listdlg], page 790.
ans = yes_or_no ("prompt")
Ask the user a yes-or-no question.
Return logical true if the answer is yes or false if the answer is no.

Takes one argument, prompt, which is the string to display when asking the question.
prompt should end in a space; yes-or-no adds the string ‘(yes or no) ’ to it. The
user must confirm the answer with RET and can edit it until it has been confirmed.

See also: [input], page 246.

For input, the normal command line history and editing functions are available at the
prompt.

Octave also has a function that makes it possible to get a single character from the
keyboard without requiring the user to type a carriage return.

kbhit ()
kbhit (1)
Read a single keystroke from the keyboard.

If called with an argument, don’t wait for a keypress.

For example,
x = kbhit Q;

will set x to the next character typed at the keyboard as soon as it is typed.
x = kbhit (1);

is identical to the above example, but doesn’t wait for a keypress, returning the empty
string if no key is available.

See also: [input], page 246, [pause], page 811.

248 GNU Octave

14.1.3 Simple File I/O

The save and load commands allow data to be written to and read from disk files in various
formats. The default format of files written by the save command can be controlled using
the functions save_default_options and save_precision.

As an example the following code creates a 3-by-3 matrix and saves it to the file
‘myfile.mat’.

A=1[1:3; 4:6; 7:9 1;
save myfile.mat A

Once one or more variables have been saved to a file, they can be read into memory
using the load command.

load myfile.mat

A
4 A=
_|
= 1 2 3
= 4 5 6
- 7 8 9
save file

save options file
save options file vl v2 ...
save options file -struct STRUCT f1 2 ...

save "-" v1v2...
s = save ("-"viv2...)
Save the named variables v1, v2, ..., in the file file.

The special filename ‘-’ may be used to return the content of the variables as a string.
If no variable names are listed, Octave saves all the variables in the current scope.
Otherwise, full variable names or pattern syntax can be used to specify the variables to
save. If the -struct modifier is used, fields f1 f2 . .. of the scalar structure STRUCT
are saved as if they were variables with corresponding names. Valid options for the
save command are listed in the following table. Options that modify the output
format override the format specified by save_default_options.

If save is invoked using the functional form
save ("-optionl", ..., "file", "vi", ...)

then the options, file, and variable name arguments (vI1, ...) must be specified as
character strings.

If called with a filename of "-", write the output to stdout if nargout is 0, otherwise
return the output in a character string.

-append Append to the destination instead of overwriting.
-—ascii Save a single matrix in a text file without header or any other information.

-binary Save the data in Octave’s binary data format.

Chapter 14: Input and Output 249

-float-binary

Save the data in Octave’s binary data format but only using single pre-
cision. Only use this format if you know that all the values to be saved
can be represented in single precision.

-hdf5 Save the data in HDF5 format. (HDF5 is a free, portable binary format
developed by the National Center for Supercomputing Applications at
the University of Illinois.) This format is only available if Octave was
built with a link to the HDF5 libraries.

-float-hdf5
Save the data in HDF5 format but only using single precision. Only use
this format if you know that all the values to be saved can be represented
in single precision.

-7

-v7

=7

-mat7-binary

-Vé
-v6
-6
-mat

Save the data in MATLAB’s v7 binary data format.

-mat-binary

Save the data in MATLAB’s v6 binary data format.

-mat4-binary

-text

-zip
-z

Save the data in the binary format written by MATLAB version 4.

Save the data in Octave’s text data format. (default).

Use the gzip algorithm to compress the file. This works equally on files
that are compressed with gzip outside of octave, and gzip can equally be
used to convert the files for backward compatibility. This option is only
available if Octave was built with a link to the zlib libraries.

The list of variables to save may use wildcard patterns containing the following special

characters:
?
*

[1ist]

Match any single character.
Match zero or more characters.

Match the list of characters specified by list. If the first character is ! or
=, match all characters except those specified by list. For example, the
pattern [a-zA-Z] will match all lower and uppercase alphabetic charac-
ters.

250 GNU Octave

Wildcards may also be used in the field name specifications when using
the -struct modifier (but not in the struct name itself).

FExcept when using the MATLAB binary data file format or the ‘~ascii’ format, saving
global variables also saves the global status of the variable. If the variable is restored
at a later time using ‘load’, it will be restored as a global variable.

The command
save —binary data a b*

saves the variable ‘a’ and all variables beginning with ‘b’ to the file data in Octave’s
binary format.

See also: [load], page 251, [save_default_options], page 250, [save_header_format_string],Jj
page 250, [dlmread|, page 254, [csvread], page 254, [fread], page 275.

There are three functions that modify the behavior of save.

val = save_default_options ()

old_val = save_default_options (new_val)

save_default_options (new_val, "local")
Query or set the internal variable that specifies the default options for the save
command, and defines the default format.

Typical values include "-ascii", "-text -zip". The default value is -text.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [save|, page 248.

val = save_precision ()

old_val = save_precision (new_val)

save_precision (new_val, "local")
Query or set the internal variable that specifies the number of digits to keep when
saving data in text format.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

val = save_header_format_string ()
old_val = save_header_format_string (new_val)
save_header_format_string (new_val, "local")
Query or set the internal variable that specifies the format string used for the comment
line written at the beginning of text-format data files saved by Octave.

The format string is passed to strftime and should begin with the character ‘#’ and
contain no newline characters. If the value of save_header_format_string is the
empty string, the header comment is omitted from text-format data files. The default
value is

"# Created by Octave VERSION, %a %b %d %H:%M:%S AY %4Z <USERQHOST>"

Chapter 14: Input and Output 251

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [strftime], page 807, [save], page 248.

load file

load options file

load options file v1 v2 ...

S = load ("options", "file", "v1", "v2" ...)

load file options

load file options vl v2 ...

S = load ("file", "options", "vI1", "v2", ...)
Load the named variables v1, v2, ..., from the file file.
If no variables are specified then all variables found in the file will be loaded. As with
save, the list of variables to extract can be full names or use a pattern syntax. The
format of the file is automatically detected but may be overridden by supplying the
appropriate option.

If load is invoked using the functional form
load ("-optionl", ..., "file", "v1i", ...)

then the options, file, and variable name arguments (v1, ...) must be specified as
character strings.

If a variable that is not marked as global is loaded from a file when a global symbol
with the same name already exists, it is loaded in the global symbol table. Also, if
a variable is marked as global in a file and a local symbol exists, the local symbol is
moved to the global symbol table and given the value from the file.

If invoked with a single output argument, Octave returns data instead of insert-
ing variables in the symbol table. If the data file contains only numbers (TAB- or
space-delimited columns), a matrix of values is returned. Otherwise, load returns a
structure with members corresponding to the names of the variables in the file.

The load command can read data stored in Octave’s text and binary formats,
and MATLAB’s binary format. If compiled with zlib support, it can also load
gzip-compressed files. It will automatically detect the type of file and do conversion
from different floating point formats (currently only IEEE big and little endian,
though other formats may be added in the future).

Valid options for load are listed in the following table.

-force This option is accepted for backward compatibility but is ignored. Octave
now overwrites variables currently in memory with those of the same name
found in the file.

-ascii Force Octave to assume the file contains columns of numbers in text
format without any header or other information. Data in the file will be
loaded as a single numeric matrix with the name of the variable derived
from the name of the file.

-binary Force Octave to assume the file is in Octave’s binary format.

252 GNU Octave

-hdf5 Force Octave to assume the file is in HDF5 format. (HDF5 is a free,
portable binary format developed by the National Center for Supercom-
puting Applications at the University of Illinois.) Note that Octave can
read HDF) files not created by itself, but may skip some datasets in for-
mats that it cannot support. This format is only available if Octave was
built with a link to the HDF5 libraries.

-import This option is accepted for backward compatibility but is ignored. Octave
can now support multi-dimensional HDF data and automatically modifies
variable names if they are invalid Octave identifiers.

-mat

-mat-binary

-6

-v6

=7

-v7 Force Octave to assume the file is in MATLAB’s version 6 or 7 binary
format.

-mat4-binary

-4

-v4

-V4 Force Octave to assume the file is in the binary format written by MATLAB
version 4.

-text Force Octave to assume the file is in Octave’s text format.

See also: [save], page 248, [dlmwrite|, page 253, [csvwrite], page 254, [fwrite],
page 278.

str = fileread (filename)
Read the contents of filename and return it as a string.

See also: [fread], page 275, [textread], page 254, [sscanf], page 273.

native_float_format ()
Return the native floating point format as a string.

It is possible to write data to a file in a similar way to the disp function for writing data
to the screen. The fdisp works just like disp except its first argument is a file pointer as
created by fopen. As an example, the following code writes to data ‘myfile.txt’.

fid = fopen ("myfile.txt", "w");
fdisp (fid, "3/8 is ");

fdisp (fid, 3/8);

fclose (fid);

See Section 14.2.1 [Opening and Closing Files|, page 263, for details on how to use fopen
and fclose.

fdisp (fid, x)
Display the value of x on the stream fid.

Chapter 14: Input and Output 253

For example:

fdisp (stdout, "The value of pi is:"), fdisp (stdout, pi)

-1 the value of pi is:
- 3.1416

Note that the output from fdisp always ends with a newline.

See also: [disp|, page 241.

Octave can also read and write matrices text files such as comma separated lists.

dlmwrite (file, M)
dlmwrite (file, M, delim, r, c)
dlmwrite (file, M, key, val ...)
dlmwrite (file, M, "-append", ...)
dlmwrite (fid, ...)

Write the numeric matrix M to the text file file using a delimiter.

file should be a filename or a writable file ID given by fopen.

The parameter delim specifies the delimiter to use to separate values on a row. If no
delimiter is specified the comma character ‘,’ is used.

The value of r specifies the number of delimiter-only lines to add to the start of the
file.

The value of ¢ specifies the number of delimiters to prepend to each line of data.

If the argument "-append" is given, append to the end of file.

In addition, the following keyword value pairs may appear at the end of the argument
list:

"append" Either "on" or "off". See "-append" above.

"delimiter"
See delim above.

"newline"
The character(s) to separate each row. Three special cases exist for this
option. "unix" is changed into "\n", "pc" is changed into "\r\n", and
"mac" is changed into "\r". Any other value is used directly as the
newline separator.

"roffset"
See r above.

"coffset"
See ¢ above.

"precision"
The precision to use when writing the file. It can either be a format string
(as used by fprintf) or a number of significant digits.

dlmwrite ("file.csv", reshape (1:16, 4, 4));

dlmwrite ("file.tex", a, "delimiter", "&", "newline", "\n")

See also: [dlmread], page 254, [csvread], page 254, [csvwrite], page 254.

254

data =

data
data
data
data

GNU Octave

dlmread (file)

dlmread (file, sep)

dlmread (file, sep, r0, c0)

dlmread (file, sep, range)

= dlmread (..., "emptyvalue", EMPTYVAL)

Read numeric data from the text file file which uses the delimiter sep between data
values.

If sep is not defined the separator between fields is determined from the file itself.

The optional scalar arguments r0 and c0 define the starting row and column of the
data to be read. These values are indexed from zero, i.e., the first data row corresponds
to an index of zero.

The range parameter specifies exactly which data elements are read. The first form of
the parameter is a 4-element vector containing the upper left and lower right corners
[RO,CO,R1,C1] where the indices are zero-based. Alternatively, a spreadsheet style
form such as "A2..Q15" or "T1:AA5" can be used. The lowest alphabetical index ’A”
refers to the first column. The lowest row index is 1.

file should be a filename or a file id given by fopen. In the latter case, the file is read
until end of file is reached.

The "emptyvalue" option may be used to specify the value used to fill empty fields.
The default is zero. Note that any non-numeric values, such as text, are also replaced
by the "emptyvalue".

See also: [csvread|, page 254, [textscan], page 256, [textread], page 254, [dlmwrite],
page 253.

csvwrite (filename, x)
csvwrite (filename, x, dlm_opt1, ...)

Write the numeric matrix x to the file filename in comma-separated-value (CSV)
format.

This function is equivalent to
dlmwrite (filename, x, ",", dlm_optl, ...)
Any optional arguments are passed directly to dlmwrite (see [dlmwrite|, page 253).

See also: [csvread], page 254, [dlmwrite], page 253, [dlmread], page 254.

x = csvread (filename)

X =

csvread (filename, dlm_optl, ...)

Read the comma-separated-value (CSV) file filename into the matrix x.
Note: only CSV files containing numeric data can be read.
This function is equivalent to
x = dlmread (filename, "," , dlm_optl, ...)
Any optional arguments are passed directly to dlmread (see [dlmread], page 254).

See also: [dlmread|, page 254, [textread|, page 254, [textscan|, page 256, [csvwrite],
page 254, [dlmwrite], page 253.

Formatted data from can be read from, or written to, text files as well.

Chapter 14: Input and Output 255

[a,
[a,
[a,
[a,
[a,

..] = textread (filename)
..] = textread (filename, format)
..] = textread (filename, format, n)
.] = textread (filename, format, propl, valuel, ...)
] = textread (filename, format, n, propl, valuel, ...)

Read data from a text file.

The file filename is read and parsed according to format. The function behaves like
strread except it works by parsing a file instead of a string. See the documentation
of strread for details.

In addition to the options supported by strread, this function supports two more:

e "headerlines": The first value number of lines of filename are skipped.

e "endofline": Specify a single character or "\r\n". If no value is given, it will be
inferred from the file. If set to "" (empty string) EOLs are ignored as delimiters.

The optional input n (format repeat count) specifies the number of times the format
string is to be used or the number of lines to be read, whichever happens first while
reading. The former is equivalent to requesting that the data output vectors should
be of length N. Note that when reading files with format strings referring to multiple
lines, n should rather be the number of lines to be read than the number of format
string uses.

If the format string is empty (not just omitted) and the file contains only numeric data
(excluding headerlines), textread will return a rectangular matrix with the number
of columns matching the number of numeric fields on the first data line of the file.
Empty fields are returned as zero values.

Examples:

Assume a data file like:
1a2b

3c4dd

5 e

[a, b] = textread (f, "%f %s")

returns two columns of data, one with doubles, the other a
cellstr array:

a=[1; 2; 3; 4; 5]

b = {llall; Ilbll; IICII; lldll; IIell}

[a, b] = textread (f, "%f %s", 3)

(read data into two culumns, try to use the format string
three times)

returns

a=[1; 2; 3]

b = {"a"; "b"; "c"}

256

maOaQaaQa

GNU Octave

With a data file like:
1

a
2
b

[a, b] = textread (f, "%f %s", 2)

returns a = 1 and b = {"a"}; i.e., the format string is used
only once because the format string refers to 2 lines of the
data file. To obtain 2x1 data output columns, specify N = 4
(number of data lines containing all requested data) rather

than 2.

See also: [strread], page 84, [load], page 251, [dlmread], page 254, [fscanf], page 272,
[textscan], page 256.

textscan (fid, format)
textscan (fid, format, repeat)
textscan (fid, format, param, value, ...)
= textscan (fid, format, repeat, param, value, ...)
textscan (str, ...)

position, errmsg] = textscan (...)
Read data from a text file or string.

The string str or file associated with fid is read from and parsed according to format.
The function is an extension of strread and textread. Differences include: the
ability to read from either a file or a string, additional options, and additional format
specifiers.

The input is interpreted as a sequence of words, delimiters (such as whitespace), and
literals. The characters that form delimiters and whitespace are determined by the
options. The format consists of format specifiers interspersed between literals. In the
format, whitespace forms a delimiter between consecutive literals, but is otherwise
ignored.

The output C is a cell array where the number of columns is determined by the
number of format specifiers.

The first word of the input is matched to the first specifier of the format and placed
in the first column of the output; the second is matched to the second specifier and
placed in the second column and so forth. If there are more words than specifiers
then the process is repeated until all words have been processed or the limit imposed
by repeat has been met (see below).

The string format describes how the words in str should be parsed. As in fscanf, any
(non-whitespace) text in the format that is not one of these specifiers is considered a
literal. If there is a literal between two format specifiers then that same literal must
appear in the input stream between the matching words.

The following specifiers are valid:

pA

%64

n The word is parsed as a number and converted to double.

Chapter 14: Input and Output 257

%£32

%d
%d8
%d16
%d32
%d64

%u
%u8
%ulé
%u32
%u64d

%s

hq

%he

W
/] R

N

The word is parsed as a number and converted to single (float).

The word is parsed as a number and converted to int8, int16, int32, or
int64. If no size is specified then int32 is used.

The word is parsed as a number and converted to uint8, uint16, uint32,
or uint64. If no size is specified then uint32 is used.

The word is parsed as a string ending at the last character before white-
space, an end-of-line, or a delimiter specified in the options.

The word is parsed as a "quoted string". If the first character of the
string is a double quote (") then the string includes everything until a
matching double quote—including whitespace, delimiters, and end-of-line
characters. If a pair of consecutive double quotes appears in the input,
it is replaced in the output by a single double quote. For examples, the
input "He said ""Hello""" would return the value 'He said "Hello"".

The next character of the input is read. This includes delimiters, white-
space, and end-of-line characters.

In the first form, the word consists of the longest run consisting of only
characters between the brackets. Ranges of characters can be specified
by a hyphen; for example, %[0-9a-zA-Z] matches all alphanumeric char-
acters (if the underlying character set is ASCII). Since MATLAB treats
hyphens literally, this expansion only applies to alphanumeric characters.
To include -’ in the set, it should appear first or last in the brackets; to
include ']’ it should be the first character. If the first character is ’~’ then
the word consists of characters not listed.

For %s, %c %d, %f, %n, %u, an optional width can be specified as %Ns,
etc. where N is an integer > 1. For %c, this causes exactly N characters
to be read instead of a single character. For the other specifiers, it is
an upper bound on the number of characters read; normal delimiters can
cause fewer characters to be read. For complex numbers, this limit applies
to the real and imaginary components individually. For %f and %n,
format specifiers like %N.Mf are allowed, where M is an upper bound on
number of characters after the decimal point to be considered; subsequent
digits are skipped. For example, the specifier %8.2f would read 12.345e6
as 1.234e7.

The word specified by the remainder of the conversion specifier is skipped.

258

GNU Octave

literals In addition the format may contain literal character strings; these will be
skipped during reading. If the input string does not match this literal,
the processing terminates.

Parsed words corresponding to the first specifier are returned in the first output
argument and likewise for the rest of the specifiers.

By default, if there is only one input argument, format is "%£". This means that
numbers are read from the input into a single column vector. If format is explicitly
empty ("") then textscan will return data in a number of columns matching the
number of fields on the first data line of the input. Either of these is suitable only
when the input is exclusively numeric.

For example, the string

str = "\

Bunny Bugs 5.5\n\
Duck Daffy -7.5e-5\n\
Penguin Tux 6"

can be read using

a = textscan (str, "Y%s %s %f");
The optional numeric argument repeat can be used for limiting the number of items
read:

-1 Read all of the string or file until the end (default).

N Read until the first of two conditions occurs: 1) the format has been
processed N times, or 2) N lines of the input have been processed. Zero
(0) is an acceptable value for repeat. Currently, end-of-line characters
inside %q, %c, and %]...]$ conversions do not contribute to the line
count. This is incompatible with MATLAB and may change in future.

The behavior of textscan can be changed via property/value pairs. The following
properties are recognized:

"BufSize"
This specifies the number of bytes to use for the internal buffer. A modest
speed improvement may be obtained by setting this to a large value when
reading a large file, especially if the input contains long strings. The
default is 4096, or a value dependent on n if that is specified.

"CollectOutput"
A value of 1 or true instructs textscan to concatenate consecutive
columns of the same class in the output cell array. A value of 0 or false
(default) leaves output in distinct columns.

"CommentStyle"

Specify parts of the input which are considered comments and will be
skipped. value is the comment style and can be either (1) A string or
1x1 cell string, to skip everything to the right of it; (2) A cell array
of two strings, to skip everything between the first and second strings.
Comments are only parsed where whitespace is accepted and do not act
as delimiters.

Chapter 14: Input and Output 259

"Delimiter"
If value is a string, any character in value will be used to split the input
into words. If value is a cell array of strings, any string in the array will
be used to split the input into words. (default value = any whitespace.)

"EmptyValue"
Value to return for empty numeric values in non-whitespace delimited
data. The default is NaN. When the data type does not support NaN
(int32 for example), then the default is zero.

"EndOfLine"
value can be either an emtpy or one character specifying the end-of-line
character, or the pair "\r\n" (CRLF). In the latter case, any of "\r",
"\n" or "\r\n" is counted as a (single) newline. If no value is given,
"\r\n" is used.

"HeaderLines"
The first value number of lines of fid are skipped. Note that this does
not refer to the first non-comment lines, but the first lines of any type.

"MultipleDelimsAsOne"
If value is nonzero, treat a series of consecutive delimiters, without white-
space in between, as a single delimiter. Consecutive delimiter series need
not be vertically aligned. Without this option, a single delimiter before
the end of the line does not cause the line to be considered to end with
an empty value, but a single delimiter at the start of a line causes the
line to be considered to start with an empty value.

"TreatAsEmpty"
Treat single occurrences (surrounded by delimiters or whitespace) of the
string(s) in value as missing values.

"ReturnOnError"
If set to numerical 1 or true, return normally as soon as an error is
encountered, such as trying to read a string using %f. If set to 0 or false,
return an error and no data.

"Whitespace"
Any character in value will be interpreted as whitespace and trimmed;
The default value for whitespace is " \b\r\n\t" (note the space). Unless
whitespace is set to "" (empty) AND at least one "%s" format conversion
specifier is supplied, a space is always part of whitespace.

When the number of words in str or fid doesn’t match an exact multiple of the
number of format conversion specifiers, textscan’s behavior depends on whether the
last character of the string or file is an end-of-line as specified by the End0fLine
option:

last character = end-of-line
Data columns are padded with empty fields, NaN or 0 (for integer fields)
so that all columns have equal length

260 GNU Octave

last character is not end-of-line
Data columns are not padded; textscan returns columns of unequal
length

The second output position provides the location, in characters from the beginning
of the file or string, where processing stopped.

See also: [dlmread], page 254, [fscanf], page 272, [load|, page 251, [strread], page 84,
[textread], page 254.

The importdata function has the ability to work with a wide variety of data.

A = importdata (fname)

A = importdata (fname, delimiter)

A = importdata (fname, delimiter, header_rows)

[A, delimiter] = importdata (...)

[A, delimiter, header_rows] = importdata (...)
Import data from the file fname.

Input parameters:
e fname The name of the file containing data.

e delimiter The character separating columns of data. Use \t for tab. (Only valid
for ASCII files)

e header_rows The number of header rows before the data begins. (Only valid for
ASCII files)

Different file types are supported:
e ASCII table

Import ASCII table using the specified number of header rows and the specified
delimiter.

e Image file
e MATLAB file

e Spreadsheet files (depending on external software)
e WAV file

See also: [textscan], page 256, [dlmread], page 254, [csvread], page 254, [load],
page 251.

14.1.3.1 Saving Data on Unexpected Exits

If Octave for some reason exits unexpectedly it will by default save the variables avail-
able in the workspace to a file in the current directory. By default this file is named
‘octave-workspace’ and can be loaded into memory with the load command. While the
default behavior most often is reasonable it can be changed through the following functions.

val = crash_dumps_octave_core ()

old_val = crash_dumps_octave_core (new_val)

crash_dumps_octave_core (new_val, "local")
Query or set the internal variable that controls whether Octave tries to save all current
variables to the file octave-workspace if it crashes or receives a hangup, terminate
or similar signal.

Chapter 14: Input and Output 261

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [octave_core_file_limit], page 261, [octave_core_file_name]|, page 262,

[octave_core_file_options|, page 261.

9

val = sighup_dumps_octave_core ()

old_val = sighup_dumps_octave_core (new_val)

sighup_dumps_octave_core (new_val, "local")
Query or set the internal variable that controls whether Octave tries to save all current
variables to the file octave-workspace if it receives a hangup signal.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

val = sigterm_dumps_octave_core ()
old_val = sigterm_dumps_octave_core (new_val)
sigterm_dumps_octave_core (new_val, "local")
Query or set the internal variable that controls whether Octave tries to save all current
variables to the file octave-workspace if it receives a terminate signal.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

val = octave_core_file_options ()

old_val = octave_core_file_options (new_val)

octave_core_file_options (new_val, "local")
Query or set the internal variable that specifies the options used for saving the
workspace data if Octave aborts.

The value of octave_core_file_options should follow the same format as the op-
tions for the save function. The default value is Octave’s binary format.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [crash_dumps_octave_core], page 260, [octave_core_file_name|, page 262,
[octave_core_file_limit], page 261.

val = octave_core_file_limit ()

old_val = octave_core_file_limit (new_val)

octave_core_file_limit (new_val, "local")
Query or set the internal variable that specifies the maximum amount of memory (in
kilobytes) of the top-level workspace that Octave will attempt to save when writing
data to the crash dump file (the name of the file is specified by octave_core_file_name).

If octave_core_file_options flags specify a binary format, then octave_core_file_limit
will be approximately the maximum size of the file. If a text file format is used, then
the file could be much larger than the limit. The default value is -1 (unlimited)

262 GNU Octave

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [crash_dumps_octave_core|, page 260, [octave_core_file_name|, page 262,
[octave_core_file_options], page 261.

val = octave_core_file_name ()

old_val = octave_core_file_name (new_val)

octave_core_file_name (new_val, "local")
Query or set the internal variable that specifies the name of the file used for saving
data from the top-level workspace if Octave aborts.
The default value is "octave-workspace"
When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [crash_dumps_octave_core|, page 260, [octave_core_file_name|, page 262,
[octave_core_file_options|, page 261.

14.2 C-Style I/O Functions

Octave’s C-style input and output functions provide most of the functionality of the C
programming language’s standard 1/O library. The argument lists for some of the input
functions are slightly different, however, because Octave has no way of passing arguments
by reference.

In the following, file refers to a filename and fid refers to an integer file number, as
returned by fopen.

There are three files that are always available. Although these files can be accessed using
their corresponding numeric file ids, you should always use the symbolic names given in the
table below, since it will make your programs easier to understand.

stdin ()
Return the numeric value corresponding to the standard input stream.

When Octave is used interactively, stdin is filtered through the command line editing
functions.

See also: [stdout], page 262, [stderr], page 262.

stdout ()
Return the numeric value corresponding to the standard output stream.
Data written to the standard output is normally filtered through the pager.

See also: [stdin], page 262, [stderr], page 262.

stderr ()
Return the numeric value corresponding to the standard error stream.

Even if paging is turned on, the standard error is not sent to the pager. It is useful
for error messages and prompts.

See also: [stdin|, page 262, [stdout], page 262.

Chapter 14: Input and Output 263

14.2.1 Opening and Closing Files

When reading data from a file it must be opened for reading first, and likewise when writing
to a file. The fopen function returns a pointer to an open file that is ready to be read or
written. Once all data has been read from or written to the opened file it should be closed.
The fclose function does this. The following code illustrates the basic pattern for writing
to a file, but a very similar pattern is used when reading a file.

filename = "myfile.txt";

fid = fopen (filename, "w");
Do the actual I/0 here...
fclose (fid);

fid = fopen (name)
fid = fopen (name, mode)
fid = fopen (name, mode, arch)
[fid, msg] = fopen (...)
fid_list = fopen ("all")
[file, mode, arch] = fopen (fid)
Open a file for low-level I/O or query open files and file descriptors.

The first form of the fopen function opens the named file with the specified mode
(read-write, read-only, etc.) and architecture interpretation (IEEE big endian, IEEE
little endian, etc.), and returns an integer value that may be used to refer to the file
later. If an error occurs, fid is set to —1 and msg contains the corresponding system
error message. The mode is a one or two character string that specifies whether the
file is to be opened for reading, writing, or both.

The second form of the fopen function returns a vector of file ids corresponding to
all the currently open files, excluding the stdin, stdout, and stderr streams.

The third form of the fopen function returns information about the open file given
its file id.

For example,
myfile = fopen ("splat.dat", "r", "ieee-le");
opens the file splat.dat for reading. If necessary, binary numeric values will be read

assuming they are stored in IEEE format with the least significant bit first, and then
converted to the native representation.

Opening a file that is already open simply opens it again and returns a separate file
id. It is not an error to open a file several times, though writing to the same file
through several different file ids may produce unexpected results.

The possible values ‘mode’ may have are

‘r’ (default)
Open a file for reading.

‘w’ Open a file for writing. The previous contents are discarded.
‘a’ Open or create a file for writing at the end of the file.
‘r+’ Open an existing file for reading and writing.

Open a file for reading or writing. The previous contents are discarded.

264

GNU Octave

4 b

a+ Open or create a file for reading or writing at the end of the file.

Append a "t" to the mode string to open the file in text mode or a "b" to open in
binary mode. On Windows and Macintosh systems, text mode reading and writing
automatically converts linefeeds to the appropriate line end character for the system
(carriage-return linefeed on Windows, carriage-return on Macintosh). The default
when no mode is specified is binary mode.

Additionally, you may append a "z" to the mode string to open a gzipped file for
reading or writing. For this to be successful, you must also open the file in binary
mode.

The parameter arch is a string specifying the default data format for the file. Valid
values for arch are:

"native" or "n" (default)
The format of the current machine.

"ieee-be" or "b"
IEEE big endian format.

"jeee-le" or "1"
IEEE little endian format.

However, conversions are currently only supported for ‘native’, ‘ieee-be’, and
‘ieee-1le’ formats.

When opening a new file that does not yet exist, permissions will be set to 0666 -
umask.

See also: [fclose], page 264, [fgets], page 266, [fgetl], page 265, [fscanf], page 272,
[fread], page 275, [fputs], page 265, [fdisp], page 252, [fprintf], page 267, [fwrite],
page 278, [fskipl], page 266, [fseek]|, page 281, [frewind], page 281, [ftell], page 281,
[feof], page 280, [ferror], page 280, [fclear], page 280, [fflush]|, page 246, [freport],
page 280, [umask], page 818.

fclose (fid)
fclose ("all")
status = fclose ("all")

Close the file specified by the file descriptor fid.

If successful, fclose returns 0, otherwise, it returns -1. The second form of the fclose
call closes all open files except stdin, stdout, stderr, and any FIDs associated with
gnuplot.

See also: [fopen|, page 263, [fHush], page 246, [freport], page 280.

is_valid_file_id (fid)

Return true if fid refers to an open file.

See also: [freport], page 280, [fopen|, page 263.

Chapter 14: Input and Output 265

14.2.2 Simple Output

Once a file has been opened for writing a string can be written to the file using the fputs
function. The following example shows how to write the string ‘Free Software is needed
for Free Science’ to the file ‘free.txt’.

filename = "free.txt";

fid = fopen (filename, "w");

fputs (fid, "Free Software is needed for Free Science");

fclose (fid);

fputs (fid, string)

status = fputs (fid, string)
Write the string string to the file with file descriptor fid.
The string is written to the file with no additional formatting. Use fdisp instead to
automatically append a newline character appropriate for the local machine.

Return a non-negative number on success or EOF on error.

See also: [fdisp], page 252, [fprintf], page 267, [fwrite]|, page 278, [fopen], page 263.

A function much similar to fputs is available for writing data to the screen. The puts
function works just like fputs except it doesn’t take a file pointer as its input.

puts (string)

status = puts (string)
Write a string to the standard output with no formatting.
The string is written verbatim to the standard output. Use disp to automatically
append a newline character appropriate for the local machine.

Return a non-negative number on success and EOF on error.

See also: [fputs], page 265, [disp]|, page 241.
14.2.3 Line-Oriented Input

To read from a file it must be opened for reading using fopen. Then a line can be read
from the file using fgetl as the following code illustrates

fid = fopen ("free.txt");
txt = fgetl (£id)

- Free Software is needed for Free Science
fclose (fid);

This of course assumes that the file ‘free.txt’ exists and contains the line ‘Free Software
is needed for Free Science’.

str = fgetl (fid)

str = fgetl (fid, len)
Read characters from a file, stopping after a newline, or EOF, or len characters have
been read.

The characters read, excluding the possible trailing newline, are returned as a string.
If len is omitted, fgetl reads until the next newline character.

If there are no more characters to read, fgetl returns —1.

266 GNU Octave

To read a line and return the terminating newline see fgets.
See also: [fgets], page 266, [fscanf], page 272, [fread], page 275, [fopen], page 263.
str = fgets (fid)
str = fgets (fid, len)
Read characters from a file, stopping after a newline, or EOF, or len characters have
been read.

The characters read, including the possible trailing newline, are returned as a string.
If len is omitted, fgets reads until the next newline character.

If there are no more characters to read, fgets returns —1.

To read a line and discard the terminating newline see fgetl.

See also: [fputs|, page 265, [fgetl], page 265, [fscanf], page 272, [fread], page 275,
[fopen], page 263.

nlines = fskipl (fid)
nlines = fskipl (fid, count)
nlines = fskipl (fid, Inf)
Read and skip count lines from the file specified by the file descriptor fid.

fskipl discards characters until an end-of-line is encountered exactly count-times, or
until the end-of-file marker is found.

If count is omitted, it defaults to 1. count may also be Inf, in which case lines are
skipped until the end of the file. This form is suitable for counting the number of
lines in a file.

Returns the number of lines skipped (end-of-line sequences encountered).

See also: [fgetl], page 265, [fgets], page 266, [fscanf], page 272, [fopen], page 263.
14.2.4 Formatted Output

This section describes how to call printf and related functions.

The following functions are available for formatted output. They are modeled after the
C language functions of the same name, but they interpret the format template differently
in order to improve the performance of printing vector and matrix values.

Implementation Note: For compatibility with MATLAB, escape sequences in the template
string (e.g., "\n" => newline) are expanded even when the template string is defined with
single quotes.

printf (template, ...)
Print optional arguments under the control of the template string template to the
stream stdout and return the number of characters printed.

See the Formatted Output section of the GNU Octave manual for a complete descrip-
tion of the syntax of the template string.

Implementation Note: For compatibility with MATLAB, escape sequences in the tem-
plate string (e.g., "\n" => newline) are expanded even when the template string is
defined with single quotes.

See also: [fprintf]|, page 267, [sprintf], page 267, [scanf], page 273.

Chapter 14: Input and Output 267

fprintf (fid, template, ...)

fprintf (template, ...)

numbytes = fprintf (...)
This function is equivalent to printf, except that the output is written to the file
descriptor fid instead of stdout.

If fid is omitted, the output is written to stdout making the function exactly equiv-
alent to printf.

The optional output returns the number of bytes written to the file.

Implementation Note: For compatibility with MATLAB, escape sequences in the tem-
plate string (e.g., "\n" => newline) are expanded even when the template string is
defined with single quotes.

See also: [fputs|, page 265, [fdisp|, page 252, [fwrite], page 278, [fscanf], page 272,
[printf], page 266, [sprintf], page 267, [fopen], page 263.

sprintf (template, ...)
This is like printf, except that the output is returned as a string.
Unlike the C library function, which requires you to provide a suitably sized string
as an argument, Octave’s sprintf function returns the string, automatically sized to
hold all of the items converted.

Implementation Note: For compatibility with MATLAB, escape sequences in the tem-
plate string (e.g., "\n" => newline) are expanded even when the template string is
defined with single quotes.

See also: [printf], page 266, [fprintf], page 267, [sscanf], page 273.

The printf function can be used to print any number of arguments. The template
string argument you supply in a call provides information not only about the number of
additional arguments, but also about their types and what style should be used for printing
them.

Ordinary characters in the template string are simply written to the output stream
as-is, while conversion specifications introduced by a ‘%’ character in the template cause
subsequent arguments to be formatted and written to the output stream. For example,

pct = 37;

filename = "foo.txt";

printf ("Processed %d%% of ’%s’.\nPlease be patient.\n",
pct, filename);

produces output like

Processed 37% of ’foo.txt’.
Please be patient.

This example shows the use of the ‘%d’ conversion to specify that a scalar argument
should be printed in decimal notation, the ‘%s’ conversion to specify printing of a string
argument, and the ‘%%’ conversion to print a literal ‘%’ character.

There are also conversions for printing an integer argument as an unsigned value in
octal, decimal, or hexadecimal radix (‘%0’, ‘%u’, or ‘%x’, respectively); or as a character
value (‘%c’).

268 GNU Octave

Floating-point numbers can be printed in normal, fixed-point notation using the ‘%f’
conversion or in exponential notation using the ‘%e’ conversion. The ‘%g’ conversion uses
either ‘%e’ or ‘%f’ format, depending on what is more appropriate for the magnitude of the
particular number.

You can control formatting more precisely by writing modifiers between the ‘%’ and
the character that indicates which conversion to apply. These slightly alter the ordinary
behavior of the conversion. For example, most conversion specifications permit you to
specify a minimum field width and a flag indicating whether you want the result left- or
right-justified within the field.

The specific flags and modifiers that are permitted and their interpretation vary de-
pending on the particular conversion. They’re all described in more detail in the following
sections.

14.2.5 Output Conversion for Matrices
When given a matrix value, Octave’s formatted output functions cycle through the format
template until all the values in the matrix have been printed. For example:

printf ("%4.2f %10.2e %8.4g\n", hilb (3));

-4 1.00 5.00e-01 0.3333
-4 0.50 3.33e-01 0.25
-4 0.33 2.50e-01 0.2
If more than one value is to be printed in a single call, the output functions do not
return to the beginning of the format template when moving on from one value to the next.
This can lead to confusing output if the number of elements in the matrices are not exact
multiples of the number of conversions in the format template. For example:

printf ("%4.2f %10.2e %8.4g\n", [1, 2], [3, 41);

-4 1.00 2.00e+00 3
- 4.00

If this is not what you want, use a series of calls instead of just one.

14.2.6 Output Conversion Syntax

This section provides details about the precise syntax of conversion specifications that can
appear in a printf template string.

Characters in the template string that are not part of a conversion specification are
printed as-is to the output stream.

The conversion specifications in a printf template string have the general form:
% flags width | . precision | type conversion

For example, in the conversion specifier ‘%-10.81d’, the ‘-’ is a flag, ‘10’ specifies the field
width, the precision is ‘8", the letter ‘1’ is a type modifier, and ‘d’ specifies the conversion
style. (This particular type specifier says to print a numeric argument in decimal notation,
with a minimum of 8 digits left-justified in a field at least 10 characters wide.)

In more detail, output conversion specifications consist of an initial ‘%’ character followed
in sequence by:

Chapter 14: Input and Output 269

e Zero or more flag characters that modify the normal behavior of the conversion speci-
fication.

An optional decimal integer specifying the minimum field width. If the normal conver-
sion produces fewer characters than this, the field is padded with spaces to the specified
width. This is a minimum value; if the normal conversion produces more characters
than this, the field is not truncated. Normally, the output is right-justified within the
field.

You can also specify a field width of ‘*’. This means that the next argument in the
argument list (before the actual value to be printed) is used as the field width. The
value is rounded to the nearest integer. If the value is negative, this means to set the
‘= flag (see below) and to use the absolute value as the field width.

An optional precision to specify the number of digits to be written for the numeric
conversions. If the precision is specified, it consists of a period (‘.”) followed optionally
by a decimal integer (which defaults to zero if omitted).

You can also specify a precision of ‘*’. This means that the next argument in the
argument list (before the actual value to be printed) is used as the precision. The value
must be an integer, and is ignored if it is negative.

An optional type modifier character. This character is ignored by Octave’s printf
function, but is recognized to provide compatibility with the C language printf.

e A character that specifies the conversion to be applied.

The exact options that are permitted and how they are interpreted vary between the
different conversion specifiers. See the descriptions of the individual conversions for infor-
mation about the particular options that they use.

14.2.7 Table of Output Conversions

Here is a table summarizing what all the different conversions do:

Uyod?’ t%i’

4%07

4%u7

‘%X’, a%xa

‘%f,

c%e77 ‘%E’

Print an integer as a signed decimal number. See Section 14.2.8 [Integer Con-
versions|, page 270, for details. ‘%d’ and ‘%1’ are synonymous for output, but are
different when used with scanf for input (see Section 14.2.13 [Table of Input
Conversions|, page 274).

Print an integer as an unsigned octal number. See Section 14.2.8 [Integer Con-
versions|, page 270, for details.

Print an integer as an unsigned decimal number. See Section 14.2.8 [Integer
Conversions|, page 270, for details.

Print an integer as an unsigned hexadecimal number. ‘%x’ uses lowercase letters
and ‘%X’ uses uppercase. See Section 14.2.8 [Integer Conversions|, page 270, for
details.

Print a floating-point number in normal (fixed-point) notation. See
Section 14.2.9 [Floating-Point Conversions], page 271, for details.

Print a floating-point number in exponential notation. ‘%e’ uses lowercase
letters and ‘%E’ uses uppercase. See Section 14.2.9 [Floating-Point Conversions],
page 271, for details.

270 GNU Octave

‘%g’, “hG’ Print a floating-point number in either normal (fixed-point) or exponential
notation, whichever is more appropriate for its magnitude. ‘%g’ uses lowercase
letters and ‘%G’ uses uppercase. See Section 14.2.9 [Floating-Point Conversions],
page 271, for details.

“he’ Print a single character. See Section 14.2.10 [Other Output Conversions],
page 271.

‘hs’ Print a string. See Section 14.2.10 [Other Output Conversions|, page 271.

U’ Print a literal ‘%’ character. See Section 14.2.10 [Other Output Conversions],
page 271.

If the syntax of a conversion specification is invalid, unpredictable things will happen, so
don’t do this. In particular, MATLAB allows a bare percentage sign ‘%’ with no subsequent
conversion character. Octave will emit an error and stop if it sees such code. When the
string variable to be processed cannot be guaranteed to be free of potential format codes it
is better to use the two argument form of any of the printf functions and set the format
string to %s. Alternatively, for code which is not required to be backwards-compatible with
MATLAB the Octave function puts or disp can be used.

printf (strvar); # Unsafe if strvar contains format codes
printf ("%s", strvar); # Safe
puts (strvar); # Safe

If there aren’t enough function arguments provided to supply values for all the conversion
specifications in the template string, or if the arguments are not of the correct types, the
results are unpredictable. If you supply more arguments than conversion specifications, the
extra argument values are simply ignored; this is sometimes useful.

14.2.8 Integer Conversions

This section describes the options for the ‘%d’, ‘%i’, ‘%ho’, ‘%u’, ‘%x’, and ‘%X’ conversion
specifications. These conversions print integers in various formats.

The ‘%d’ and ‘%1’ conversion specifications both print an numeric argument as a signed
decimal number; while ‘%o’, ‘%u’, and ‘%x’ print the argument as an unsigned octal, decimal,
or hexadecimal number (respectively). The ‘%X’ conversion specification is just like ‘%x’
except that it uses the characters ‘ABCDEF’ as digits instead of ‘abcdef’.

The following flags are meaningful:
Left-justify the result in the field (instead of the normal right-justification).
+ For the signed ‘%d’ and ‘%1’ conversions, print a plus sign if the value is positive.

For the signed ‘%d’ and ‘%i’ conversions, if the result doesn’t start with a plus
or minus sign, prefix it with a space character instead. Since the ‘+’ flag ensures
that the result includes a sign, this flag is ignored if you supply both of them.

‘# For the ‘%0’ conversion, this forces the leading digit to be ‘0’, as if by increasing
the precision. For ‘%x’ or ‘%X’, this prefixes a leading ‘0x’ or ‘0X’ (respectively) to
the result. This doesn’t do anything useful for the ‘%d’, ‘%i’, or ‘%u’ conversions.

‘0’ Pad the field with zeros instead of spaces. The zeros are placed after any
indication of sign or base. This flag is ignored if the ‘-’ flag is also specified, or
if a precision is specified.

Chapter 14: Input and Output 271

If a precision is supplied, it specifies the minimum number of digits to appear; leading
zeros are produced if necessary. If you don’t specify a precision, the number is printed with
as many digits as it needs. If you convert a value of zero with an explicit precision of zero,
then no characters at all are produced.

14.2.9 Floating-Point Conversions

This section discusses the conversion specifications for floating-point numbers: the ‘%f’,
‘%he’, “KE’, ‘hg’, and ‘%G’ conversions.

The ‘%£f’ conversion prints its argument in fixed-point notation, producing output of the
form [-]ddd.ddd, where the number of digits following the decimal point is controlled by
the precision you specify.

The ‘%e’ conversion prints its argument in exponential notation, producing output of
the form [-]d.ddde[+|-]dd. Again, the number of digits following the decimal point is
controlled by the precision. The exponent always contains at least two digits. The ‘%E’
conversion is similar but the exponent is marked with the letter ‘E’ instead of ‘e’.

The ‘%g’ and ‘%G’ conversions print the argument in the style of ‘%e’ or ‘4E’ (respectively)
if the exponent would be less than -4 or greater than or equal to the precision; otherwise
they use the ‘%f’ style. Trailing zeros are removed from the fractional portion of the result
and a decimal-point character appears only if it is followed by a digit.

The following flags can be used to modify the behavior:
=’ Left-justify the result in the field. Normally the result is right-justified.
4 Always include a plus or minus sign in the result.

If the result doesn’t start with a plus or minus sign, prefix it with a space
instead. Since the ‘+’ flag ensures that the result includes a sign, this flag is
ignored if you supply both of them.

‘4 Specifies that the result should always include a decimal point, even if no digits
follow it. For the ‘%g’ and ‘%G’ conversions, this also forces trailing zeros after
the decimal point to be left in place where they would otherwise be removed.

‘0’ Pad the field with zeros instead of spaces; the zeros are placed after any sign.
This flag is ignored if the ‘=’ flag is also specified.

The precision specifies how many digits follow the decimal-point character for the ‘%f’,
‘he’, and ‘4E’ conversions. For these conversions, the default precision is 6. If the precision
is explicitly 0, this suppresses the decimal point character entirely. For the ‘%g’ and ‘%G’
conversions, the precision specifies how many significant digits to print. Significant digits
are the first digit before the decimal point, and all the digits after it. If the precision is 0
or not specified for ‘%g’ or ‘%G’ it is treated like a value of 1. If the value being printed
cannot be expressed precisely in the specified number of digits, the value is rounded to the
nearest number that fits.

14.2.10 Other Output Conversions

This section describes miscellaneous conversions for printf.

272 GNU Octave

The ‘%c’ conversion prints a single character. The ‘=’ flag can be used to specify left-
justification in the field, but no other flags are defined, and no precision or type modifier
can be given. For example:

printf ("Ychchchehe", "h", "e", "1", "1", "o");
prints ‘hello’.

The ‘%s’ conversion prints a string. The corresponding argument must be a string. A
precision can be specified to indicate the maximum number of characters to write; otherwise
characters in the string up to but not including the terminating null character are written
to the output stream. The ‘-’ flag can be used to specify left-justification in the field, but
no other flags or type modifiers are defined for this conversion. For example:

printf ("%3s%-6s", "no", "where");

prints ¢ nowhere ’ (note the leading and trailing spaces).

14.2.11 Formatted Input

Octave provides the scanf, fscanf, and sscanf functions to read formatted input. There
are two forms of each of these functions. One can be used to extract vectors of data from
a file, and the other is more ‘C-like’.

[val, count, errmsg] = fscanf (fid, template, size)

[vi, v2, ..., count, errmsg] = fscanf (fid, template, "C")
In the first form, read from fid according to template, returning the result in the
matrix val.

The optional argument size specifies the amount of data to read and may be one of
Inf Read as much as possible, returning a column vector.
nr Read up to nr elements, returning a column vector.

[nr, Inf] Read as much as possible, returning a matrix with nr rows. If the number
of elements read is not an exact multiple of nr, the last column is padded
with zeros.

[nr, nc] Read up to nr * nc elements, returning a matrix with nr rows. If the
number of elements read is not an exact multiple of nr, the last column
is padded with zeros.

If size is omitted, a value of Inf is assumed.

A string is returned if template specifies only character conversions.

The number of items successfully read is returned in count.

If an error occurs, errmsg contains a system-dependent error message.

In the second form, read from fid according to template, with each conversion specifier
in template corresponding to a single scalar return value. This form is more “C-like”,
and also compatible with previous versions of Octave. The number of successful
conversions is returned in count

See the Formatted Input section of the GNU Octave manual for a complete description
of the syntax of the template string.

See also: [fgets|, page 266, [fgetl], page 265, [fread]|, page 275, [scanf], page 273,
[sscanf], page 273, [fopen], page 263.

Chapter 14: Input and Output 273

[val, count, errmsg] = scanf (template, size)
[vi, v2, ..., count, errmsg]] = scanf (template, "C")
This is equivalent to calling fscanf with fid = stdin.

It is currently not useful to call scanf in interactive programs.

See also: [fscanf], page 272, [sscanf], page 273, [printf], page 266.

[val, count, errmsg, pos] = sscanf (string, template, size)

[vi, v2, ..., count, errmsg] = sscanf (string, template, "C")
This is like fscanf, except that the characters are taken from the string string instead
of from a stream.

Reaching the end of the string is treated as an end-of-file condition. In addition to
the values returned by fscanf, the index of the next character to be read is returned
in pos.

See also: [fscanf], page 272, [scanf], page 273, [sprintf], page 267.

Calls to scanf are superficially similar to calls to printf in that arbitrary arguments are
read under the control of a template string. While the syntax of the conversion specifications
in the template is very similar to that for printf, the interpretation of the template is
oriented more towards free-format input and simple pattern matching, rather than fixed-
field formatting. For example, most scanf conversions skip over any amount of “white
space” (including spaces, tabs, and newlines) in the input file, and there is no concept
of precision for the numeric input conversions as there is for the corresponding output
conversions. Ordinarily, non-whitespace characters in the template are expected to match
characters in the input stream exactly.

When a matching failure occurs, scanf returns immediately, leaving the first non-
matching character as the next character to be read from the stream, and scanf returns all
the items that were successfully converted.

The formatted input functions are not used as frequently as the formatted output func-
tions. Partly, this is because it takes some care to use them properly. Another reason is
that it is difficult to recover from a matching error.

14.2.12 Input Conversion Syntax

A scanf template string is a string that contains ordinary multibyte characters interspersed
with conversion specifications that start with ‘%’.

Any whitespace character in the template causes any number of whitespace characters
in the input stream to be read and discarded. The whitespace characters that are matched
need not be exactly the same whitespace characters that appear in the template string. For
example, write ¢ , ’ in the template to recognize a comma with optional whitespace before
and after.

Other characters in the template string that are not part of conversion specifications
must match characters in the input stream exactly; if this is not the case, a matching
failure occurs.

The conversion specifications in a scanf template string have the general form:

% flags width type conversion

274

GNU Octave

In more detail, an input conversion specification consists of an initial ‘%’ character fol-
lowed in sequence by:

e An optional flag character ‘*’, which says to ignore the text read for this specification.

When scanf finds a conversion specification that uses this flag, it reads input as directed
by the rest of the conversion specification, but it discards this input, does not return
any value, and does not increment the count of successful assignments.

An optional decimal integer that specifies the maximum field width. Reading of char-
acters from the input stream stops either when this maximum is reached or when a
non-matching character is found, whichever happens first. Most conversions discard
initial whitespace characters, and these discarded characters don’t count towards the
maximum field width. Conversions that do not discard initial whitespace are explicitly
documented.

An optional type modifier character. This character is ignored by Octave’s scanf
function, but is recognized to provide compatibility with the C language scanf.

e A character that specifies the conversion to be applied.

The exact options that are permitted and how they are interpreted vary between the

different conversion specifiers. See the descriptions of the individual conversions for infor-
mation about the particular options that they allow.

14.2.13 Table of Input Conversions

Here is a table that summarizes the various conversion specifications:

“hd’ Matches an optionally signed integer written in decimal. See Section 14.2.14
[Numeric Input Conversions|, page 275.

AR Matches an optionally signed integer in any of the formats that the C language
defines for specifying an integer constant. See Section 14.2.14 [Numeric Input
Conversions|, page 275.

‘%o’ Matches an unsigned integer written in octal radix. See Section 14.2.14 [Nu-
meric Input Conversions], page 275.

S’ Matches an unsigned integer written in decimal radix. See Section 14.2.14
[Numeric Input Conversions|, page 275.

%%’ %X’ Matches an unsigned integer written in hexadecimal radix. See Section 14.2.14

[Numeric Input Conversions|, page 275.

(%e7’ L%f’7 4%g7, ‘%E’, ‘%G’

Matches an optionally signed floating-point number. See Section 14.2.14 [Nu-
meric Input Conversions], page 275.

s’ Matches a string containing only non-whitespace characters. See Section 14.2.15
[String Input Conversions|, page 275.
“%he’ Matches a string of one or more characters; the number of characters read is con-

4%%7

trolled by the maximum field width given for the conversion. See Section 14.2.15
[String Input Conversions|, page 275.

This matches a literal ‘%4’ character in the input stream. No corresponding
argument is used.

Chapter 14: Input and Output 275

If the syntax of a conversion specification is invalid, the behavior is undefined. If there
aren’t enough function arguments provided to supply addresses for all the conversion spec-
ifications in the template strings that perform assignments, or if the arguments are not of
the correct types, the behavior is also undefined. On the other hand, extra arguments are
simply ignored.

14.2.14 Numeric Input Conversions
This section describes the scanf conversions for reading numeric values.
The ‘%d’ conversion matches an optionally signed integer in decimal radix.

The ‘%1’ conversion matches an optionally signed integer in any of the formats that the
C language defines for specifying an integer constant.

For example, any of the strings ‘10’, ‘Oxa’, or ‘012’ could be read in as integers under
the ‘%i’ conversion. Each of these specifies a number with decimal value 10.

The ‘%o’, ‘%u’, and ‘%x’ conversions match unsigned integers in octal, decimal, and hex-
adecimal radices, respectively.

The ‘%X’ conversion is identical to the ‘%x’ conversion. They both permit either uppercase
or lowercase letters to be used as digits.

Unlike the C language scanf, Octave ignores the ‘h’, ‘1’, and ‘L’ modifiers.

14.2.15 String Input Conversions

This section describes the scanf input conversions for reading string and character values:
‘%s’ and ‘%c’.

The ‘%c’ conversion is the simplest: it matches a fixed number of characters, always. The
maximum field with says how many characters to read; if you don’t specify the maximum,
the default is 1. This conversion does not skip over initial whitespace characters. It reads
precisely the next n characters, and fails if it cannot get that many.

The ‘%s’ conversion matches a string of non-whitespace characters. It skips and dis-
cards initial whitespace, but stops when it encounters more whitespace after having read
something.

For example, reading the input:

hello, world

with the conversion ‘%10c¢’ produces " hello, wo", but reading the same input with the
conversion ‘%10s’ produces "hello,".

14.2.16 Binary I/0

Octave can read and write binary data using the functions fread and fwrite, which are
patterned after the standard C functions with the same names. They are able to automat-
ically swap the byte order of integer data and convert among the supported floating point
formats as the data are read.

val = fread (fid)

val = fread (fid, size)

val = fread (fid, size, precision)

val = fread (fid, size, precision, skip)

276

val = fread (fid, size, precision, skip, arch)
= fread (...)
Read binary data from the file specified by the file descriptor fid.

[val, countl]

GNU Octave

The optional argument size specifies the amount of data to read and may be one of

Inf
nr

[nr, Inf]

[nr, ncl

If size is omitted, a value of Inf is assumed.

Read as much as possible, returning a column vector.

Read up to nr elements, returning a column vector.

Read as much as possible, returning a matrix with nr rows. If the number
of elements read is not an exact multiple of nr, the last column is padded

with zeros.

Read up to nr * nc elements, returning a matrix with nr rows. If the
number of elements read is not an exact multiple of nr, the last column

is padded with zeros.

The optional argument precision is a string specifying the type of data to read and
may be one of

"schar"

"signed char"

"uchar"

Signed character.

"unsigned char"

n int8 n

Unsigned character.

"integerx*1"

"intl6"

8-bit signed integer.

"integerx*2"

"int32"

16-bit signed integer.

"integerx4"

"int64"

32-bit signed integer.

"integer*8"

"uint8"

"uint16"
"uint32"
"uint64"

"single"
"float32"
"realx4"

64-bit signed integer.
8-bit unsigned integer.
16-bit unsigned integer.
32-bit unsigned integer.
64-bit unsigned integer.

32-bit floating point number.

Chapter 14: Input and Output 277

"double"
"float64"
"real*8" 64-bit floating point number.

"char"
"char*1" Single character.

"short" Short integer (size is platform dependent).
"int" Integer (size is platform dependent).
"long" Long integer (size is platform dependent).
"ushort"

"unsigned short"
Unsigned short integer (size is platform dependent).

"uint"
"unsigned int"
Unsigned integer (size is platform dependent).

llulongll
"unsigned long"
Unsigned long integer (size is platform dependent).

"float" Single precision floating point number (size is platform dependent).

The default precision is "uchar".

The precision argument may also specify an optional repeat count. For example,
‘32*single’ causes fread to read a block of 32 single precision floating point numbers.
Reading in blocks is useful in combination with the skip argument.

The precision argument may also specify a type conversion. For example,
‘int16=>int32’ causes fread to read 16-bit integer values and return an array of
32-bit integer values. By default, fread returns a double precision array. The special
form ‘*TYPE’ is shorthand for ‘TYPE=>TYPE’.

The conversion and repeat counts may be combined. For example, the specification
‘32xsingle=>single’ causes fread to read blocks of single precision floating point
values and return an array of single precision values instead of the default array of
double precision values.

The optional argument skip specifies the number of bytes to skip after each element
(or block of elements) is read. If it is not specified, a value of 0 is assumed. If the
final block read is not complete, the final skip is omitted. For example,

fread (f, 10, "3*single=>single", 8)
will omit the final 8-byte skip because the last read will not be a complete block of 3
values.

The optional argument arch is a string specifying the data format for the file. Valid
values are

"native" or "n"
The format of the current machine.

278

furite (
fwrite (
fwrite (fid, data, precision, skip)
fwrite (

GNU Octave

"ieee-be" or "b"
IEEE big endian.

"jeee-le" or "1"
IEEE little endian.

If no arch is given the value used in the call to fopen which created the file descrip-
tor is used. Otherwise, the value specified with fread overrides that of fopen and
determines the data format.

The output argument val contains the data read from the file.

The optional return value count contains the number of elements read.

See also: [fwrite], page 278, [fgets], page 266, [fgetl|, page 265, [fscanf], page 272,
[fopen], page 263.

fid, data)
fid, data, precision)

fid, data, precision, skip, arch)

count = fwrite (...)

Write data in binary form to the file specified by the file descriptor fid, returning the
number of values count successfully written to the file.

The argument data is a matrix of values that are to be written to the file. The values
are extracted in column-major order.

The remaining arguments precision, skip, and arch are optional, and are interpreted
as described for fread.

The behavior of fwrite is undefined if the values in data are too large to fit in the
specified precision.

See also: [fread], page 275, [fputs|, page 265, [fprintf], page 267, [fopen], page 263.

14.2.17 Temporary Files

Sometimes one needs to write data to a file that is only temporary. This is most commonly
used when an external program launched from within Octave needs to access data. When
Octave exits all temporary files will be deleted, so this step need not be executed manually.

[fid, name, msg]

mkstemp ("template")

[fid, name, msg] = mkstemp ("template", delete)

Return the file descriptor fid corresponding to a new temporary file with a unique
name created from template.

The last six characters of template must be "XXXXXX" and these are replaced with a
string that makes the filename unique. The file is then created with mode read/write
and permissions that are system dependent (on GNU /Linux systems, the permissions
will be 0600 for versions of glibc 2.0.7 and later). The file is opened in binary mode
and with the 0_EXCL flag.

If the optional argument delete is supplied and is true, the file will be deleted auto-
matically when Octave exits.

Chapter 14: Input and Output 279

If successful, fid is a valid file ID, name is the name of the file, and msg is an empty
string. Otherwise, fid is -1, name is empty, and msg contains a system-dependent
error message.

See also: [tempname], page 279, [tempdir], page 279, [P_tmpdir|, page 279, [tmpfile],
page 279, [fopen|, page 263.

[fid, msg] = tmpfile ()
Return the file ID corresponding to a new temporary file with a unique name.

The file is opened in binary read/write ("w+b") mode and will be deleted automatically
when it is closed or when Octave exits.

If successful, fid is a valid file ID and msg is an empty string. Otherwise, fid is -1
and msg contains a system-dependent error message.

See also: [tempname|, page 279, [mkstemp|, page 278, [tempdir], page 279,
[P_tmpdir], page 279.

fname = tempname ()
fname = tempname (dir)
fname = tempname (dir, prefix)
Return a unique temporary filename as a string.

If prefix is omitted, a value of "oct-" is used.

If dir is also omitted, the default directory for temporary files (P_tmpdir) is used. If
dir is provided, it must exist, otherwise the default directory for temporary files is
used.

Programming Note: Because the named file is not opened by tempname, it is possible,
though relatively unlikely, that it will not be available by the time your program
attempts to open it. If this is a concern, see tmpfile.

See also: [mkstemp]|, page 278, [tempdir|, page 279, [P_tmpdir], page 279, [tmpfile],
page 279.

dir = tempdir ()
Return the name of the host system’s directory for temporary files.

The directory name is taken first from the environment variable TMPDIR. If that does
not exist the system default returned by P_tmpdir is used.

See also: [P_tmpdir], page 279, [tempname], page 279, [mkstemp], page 278, [tmpfile],
page 279.

P_tmpdir ()
Return the name of the host system’s default directory for temporary files.
Programming Note: The value returned by P_tmpdir is always the default location.

This value may not agree with that returned from tempdir if the user has overridden
the default with the TMPDIR environment variable.

See also: [tempdir], page 279, [tempname]|, page 279, [mkstemp], page 278, [tmpfile],
page 279.

280 GNU Octave

14.2.18 End of File and Errors

Once a file has been opened its status can be acquired. As an example the feof functions
determines if the end of the file has been reached. This can be very useful when reading
small parts of a file at a time. The following example shows how to read one line at a time
from a file until the end has been reached.

filename = "myfile.txt";

fid = fopen (filename, "r");

while (! feof (fid))
text_line = fgetl (fid);

endwhile

fclose (fid);

Note that in some situations it is more efficient to read the entire contents of a file and then
process it, than it is to read it line by line. This has the potential advantage of removing
the loop in the above code.

status = feof (fid)
Return 1 if an end-of-file condition has been encountered for the file specified by file
descriptor fid and 0 otherwise.

Note that feof will only return 1 if the end of the file has already been encountered,
not if the next read operation will result in an end-of-file condition.

See also: [fread], page 275, [frewind], page 281, [fseek]|, page 281, [fclear|, page 280,
[fopen], page 263.

msg = ferror (fid)

[msg, err] = ferror (fid)

[dots] = ferror (fid, "clear")
Query the error status of the stream specified by file descriptor fid
If an error condition exists then return a string msg describing the error. Otherwise,
return an empty string "".

The second input "clear" is optional. If supplied, the error state on the stream will
be cleared.

The optional second output is a numeric indication of the error status. err is 1 if an
error condition has been encountered and 0 otherwise.

Note that ferror indicates if an error has already occurred, not whether the next
operation will result in an error condition.

See also: [fclear|, page 280, [fopen], page 263.

fclear (fid)
Clear the stream state for the file specified by the file descriptor fid.
See also: [ferror|, page 280, [fopen], page 263.

freport ()

Print a list of which files have been opened, and whether they are open for reading,
writing, or both.

Chapter 14: Input and Output 281

For example:

freport ()
-| number mode arch name
_| ______ —_— —_— —_—
- 0 T ieee-le stdin
o 1 W ieee-le stdout
— 2 W ieee-le stderr
— 3 T ieee-le myfile

See also: [fopen], page 263, [fclose|, page 264, [is_valid_file_id], page 264.

14.2.19 File Positioning

Three functions are available for setting and determining the position of the file pointer for
a given file.

pos = ftell (fid)
Return the position of the file pointer as the number of characters from the beginning
of the file specified by file descriptor fid.

See also: [fseek], page 281, [frewind], page 281, [feof], page 280, [fopen], page 263.

fseek (fid, offset)

fseek (fid, offset, origin)

status = fseek (...)
Set the file pointer to the location offset within the file fid.
The pointer is positioned offset characters from the origin, which may be one of the
predefined variables SEEK_CUR (current position), SEEK_SET (beginning), or SEEK_END
(end of file) or strings "cof", "bof" or "eof". If origin is omitted, SEEK_SET is
assumed. offset may be positive, negative, or zero but not all combinations of origin
and offset can be realized.

fseek returns 0 on success and -1 on error.

See also: [fskipl]|, page 266, [frewind|, page 281, [ftell], page 281, [fopen], page 263.
SEEK_SET ()
SEEK_CUR ()

SEEK_END ()
Return the numerical value to pass to fseek to perform one of the following actions:

SEEK_SET Position file relative to the beginning.
SEEK_CUR Position file relative to the current position.
SEEK_END Position file relative to the end.

See also: [fseek], page 28]1.

frewind (fid)
status = frewind (fid)
Move the file pointer to the beginning of the file specified by file descriptor fid.

282 GNU Octave

frewind returns O for success, and -1 if an error is encountered. It is equivalent to
fseek (fid, 0, SEEK_SET).

See also: [fseek]|, page 281, [ftell], page 281, [fopen]|, page 263.

The following example stores the current file position in the variable marker, moves the
pointer to the beginning of the file, reads four characters, and then returns to the original
position.

marker = ftell (myfile);

frewind (myfile);

fourch = fgets (myfile, 4);

fseek (myfile, marker, SEEK_SET);

283

15 Plotting

15.1 Introduction to Plotting

Earlier versions of Octave provided plotting through the use of gnuplot. This capability is
still available. But, a newer plotting capability is provided by access to OpenGL. Which
plotting system is used is controlled by the graphics_toolkit function. See Section 15.4.7
[Graphics Toolkits|, page 432.

The function call graphics_toolkit ("qt") selects the Qt/OpenGL system,
graphics_toolkit ("fltk") selects the FLTK/OpenGL system, and graphics_toolkit
("gnuplot") selects the gnuplot system. The three systems may be used selectively
through the use of the graphics_toolkit property of the graphics handle for each figure.
This is explained in Section 15.3 [Graphics Data Structures|, page 371. Caution: The
OpenGL-based toolkits use single precision variables internally which limits the maximum
value that can be displayed to approximately 1038, If your data contains larger values you
must use the gnuplot toolkit which supports values up to 103,

15.2 High-Level Plotting

Octave provides simple means to create many different types of two- and three-dimensional
plots using high-level functions.

If you need more detailed control, see Section 15.3 [Graphics Data Structures|, page 371,
and Section 15.4 [Advanced Plotting], page 417.

15.2.1 Two-Dimensional Plots

The plot function allows you to create simple x-y plots with linear axes. For example,

x = -10:0.1:10;
plot (x, sin (x));

displays a sine wave shown in Figure 15.1. On most systems, this command will open a
separate plot window to display the graph.

284

GNU Octave

Simple 2-D Plot

T

Figure 15.1: Simple Two-Dimensional Plot.

plot
plot
plot
plot
plot
plot

(¥)

(%,)

(x, y, fmt)

(..., property, value, ...)
(x1, y1, ..., xn, yn)

(hax, ...)

h = plot (...)

Produce 2-D plots.
Many different combinations of arguments are possible. The simplest form is
plot (y)
where the argument is taken as the set of y coordinates and the x coordinates are
taken to be the range 1:numel (y).

If more than one argument is given, they are interpreted as
plot (y, property, value, ...)

or
plot (x, y, property, value, ...)

or
plot (x, y, fmt, ...)

and so on. Any number of argument sets may appear. The x and y values are
interpreted as follows:

e If a single data argument is supplied, it is taken as the set of y coordinates and
the x coordinates are taken to be the indices of the elements, starting with 1.

e If x and y are scalars, a single point is plotted.

e squeeze() is applied to arguments with more than two dimensions, but no more
than two singleton dimensions.

Chapter 15: Plotting 285

e If both arguments are vectors, the elements of y are plotted versus the elements
of x.

e If x is a vector and y is a matrix, then the columns (or rows) of y are plotted
versus x. (using whichever combination matches, with columns tried first.)

e If the x is a matrix and y is a vector, y is plotted versus the columns (or rows)
of x. (using whichever combination matches, with columns tried first.)

e If both arguments are matrices, the columns of y are plotted versus the columns
of x. In this case, both matrices must have the same number of rows and columns
and no attempt is made to transpose the arguments to make the number of rows
match.

Multiple property-value pairs may be specified, but they must appear in pairs.
These arguments are applied to the line objects drawn by plot. Useful properties

to modify are "linestyle", "linewidth", "color", "marker", "markersize",
"markeredgecolor", "markerfacecolor". See Section 15.3.3.4 [Line Properties],
page 394.

The fmt format argument can also be used to control the plot style. It is a string com-
posed of four optional parts: "<linestyle><marker><color><;displayname;>". When a
marker is specified, but no linestyle, only the markers are plotted. Similarly, if a
linestyle is specified, but no marker, then only lines are drawn. If both are speci-
fied then lines and markers will be plotted. If no fmt and no property/value pairs
are given, then the default plot style is solid lines with no markers and the color
determined by the "colororder" property of the current axes.

Format arguments:

linestyle

= Use solid lines (default).

==’ Use dashed lines.

< Use dotted lines.

= Use dash-dotted lines.
marker

+ crosshair

‘o’ circle

£ star

© point

‘x’ Cross

‘s’ square

‘q’ diamond

i upward-facing triangle

‘v’ downward-facing triangle

>’ right-facing triangle

‘< left-facing triangle

‘p’ pentagram

‘n’ hexagram

color

286

GNU Octave

‘K’ blacK

‘r’ Red

‘g’ Green

‘D’ Blue

‘y’ Yellow

‘m’ Magenta

‘c’ Cyan

‘w’ White
";displayname;"

Here "displayname" is the label to use for the plot legend.

The fmt argument may also be used to assign legend labels. To do so, include the
desired label between semicolons after the formatting sequence described above, e.g.,
"+b;Key Title;". Note that the last semicolon is required and Octave will generate
an error if it is left out.

Here are some plot examples:

plot (x, y, "or", x, y2, x, y3, "m", x, y4, "+")
This command will plot y with red circles, y2 with solid lines, y3 with solid magenta
lines, and y4 with points displayed as ‘+’.

plot (b, "x", "markersize", 10)
This command will plot the data in the variable b, with points displayed as ‘*’ and a
marker size of 10.

=0:0.1:6.3;

plot (t, cos(t), "-;cos(t);", t, sin(t), "-b;sin(t);");

This will plot the cosine and sine functions and label them accordingly in the legend.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a vector of graphics handles to the created line objects.

To save a plot, in one of several image formats such as PostScript or PNG, use the
print command.

See also: [axis|, page 311, [box], page 348, [grid], page 348, [hold], page 357, [legend],
page 346, [title], page 345, [xlabel], page 347, [ylabel], page 347, [xlim], page 313,
[ylim], page 313, [ezplot], page 314, [errorbar|, page 300, [fplot], page 313, [line],
page 374, [plot3], page 335, [polar], page 304, [loglog], page 288, [semilogx], page 287,
[semilogy], page 287, [subplot], page 352.

The plotyy function may be used to create a plot with two independent y axes.

plotyy (x1, y1 x2, y2)

(
plotyy (..

plotyy (..., funl, fun2)
(

, fun)

plotyy hax ..)
lax, h1, h2] = plotyy (...)

Plot two sets of data with independent y-axes and a common x-axis.

Chapter 15: Plotting 287

The arguments x1 and yl define the arguments for the first plot and x1 and y2 for
the second.

By default the arguments are evaluated with feval (@plot, x, y). However the type
of plot can be modified with the fun argument, in which case the plots are generated
by feval (fun, x, y). fun can be a function handle, an inline function, or a string
of a function name.

The function to use for each of the plots can be independently defined with funl and
fun2.

If the first argument hax is an axes handle, then it defines the principal axis in which
to plot the x1 and yl data.

The return value ax is a vector with the axis handles of the two y-axes. hl and h2
are handles to the objects generated by the plot commands.

x = 0:0.1:2%pi;

yl = sin (x);

y2 = exp (x - 1);

ax = plotyy (x, y1, x - 1, y2, @plot, @semilogy);

xlabel ("X");

ylabel (ax(1), "Axis 1");

ylabel (ax(2), "Axis 2");

See also: [plot], page 284.

The functions semilogx, semilogy, and loglog are similar to the plot function, but
produce plots in which one or both of the axes use log scales.

semilogx (y)

semilogx (x, y)

semilogx (x, y, property, value, ...)

semilogx (x, y, fmt)

semilogx (hax, ...)

h = semilogx (...)
Produce a 2-D plot using a logarithmic scale for the x-axis.
See the documentation of plot for a description of the arguments that semilogx will
accept.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created plot.

See also: [plot], page 284, [semilogy], page 287, [loglog], page 288.

semilogy (y)
semilogy (x, y)
semilogy (x, y, property, value, .. .)

semilogy (x, y, fmt)
semilogy (h, ...)
h = semilogy (...)
Produce a 2-D plot using a logarithmic scale for the y-axis.

288 GNU Octave

See the documentation of plot for a description of the arguments that semilogy will
accept.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created plot.
See also: [plot], page 284, [semilogx]|, page 287, [loglog|, page 288.

loglog (y)
loglog (x, y)
loglog (x, y, prop, value, ...)
loglog (x, y, fmt)
loglog (hax, ...)
h = loglog (...)
Produce a 2-D plot using logarithmic scales for both axes.
See the documentation of plot for a description of the arguments that loglog will
accept.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created plot.
See also: [plot], page 284, [semilogx], page 287, [semilogy], page 287.
The functions bar, barh, stairs, and stem are useful for displaying discrete data. For
example,
hist (randn (10000, 1), 30);

produces the histogram of 10,000 normally distributed random numbers shown in
Figure 15.2.

Histogram of 10,000 normally distributed random numbers
1000 T

800

600

Count

400

200

Figure 15.2: Histogram.

Chapter 15: Plotting 289

bar
bar
bar
bar
bar
bar

., style)
..., prop, val, ...)

)

bar (..., prop, val, ...)

Produce a bar graph from two vectors of X-Y data.

If only one argument is given, y, it is taken as a vector of Y values and the X
coordinates are the range 1:numel (y).

The optional input w controls the width of the bars. A value of 1.0 will cause each
bar to exactly touch any adjacent bars. The default width is 0.8.

If y is a matrix, then each column of y is taken to be a separate bar graph plotted
on the same graph. By default the columns are plotted side-by-side. This behavior
can be changed by the style argument which can take the following values:

"grouped" (default)
Side-by-side bars with a gap between bars and centered over the X-
coordinate.

"stacked"
Bars are stacked so that each X value has a single bar composed of mul-
tiple segments.

"hist" Side-by-side bars with no gap between bars and centered over the X-
coordinate.

"histc" Side-by-side bars with no gap between bars and left-aligned to the X-
coordinate.
Optional property/value pairs are passed directly to the underlying patch objects.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a vector of handles to the created "bar series" hggroups
with one handle per column of the variable y. This series makes it possible to change
a common element in one bar series object and have the change reflected in the other
"bar series". For example,

h = bar (rand (5, 10));
set (h(1), "basevalue", 0.5);

changes the position on the base of all of the bar series.

The following example modifies the face and edge colors using property/value pairs.
bar (randn (1, 100), "facecolor", "r", "edgecolor", "b");

The color of the bars is taken from the figure’s colormap, such that

bar (rand (10, 3));
colormap (summer (64));

290 GNU Octave

will change the colors used for the bars. The color of bars can also be set manually
using the "facecolor" property as shown below.

h = bar (rand (10, 3));

set (h(1), "facecolor", "r")
set (h(2), "facecolor", "g")
set (h(3), "facecolor", "b")

See also: [barh], page 290, [hist], page 291, [pie], page 305, [plot], page 284, [patch],
page 374.

., style)
..., prop, val, ...)
barh (hax, ...)
h = barh (..., prop, val, ...)
Produce a horizontal bar graph from two vectors of X-Y data.

If only one argument is given, it is taken as a vector of Y values and the X coordinates
are the range 1:numel (y).

The optional input w controls the width of the bars. A value of 1.0 will cause each
bar to exactly touch any adjacent bars. The default width is 0.8.

If y is a matrix, then each column of y is taken to be a separate bar graph plotted
on the same graph. By default the columns are plotted side-by-side. This behavior
can be changed by the style argument which can take the following values:

"grouped" (default)
Side-by-side bars with a gap between bars and centered over the Y-

coordinate.

"stacked"
Bars are stacked so that each Y value has a single bar composed of mul-
tiple segments.

"hist" Side-by-side bars with no gap between bars and centered over the Y-

coordinate.

"histc" Side-by-side bars with no gap between bars and left-aligned to the Y-
coordinate.
Optional property/value pairs are passed directly to the underlying patch objects.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created bar series hggroup.
For a description of the use of the bar series, see [bar|, page 288.

See also: [bar|, page 288, [hist], page 291, [pie]|, page 305, [plot], page 284, [patch],
page 374.

Chapter 15: Plotting 291

(

(

(y, nbins)

(v, x, norm)

(..., prop, val, ...)

(hax, ...)

xx] = hist (...)

Produce histogram counts or plots.

With one vector input argument, y, plot a histogram of the values with 10 bins. The
range of the histogram bins is determined by the range of the data. With one matrix
input argument, y, plot a histogram where each bin contains a bar per input column.

Given a second vector argument, x, use that as the centers of the bins, with the width
of the bins determined from the adjacent values in the vector.

If scalar, the second argument, nbins, defines the number of bins.

If a third argument is provided, the histogram is normalized such that the sum of the
bars is equal to norm.

Extreme values are lumped into the first and last bins.

The histogram’s appearance may be modified by specifying property/value pairs. For
example the face and edge color may be modified.

hist (randn (1, 100), 25, "facecolor", "r", "edgecolor", "b");
The histogram’s colors also depend upon the current colormap.

hist (rand (10, 3));
colormap (summer ());

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

With two output arguments, produce the values nn (numbers of elements) and xx
(bin centers) such that bar (xx, nn) will plot the histogram.

See also: [histc|, page 648, [bar], page 288, [pie], page 305, [rose], page 297.

stemleaf (x, caption)
stemleaf (x, caption, stem_sz)
plotstr = stemleaf (...)

Compute and display a stem and leaf plot of the vector x.

The input x should be a vector of integers. Any non-integer values will be converted
to integer by x = fix (x). By default each element of x will be plotted with the last
digit of the element as a leaf value and the remaining digits as the stem. For example,
123 will be plotted with the stem ‘12’ and the leaf ‘3’. The second argument, caption,
should be a character array which provides a description of the data. It is included
as a heading for the output.

The optional input stem_sz sets the width of each stem. The stem width is determined
by 10~ (stem_sz + 1). The default stem width is 10.

The output of stemleaf is composed of two parts: a "Fenced Letter Display," followed
by the stem-and-leaf plot itself. The Fenced Letter Display is described in Exploratory
Data Analysis. Briefly, the entries are as shown:

292

GNU Octave

Fenced Letter Display

#hnx|___________________ nx = numel (x)

M% mi| md | mi median index, md median

H% hilhl hul hs hi lower hinge index, hl,hu hinges,
1 lx(1) x(nx) | hs h_spreadx(1), x(nx) first

and last data wvalue.

______ step |_______ step 1.5*xh_spread
flifl ifh| inner fence, lower and higher
Infl nfh| no.\ of data points within fences
Flofl ofh| outer fence, lower and higher
|nF1 nFh| no.\ of data points outside outer

fences

The stem-and-leaf plot shows on each line the stem value followed by the string made
up of the leaf digits. If the stem_sz is not 1 the successive leaf values are separated
by II’".

With no return argument, the plot is immediately displayed. If an output argument
is provided, the plot is returned as an array of strings.

The leaf digits are not sorted. If sorted leaf values are desired, use xs = sort (x)
before calling stemleaf (xs).

The stem and leaf plot and associated displays are described in: Chapter 3, Ex-
ploratory Data Analysis by J. W. Tukey, Addison-Wesley, 1977.

See also: [hist], page 291, [printd], page 292.

printd (obj, filename)
out_file = printd (...)

Convert any object acceptable to disp into the format selected by the suffix of
filename.

If the return argument out_file is given, the name of the created file is returned.

This function is intended to facilitate manipulation of the output of functions such
as stemleaf.

See also: [stemleaf], page 291.

stairs (y)

stairs (x, y)

stairs (..., style)

stairs (..., prop, val, ...)
stairs (hax, ...)

h = stairs (...)

[xstep, ystep] = stairs (...)

Produce a stairstep plot.

The arguments x and y may be vectors or matrices. If only one argument is given, it
is taken as a vector of Y values and the X coordinates are taken to be the indices of
the elements.

Chapter 15: Plotting 293

The style to use for the plot can be defined with a line style style of the same format
as the plot command.

Multiple property/value pairs may be specified, but they must appear in pairs.

If the first argument hax is an axis handle, then plot into this axis, rather than the
current axis handle returned by gca.

If one output argument is requested, return a graphics handle to the created plot.
If two output arguments are specified, the data are generated but not plotted. For
example,

stairs (x, y);

and
[xs, ys] = stairs (x, y);
plot (xs, ys);

are equivalent.

See also: [bar], page 288, [hist], page 291, [plot], page 284, [stem], page 293.

..., "filled")
..., prop, val, ...)
(hax, ...)
stem (...)
Plot a 2-D stem graph.

(
(
(..., linespec)
(
(

If only one argument is given, it is taken as the y-values and the x-coordinates are
taken from the indices of the elements.

If y is a matrix, then each column of the matrix is plotted as a separate stem graph.
In this case x can either be a vector, the same length as the number of rows in y, or
it can be a matrix of the same size as y.
The default color is "b" (blue), the default line style is "-", and the default marker
is "o". The line style can be altered by the 1linespec argument in the same manner
as the plot command. If the "filled" argument is present the markers at the top
of the stems will be filled in. For example,

x = 1:10;

y = 2%x;

stem (x, y, "r");
plots 10 stems with heights from 2 to 20 in red;
Optional property/value pairs may be specified to control the appearance of the plot.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a handle to a "stem series" hggroup. The single
hggroup handle has all of the graphical elements comprising the plot as its children;
This allows the properties of multiple graphics objects to be changed by modifying
just a single property of the "stem series" hggroup.

294 GNU Octave

For example,

x = [0:10];
y = [sin(x), cos(x)]
h = stem (%, y);

set (h(2), "color", "g");
set (h(1), "basevalue", -1)

changes the color of the second "stem series" and moves the base line of the first.

Stem Series Properties
linestyle The linestyle of the stem. (Default: "-")
linewidth The width of the stem. (Default: 0.5)

color The color of the stem, and if not separately specified, the marker. (De-
fault: "b" [blue])

marker The marker symbol to use at the top of each stem. (Default: "o")

markeredgecolor
The edge color of the marker. (Default: "color" property)

markerfacecolor
The color to use for "filling" the marker. (Default: "none" [unfilled))

markersize
The size of the marker. (Default: 6)

baseline The handle of the line object which implements the baseline. Use set
with the returned handle to change graphic properties of the baseline.

basevalue The y-value where the baseline is drawn. (Default: 0)

See also: [stem3], page 294, [bar], page 288, [hist], page 291, [plot], page 284, [stairs],
page 292.

stem3 (x, y, z)
stem3 (..., linespec)
stem3 (..., "filled")
stem3 (..., prop, val, ...)
stem3 (hax, ...)
h = stem3 (...)

Plot a 3-D stem graph.

Stems are drawn from the height z to the location in the x-y plane determined by x
and y. The default color is "b" (blue), the default line style is "-", and the default
marker is "o".

The line style can be altered by the linespec argument in the same manner as the
plot command. If the "filled" argument is present the markers at the top of the
stems will be filled in.

Optional property/value pairs may be specified to control the appearance of the plot.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

Chapter 15: Plotting 295

The optional return value h is a handle to the "stem series" hggroup containing the
line and marker objects used for the plot. See [stem], page 293, for a description of
the "stem series" object.

Example:

theta = 0:0.2:6;
stem3 (cos (theta), sin (theta), theta);

plots 31 stems with heights from 0 to 6 lying on a circle.

Implementation Note: Color definitions with RGB-triples are not valid.

See also: [stem], page 293, [bar], page 288, [hist], page 291, [plot], page 284.

scatter (

scatter (

scatter (

scatter (..., style)
scatter (..., "filled")
scatter (..., prop, val, ...)
scatter (hax, ...)

h = scatter (...)

Draw a 2-D scatter plot.

A marker is plotted at each point defined by the coordinates in the vectors x and y.

The size of the markers is determined by s, which can be a scalar or a vector of the
same length as x and y. If s is not given, or is an empty matrix, then a default value
of 8 points is used.

The color of the markers is determined by ¢, which can be a string defining a fixed
color; a 3-element vector giving the red, green, and blue components of the color; a
vector of the same length as x that gives a scaled index into the current colormap; or
an Nx3 matrix defining the RGB color of each marker individually.

The marker to use can be changed with the style argument, that is a string defining a
marker in the same manner as the plot command. If no marker is specified it defaults
to "o" or circles. If the argument "filled" is given then the markers are filled.

Additional property/value pairs are passed directly to the underlying patch object.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created patch object.
Example:

x = randn (100, 1);
y = randn (100, 1);
scatter (x, y, [1, sqrt (x.72 + y."2));

See also: [scatter3], page 338, [patch], page 374, [plot], page 284.

plotmatrix (x, y)
plotmatrix (x)
plotmatrix (..., style)
plotmatrix (hax,)

296 GNU Octave

(h, ax, bigax, p, pax] = plotmatrix (...)
Scatter plot of the columns of one matrix against another.

Given the arguments x and y that have a matching number of rows, plotmatrix
plots a set of axes corresponding to

plot (x(:, i), y(:, 3))
When called with a single argument x this is equivalent to
plotmatrix (x, x)

except that the diagonal of the set of axes will be replaced with the histogram hist
(x(:, 1)).

The marker to use can be changed with the style argument, that is a string defining
a marker in the same manner as the plot command.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h provides handles to the individual graphics objects in the
scatter plots, whereas ax returns the handles to the scatter plot axis objects.

bigax is a hidden axis object that surrounds the other axes, such that the commands
xlabel, title, etc., will be associated with this hidden axis.

Finally, p returns the graphics objects associated with the histogram and pax the
corresponding axes objects.

Example:
plotmatrix (randn (100, 3), "g+")

See also: [scatter]|, page 295, [plot], page 284.

pareto (y)
pareto (y, x)

pareto (hax, ...)

h = pareto (...)
Draw a Pareto chart.
A Pareto chart is a bar graph that arranges information in such a way that priorities
for process improvement can be established; It organizes and displays information to
show the relative importance of data. The chart is similar to the histogram or bar
chart, except that the bars are arranged in decreasing magnitude from left to right
along the x-axis.

The fundamental idea (Pareto principle) behind the use of Pareto diagrams is that the
majority of an effect is due to a small subset of the causes. For quality improvement,
the first few contributing causes (leftmost bars as presented on the diagram) to a
problem usually account for the majority of the result. Thus, targeting these "major
causes" for elimination results in the most cost-effective improvement scheme.

Typically only the magnitude data y is present in which case x is taken to be the
range 1 : length (y). If x is given it may be a string array, a cell array of strings,
or a numerical vector.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

Chapter 15: Plotting 297

The optional return value h is a 2-element vector with a graphics handle for the
created bar plot and a second handle for the created line plot.

An example of the use of pareto is

Cheese = {"Cheddar", "Swiss", "Camembert",
"Munster", "Stilton", "Blue"};

Sold = [105, 30, 70, 10, 15, 20];

pareto (Sold, Cheese);

See also: [bar|, page 288, [barh], page 290, [hist], page 291, [pie], page 305, [plot],
page 284.

rose (th)

rose (th, nbins)

rose (th, bins)

rose (hax, ...)

h = rose (...)

[thout rout] = rose (...)
Plot an angular histogram.

With one vector argument, th, plot the histogram with 20 angular bins. If th is a
matrix then each column of th produces a separate histogram.

If nbins is given and is a scalar, then the histogram is produced with nbin bins. If
bins is a vector, then the center of each bin is defined by the values of bins and the
number of bins is given by the number of elements in bins.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a vector of graphics handles to the line objects repre-
senting each histogram.

If two output arguments are requested then no plot is made and the polar vectors
necessary to plot the histogram are returned instead.

[th, r] = rose ([2*randn(le5,1), pi + 2*randn(le5,1)]);
polar (th, r);

See also: [hist], page 291, [polar], page 304.

The contour, contourf and contourc functions produce two-dimensional contour plots
from three-dimensional data.

contour (z)
contour (z, vn)
contour (x, y, z)
contour (x, y, Z, vn)
contour (..., style)
contour (hax, .
[c, h] = contour (...)
Create a 2-D contour plot.

Plot level curves (contour lines) of the matrix z, using the contour matrix ¢ computed
by contourc from the same arguments; see the latter for their interpretation.

298

GNU Octave

The appearance of contour lines can be defined with a line style style in the same
manner as plot. Only line style and color are used; Any markers defined by style are
ignored.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional output ¢ contains the contour levels in contourc format.

The optional return value h is a graphics handle to the hggroup comprising the contour
lines.

Example:

x = 0:2;

y = x;

z =x’ *y;

contour (x, y, z, 2:3)
See also: [ezcontour], page 315, [contourc], page 299, [contourt], page 298, [contour3],
page 299, [clabel], page 348, [meshc]|, page 320, [surfc], page 322, [caxis], page 312,
[colormap], page 749, [plot], page 284.

contourf (z)

contourf (z, vn)
contourf (x, y, z)
contourf (x, y, z, vn)
contourf (..., style)
contourf (hax, ...)

[c, h] = contourf (...)

Create a 2-D contour plot with filled intervals.

Plot level curves (contour lines) of the matrix z and fill the region between lines with
colors from the current colormap.

The level curves are taken from the contour matrix ¢ computed by contourc for the
same arguments; see the latter for their interpretation.

The appearance of contour lines can be defined with a line style style in the same
manner as plot. Only line style and color are used; Any markers defined by style are
ignored.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional output ¢ contains the contour levels in contourc format.

The optional return value h is a graphics handle to the hggroup comprising the contour
lines.

The following example plots filled contours of the peaks function.
[x, y, z] = peaks (50);

contourf (x, y, z, -7:9)

See also: [ezcontourf], page 315, [contour], page 297, [contourc], page 299, [contour3],
page 299, [clabel], page 348, [meshc|, page 320, [surfc], page 322, [caxis], page 312,
[colormap], page 749, [plot], page 284.

Chapter 15: Plotting 299

[c,
[c,
[c,
[c,

lev] = contourc (z)

lev] = contourc (z, vn)
lev] = contourc (x, y, 2)
lev] = contourc (x, y, z, vn)

Compute contour lines (isolines of constant Z value).
The matrix z contains height values above the rectangular grid determined by x and
y. If only a single input z is provided then x is taken to be 1:rows (z) and y is taken
to be 1:columns (z).
The optional input vn is either a scalar denoting the number of contour lines to
compute or a vector containing the Z values where lines will be computed. When vn
is a vector the number of contour lines is numel (vn). However, to compute a single
contour line at a given value use vn = [val, val]. If vn is omitted it defaults to 10.
The return value c is a 2xn matrix containing the contour lines in the following format

c = [levl, x1, x2, ..., levn, x1, x2,

lenl, yi1, y2, ..., lenn, y1, y2, ...]

in which contour line n has a level (height) of levn and length of lenn.
The optional return value lev is a vector with the Z values of the contour levels.

Example:
x = 0:2;
y = x5

Z =X’ %y,
contourc (x, y, z, 2:3)
= 2.0000 2.0000 1.0000 3.0000 1.5000 2.0000
2.0000 1.0000 2.0000 2.0000 2.0000 1.5000

See also: [contour|, page 297, [contourf], page 298, [contour3|, page 299, [clabel],
page 348.

contour3 (z)

contour3 (z, vn)
contour3 (x, y, z)
contour3 (x, y, z, vn)
contour3 (..., style)
contour3 (hax, ...)

[c, h] = contour3 (...)

Create a 3-D contour plot.

contour3 plots level curves (contour lines) of the matrix z at a Z level corresponding
to each contour. This is in contrast to contour which plots all of the contour lines at
the same Z level and produces a 2-D plot.

The level curves are taken from the contour matrix ¢ computed by contourc for the
same arguments; see the latter for their interpretation.

The appearance of contour lines can be defined with a line style style in the same
manner as plot. Only line style and color are used; Any markers defined by style are
ignored.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

300

GNU Octave

The optional output ¢ are the contour levels in contourc format.

The optional return value h is a graphics handle to the hggroup comprising the contour
lines.

Example:

contour3 (peaks (19));

colormap cool;

hold on;

surf (peaks (19), "facecolor", "none", "edgecolor", "black");

See also: [contour], page 297, [contourc], page 299, [contourf], page 298, [clabel],
page 348, [meshc|, page 320, [surfc], page 322, [caxis|, page 312, [colormap], page 749,
[plot], page 284.

The errorbar, semilogxerr, semilogyerr, and loglogerr functions produce plots

with error bar markers. For example,

x = 0:0.1:10;

y = sin (x);

lerr = 0.1 .* rand (size (x));
uerr = 0.1 .* rand (size (x));
errorbar (x, y, lerr, uerr);

produces the figure shown in Figure 15.3.

Errorbar plot of sin (x)

sin (x)

Figure 15.3: Errorbar plot.

errorbar (y, ey)

errorbar (y, ..., fmt)
errorbar (x, y, ey)

errorbar (x, y, err, fmt)
errorbar (x, y, lerr, uerr, fmt)
errorbar (x, y, ex, ey, fmt)

Chapter 15: Plotting 301

errorbar (x, y, 1x, ux, 1y, uy, fmt)

errorbar (x1, y1, ..., fmt, xn, yn, ...)
errorbar (hax, ...)
h = errorbar (...)

Create a 2-D plot with errorbars.
Many different combinations of arguments are possible. The simplest form is
errorbar (y, ey)

where the first argument is taken as the set of y coordinates, the second argument ey
are the errors around the y values, and the x coordinates are taken to be the indices
of the elements (1:numel (y)).

The general form of the function is
errorbar (x, y, errl, ..., fmt, ...)

After the x and y arguments there can be 1, 2, or 4 parameters specifying the error
values depending on the nature of the error values and the plot format fmt.

err (scalar)
When the error is a scalar all points share the same error value. The
errorbars are symmetric and are drawn from data-err to datat+err. The

fmt argument determines whether err is in the x-direction, y-direction
(default), or both.

err (vector or matrix)
Each data point has a particular error value. The errorbars are symmetric
and are drawn from data(n)-err(n) to data(n)+err(n).

lerr, uerr (scalar)
The errors have a single low-side value and a single upper-side value. The
errorbars are not symmetric and are drawn from data-lerr to data+uerr.

lerr, uerr (vector or matrix)
Each data point has a low-side error and an upper-side error. The
errorbars are not symmetric and are drawn from data(n)-lerr(n) to
data(n)+uerr(n).

Any number of data sets (x1,y1, x2,y2, . ..) may appear as long as they are separated

by a format string fmt.

If y is a matrix, x and the error parameters must also be matrices having the same
dimensions. The columns of y are plotted versus the corresponding columns of x and
errorbars are taken from the corresponding columns of the error parameters.

If fmt is missing, the yerrorbars ("~") plot style is assumed.

If the fint argument is supplied then it is interpreted, as in normal plots, to specify
the line style, marker, and color. In addition, fmt may include an errorbar style which
must precede the ordinary format codes. The following errorbar styles are supported:
¢ Set yerrorbars plot style (default).
>’ Set xerrorbars plot style.

>? Set xyerrorbars plot style.

302 GNU Octave

Set yboxes plot style.
4 Set xboxes plot style.
W Set xyboxes plot style.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a handle to the hggroup object representing the data
plot and errorbars.

Note: For compatibility with MATLAB a line is drawn through all data points. How-
ever, most scientific errorbar plots are a scatter plot of points with errorbars. To

accomplish this, add a marker style to the fmt argument such as ".". Alternatively, re-
move the line by modifying the returned graphic handle with set (h, "linestyle",
"none").

Examples:

errorbar (x, y, ex, ">.r")

produces an xerrorbar plot of y versus x with x errorbars drawn from x-ex to x+ex.
The marker "." is used so no connecting line is drawn and the errorbars appear in

red.

errorbar (x, y1, ey, ,
x, y2, 1y, uy)
produces yerrorbar plots with y1 and y2 versus x. Errorbars for y1 are drawn from
yl-ey to yl+ey, errorbars for y2 from y2-ly to y2+uy.
errorbar (x, y, lx, ux,
ly, lly, n~>u)
produces an xyerrorbar plot of y versus x in which x errorbars are drawn from x-Ix
to x+ux and y errorbars from y-ly to y+uy.

See also: [semilogxerr], page 302, [semilogyerr], page 303, [loglogerr], page 303, [plot],

page 284.
semilogxerr (y, ey)
semilogxerr (y, ..., fmt)
semilogxerr (x, y, ey)
semilogxerr (x, y, err, fmt)
semilogxerr (x, y, lerr, uerr, fmt)
semilogxerr (x, y, ex, ey, fmt)
semilogxerr (x, y, 1x, ux, ly, uy, fmt)
semilogxerr (x1, y1, ..., fmt, xn, yn, ...)
semilogxerr (hax, ...)

h = semilogxerr (...)
Produce 2-D plots using a logarithmic scale for the x-axis and errorbars at each data
point.

Many different combinations of arguments are possible. The most common form is

semilogxerr (x, y, ey, fmt)

Chapter 15: Plotting 303

which produces a semi-logarithmic plot of y versus x with errors in the y-scale defined
by ey and the plot format defined by fmt. See [errorbar|, page 300, for available
formats and additional information.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

See also: [errorbar]|, page 300, [semilogyerr]|, page 303, [loglogerr|, page 303.

semilogyerr (y, ey)

semilogyerr (y, , fmt)

semilogyerr (x y, ey)

semilogyerr (x, y, err, fmt)

semilogyerr (x, y, lerr, uerr, fmt)
semilogyerr (x, y, ex, ey, fmt)
semilogyerr (x, y, 1x, ux, ly, uy, fmt)
semilogyerr (x1, y1, ..., fmt, xn, yn, ...)
semilogyerr (hax, ..)

h = semilogyerr (...)
Produce 2-D plots using a logarithmic scale for the y-axis and errorbars at each data
point.

Many different combinations of arguments are possible. The most common form is
semilogyerr (x, y, ey, fmt)

which produces a semi-logarithmic plot of y versus x with errors in the y-scale defined
by ey and the plot format defined by fmt. See [errorbar|, page 300, for available
formats and additional information.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

See also: [errorbar]|, page 300, [semilogxerr], page 302, [loglogerr], page 303.

loglogerr (
loglogerr (
loglogerr (x, y, ey)
loglogerr (x, y, err, fmt)
loglogerr (x, y, lerr, uerr, fmt)
loglogerr (x, y, ex, ey, fmt)
loglogerr (x, y, 1x, ux, 1y, uy, fmt)
loglogerr (x1, y1, ..., fmt, xn, yn, ...)
loglogerr (hax, ...)
h = loglogerr (...)
Produce 2-D plots on a double logarithm axis with errorbars.

Many different combinations of arguments are possible. The most common form is
loglogerr (x, y, ey, fmt)

which produces a double logarithm plot of y versus x with errors in the y-scale defined
by ey and the plot format defined by fmt. See [errorbar|, page 300, for available
formats and additional information.

304 GNU Octave

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

See also: [errorbar|, page 300, [semilogxerr|, page 302, [semilogyerr], page 303.

Finally, the polar function allows you to easily plot data in polar coordinates. However,
the display coordinates remain rectangular and linear. For example,

polar (0:0.1:10%pi, 0:0.1:10%pi);

produces the spiral plot shown in Figure 15.4.

Example polar plot from 0 to 10*pi

270

Figure 15.4: Polar plot.

polar (theta, rho)
polar (theta, rho, fmt)
polar (cplx)

polar (cplx, fmt)

polar (hax, ...)

h = polar (...)
Create a 2-D plot from polar coordinates theta and rho.
If a single complex input cplx is given then the real part is used for theta and the
imaginary part is used for rho.

The optional argument fmt specifies the line format in the same way as plot.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created plot.

Implementation Note: The polar axis is drawn using line and text objects encapsu-
lated in an hggroup. The hggroup properties are linked to the original axes object
such that altering an appearance property, for example fontname, will update the
polar axis. Two new properties are added to the original axes—rtick, ttick—which

Chapter 15: Plotting 305

replace xtick, ytick. The first is a list of tick locations in the radial (rho) direc-
tion; The second is a list of tick locations in the angular (theta) direction specified in
degrees, i.e., in the range 0-359.

See also: [rose], page 297, [compass]|, page 307, [plot], page 284.

pie (x)
pie (..., explode)
pie (.. labels)
pie (hax, ...);
= pie (. .),
Plot a 2-D pie chart.
When called with a single vector argument, produce a pie chart of the elements in x.
The size of the ith slice is the percentage that the element xi represents of the total
sum of x: pct = x(1) / sum (x).
The optional input explode is a vector of the same length as x that, if nonzero,
"explodes" the slice from the pie chart.
The optional input labels is a cell array of strings of the same length as x specifying
the label for each slice.
If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.
The optional return value h is a list of handles to the patch and text objects generating
the plot.
Note: If sum (x) < 1 then the elements of x are interpreted as percentages directly
and are not normalized by sum (x). Furthermore, if the sum is less than 1 then there
will be a missing slice in the pie plot to represent the missing, unspecified percentage.
See also: [pie3], page 305, [bar|, page 288, [hist], page 291, [rose], page 297.
pie3 (x)
pie3 (..., explode)
pie3 (..., labels)

pie3 (hax, ...);
= pie3d (...);

Plot a 3-D pie chart.

Called with a single vector argument, produces a 3-D pie chart of the elements in x.
The size of the ith slice is the percentage that the element xi represents of the total
sum of x: pct = x(1) / sum (x).

The optional input explode is a vector of the same length as x that, if nonzero,
"explodes" the slice from the pie chart.

The optional input labels is a cell array of strings of the same length as x specifying
the label for each slice.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a list of graphics handles to the patch, surface, and
text objects generating the plot.

306 GNU Octave
Note: If sum (x) < 1 then the elements of x are interpreted as percentages directly
and are not normalized by sum (x). Furthermore, if the sum is less than 1 then there
will be a missing slice in the pie plot to represent the missing, unspecified percentage.
See also: [pie|, page 305, [bar|, page 288, [hist], page 291, [rose], page 297.

quiver (u, v)

quiver (x, y, u, v)

quiver (..., s)

quiver (..., style)

quiver (..., "filled")

quiver (hax, ...)

= quiver (...)

Plot a 2-D vector field with arrows.

Plot the (u, v) components of a vector field in an (x, y) meshgrid. If the grid is
uniform then x and y can be specified as vectors.

If x and y are undefined they are assumed to be (1:m, 1:n) where [m, n] = size

(w).

The variable s is a scalar defining a scaling factor to use for the arrows of the field
relative to the mesh spacing. A value of 0 disables all scaling. The default value is
0.9.

The style to use for the plot can be defined with a line style style of the same format
as the plot command. If a marker is specified then markers at the grid points of the
vectors are drawn rather than arrows. If the argument "filled" is given then the
markers are filled.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to a quiver object. A quiver object
regroups the components of the quiver plot (body, arrow, and marker), and allows
them to be changed together.

Example:
[x, y] = meshgrid (1:2:20);

= quiver (x, y, sin (2%pi*x/10), sin (2*pixy/10));
set (h, "maxheadsize", 0.33);

See also: [quiver3], page 306, [compass|, page 307, [feather]|, page 308, [plot],
page 284.

quiver3 (u, v, w)

(

quiver3 (x, y, z, u, v, w)
(-
(-

quiver3)
quiver3 . style)
quiver3 (..., "filled")
quiver3 (hax, Sl)

= quiver3 (...)

Plot a 3-D vector field with arrows.

Chapter 15: Plotting 307

Plot the (u, v, w) components of a vector field in an (x, y, z) meshgrid. If the grid is
uniform then x, y, and z can be specified as vectors.

If x, y, and z are undefined they are assumed to be (1:m, 1:n, 1:p) where [m, n] =
size (u) and p = max (size (w)).

The variable s is a scalar defining a scaling factor to use for the arrows of the field
relative to the mesh spacing. A value of 0 disables all scaling. The default value is
0.9.

The style to use for the plot can be defined with a line style style of the same format
as the plot command. If a marker is specified then markers at the grid points of the
vectors are drawn rather than arrows. If the argument "filled" is given then the
markers are filled.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to a quiver object. A quiver object
regroups the components of the quiver plot (body, arrow, and marker), and allows
them to be changed together.

[x, y, z] = peaks (25);

surf (x, y, 2);

hold on;

[u, v, w] = surfnorm (x, y, z / 10);
h = quiver3 (x, y, z, u, v, w);

set (h, "maxheadsize", 0.33);

See also: [quiver], page 306, [compass], page 307, [feather], page 308, [plot], page 284.

compass (u, v)
compass (z)

compass (..., style)
compass (hax, ...)

h = compass (...)

Plot the (u, v) components of a vector field emanating from the origin of a polar
plot.
The arrow representing each vector has one end at the origin and the tip at [u(i),
v(i)]. If a single complex argument z is given, then u = real (z) and v = imag (z).
The style to use for the plot can be defined with a line style style of the same format
as the plot command.
If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.
The optional return value h is a vector of graphics handles to the line objects repre-
senting the drawn vectors.

a = toeplitz ([1;randn(9,1)], [1,randn(1,9)]1);

compass (eig (a));

See also: [polar|, page 304, [feather|, page 308, [quiver], page 306, [rose|, page 297,
[plot], page 284.

308 GNU Octave

feather (u, v)
feather (z)
feather (..., style)

feather (hax, ...)

h = feather (...)
Plot the (u, v) components of a vector field emanating from equidistant points on
the x-axis.

If a single complex argument z is given, then u = real (z) and v = imag (2).

The style to use for the plot can be defined with a line style style of the same format
as the plot command.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a vector of graphics handles to the line objects repre-
senting the drawn vectors.

phi = [0 : 15 : 360] * pi/180;
feather (sin (phi), cos (phi));

See also: [plot], page 284, [quiver], page 306, [compass]|, page 307.

pcolor (x, y, c)
pcolor (c)
pcolor (hax, ...)
h = pcolor (...)
Produce a 2-D density plot.

A pcolor plot draws rectangles with colors from the matrix ¢ over the two-dimensional
region represented by the matrices x and y. x and y are the coordinates of the mesh’s
vertices and are typically the output of meshgrid. If x and y are vectors, then a typical
vertex is (x(j), ¥(i), ¢(i,j)). Thus, columns of ¢ correspond to different x values and
rows of ¢ correspond to different y values.

The values in ¢ are scaled to span the range of the current colormap. Limits may be
placed on the color axis by the command caxis, or by setting the clim property of
the parent axis.

The face color of each cell of the mesh is determined by interpolating the values of ¢
for each of the cell’s vertices; Contrast this with imagesc which renders one cell for
each element of c.

shading modifies an attribute determining the manner by which the face color of
each cell is interpolated from the values of ¢, and the visibility of the cells’ edges. By
default the attribute is "faceted", which renders a single color for each cell’s face
with the edge visible.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created surface object.

See also: [caxis|, page 312, [shading], page 338, [meshgrid], page 334, [contour],
page 297, [imagesc|, page 746.

Chap

fill
fill
fill
fill
h =

ter 15: Plotting 309

, 1v1)
., prop, val, ...)
(hax, ...)
area (...)
Area plot of the columns of y.

This plot shows the contributions of each column value to the row sum. It is func-
tionally similar to plot (x, cumsum (y, 2)), except that the area under the curve is
shaded.

If the x argument is omitted it defaults to 1:rows (y). A value Ivl can be defined
that determines where the base level of the shading under the curve should be defined.
The default level is 0.

Additional property/value pairs are passed directly to the underlying patch object.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the hggroup object comprising
the area patch objects. The "BaseValue" property of the hggroup can be used to
adjust the level where shading begins.

Example: Verify identity sin~2 + cos™2 = 1
t = linspace (0, 2*pi, 100)7;
y [sin(t)."2, cos(t)."2];
area (t, y);
legend ("sin"2", "cos"2", "location", "NorthEastOutside");

See also: [plot], page 284, [patch], page 374.

(%, . <)
(x1, yl cl, x2, y2, c2)
(..., prop, val)
(hax, ...)
£ill (...)
Create one or more filled 2-D polygons.
The inputs x and y are the coordinates of the polygon vertices. If the inputs are ma-
trices then the rows represent different vertices and each column produces a different
polygon. £ill will close any open polygons before plotting.

The input ¢ determines the color of the polygon. The simplest form is a single color
specification such as a plot format or an RGB-triple. In this case the polygon(s) will
have one unique color. If ¢ is a vector or matrix then the color data is first scaled
using caxis and then indexed into the current colormap. A row vector will color each
polygon (a column from matrices x and y) with a single computed color. A matrix c
of the same size as x and y will compute the color of each vertex and then interpolate
the face color between the vertices.

Multiple property/value pairs for the underlying patch object may be specified, but
they must appear in pairs.

310 GNU Octave

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a vector of graphics handles to the created patch
objects.

Example: red square

vertices = [

fill (vertices(:,1), vertices(:,2), "r");
axis ([-0.5 1.5, -0.5 1.5])
axis equal

See also: [patch], page 374, [caxis], page 312, [colormap], page 749.

comet (y)
comet (x, y)

comet (x, y, p)
comet (hax, ...)

Produce a simple comet style animation along the trajectory provided by the input
coordinate vectors (x, y).

If x is not specified it defaults to the indices of y.

The speed of the comet may be controlled by p, which represents the time each point
is displayed before moving to the next one. The default for p is 0.1 seconds.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

See also: [comet3], page 310.

comet3 (2)

comet3 (x, y, 2)

comet3 (x, y, z, p)

comet3 (hax, ...)
Produce a simple comet style animation along the trajectory provided by the input
coordinate vectors (x, y, z).

If only z is specified then x, y default to the indices of z.

The speed of the comet may be controlled by p, which represents the time each point
is displayed before moving to the next one. The default for p is 0.1 seconds.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

See also: [comet], page 310.

[x, map] = frame2im (f)
Convert movie frame to indexed image.

A movie frame is simply a struct with the fields "cdata" and "colormap".

Chapter 15: Plotting 311

Support for N-dimensional images or movies is given when f is a struct array. In such
cases, x will be a MxNx1xK or MxNx3xK for indexed and RGB movies respectively,
with each frame concatenated along the 4th dimension.

See also: [im2frame], page 311.

im2frame (rgb)
im2frame (x, map)

Convert image to movie frame.
A movie frame is simply a struct with the fields "cdata" and "colormap".

Support for N-dimensional images is given when each image projection, matrix sizes
of MxN and MxNx3 for RGB images, is concatenated along the fourth dimension. In
such cases, the returned value is a struct array.

See also: [frame2im|, page 310.

15.2.1.1 Axis Configuration

The axis function may be used to change the axis limits of an existing plot and various

other

axis
axis
axis
axis
axis
axis
axis
axis

axis properties, such as the aspect ratio and the appearance of tic marks.

()

([x_1lo x_hi])

([x_1o x_hi y_lo y_hi])

([*_1o x_hi y_lo y_hi z_lo z_hi])

([x_1o x_hi y_lo y_hi z_lo z_hi c_lo c_hi])
(option)

(..., option)

(hax, ...)

limits = axis ()

Set axis limits and appearance.

The argument limits should be a 2-; 4-, 6-, or 8-element vector. The first and second
elements specify the lower and upper limits for the x-axis. The third and fourth
specify the limits for the y-axis, the fifth and sixth specify the limits for the z-axis,
and the seventh and eighth specify the limits for the color axis. The special values
-Inf and Inf may be used to indicate that the limit should automatically be computed
based on the data in the axis.

Without any arguments, axis turns autoscaling on.
With one output argument, limits = axis returns the current axis limits.

The vector argument specifying limits is optional, and additional string arguments
may be used to specify various axis properties. For example,

axis ([1, 2, 3, 4], "square");
forces a square aspect ratio, and
axis ("tic", "labely");
turns tick marks on for all axes and tick mark labels on for the y-axis only.

The following options control the aspect ratio of the axes.

"square" Force a square axis aspect ratio.

312

GNU Octave

"equal" Force x-axis unit distance to equal y-axis (and z-axis) unit distance.
"normal" Restore default aspect ratio.
The following options control the way axis limits are interpreted.

"auto [xyz]"
Set the specified axes to have nice limits around the data or all if no axes
are specified.

"manual" Fix the current axes limits.
"tight" Fix axes to the limits of the data.
"image" Equivalent to "tight" and "equal".

The following options affect the appearance of tick marks.

"on" Turn tick marks and labels on for all axes.
"off" Turn tick marks off for all axes.
"tic[xyz]"

Turn tick marks on for all axes, or turn them on for the specified axes
and off for the remainder.

"label [xyz]"
Turn tick labels on for all axes, or turn them on for the specified axes
and off for the remainder.

"nolabel"
Turn tick labels off for all axes.

Note, if there are no tick marks for an axis, there can be no labels.

The following options affect the direction of increasing values on the axes.
"ij" Reverse y-axis, so lower values are nearer the top.
"xy" Restore y-axis, so higher values are nearer the top.

If the first argument hax is an axes handle, then operate on this axes rather than the
current axes returned by gca.

See also: [xlim], page 313, [ylim], page 313, [zlim], page 313, [daspect]|, page 339,
[pbaspect], page 340, [box], page 348, [grid], page 348, [caxis|, page 312.

Similarly the axis limits of the colormap can be changed with the caxis function.

caxis ([cmin cmax])
caxis ("auto")
caxis ("manual")
caxis (hax, .)

Query or set color axis limits for plots.

The limits argument should be a 2-element vector specifying the lower and upper
limits to assign to the first and last value in the colormap. Data values outside this
range are clamped to the first and last colormap entries.

Chapter 15: Plotting 313

If the "auto" option is given then automatic colormap limits are applied. The au-
tomatic algorithm sets cmin to the minimum data value and cmax to the maximum
data value. If "manual" is specified then the "climmode" property is set to "manual"
and the numeric values in the "clim" property are used for limits.

If the first argument hax is an axes handle, then operate on this axis rather than the
current axes returned by gca.

Called without arguments the current color axis limits are returned.

See also: [colormap], page 749.

The x1lim, ylim, and zlim functions may be used to get or set individual axis limits.
Each has the same form.

xlimits = x1lim ()
xmode = x1lim ("mode")

x1lim
x1lim
x1lim
x1lim

([x_1lo x_hi])

("auto")

("manual")

(hax, ...)

Query or set the limits of the x-axis for the current plot.

Called without arguments x1im returns the x-axis limits of the current plot.

With the input query "mode", return the current x-limit calculation mode which is
either "auto" or "manual".

If passed a 2-element vector [x_lo x_hi], the limits of the x-axis are set to these values
and the mode is set to "manual".

The current plotting mode can be changed by using either "auto" or "manual" as
the argument.

If the first argument hax is an axes handle, then operate on this axis rather than the
current axes returned by gca.

See also: [ylim|, page 313, [zlim|, page 313, [axis|, page 311, [set], page 379, [get],
page 379, [gcal, page 377.

15.2.1.2 Two-dimensional Function Plotting

Octave can plot a function from a function handle, inline function, or string defining the
function without the user needing to explicitly create the data to be plotted. The function
fplot also generates two-dimensional plots with linear axes using a function name and
limits for the range of the x-coordinate instead of the x and y data. For example,

fplot (@sin, [-10, 10], 201);

produces a plot that is equivalent to the one above, but also includes a legend displaying
the name of the plotted function.

fplot (fn, 1imits)
fplot (..., tol)
fplot (..., n)
fplot (..., fmt)

314 GNU Octave

[x, y] = fplot (...)
Plot a function fn within the range defined by limits.
fn is a function handle, inline function, or string containing the name of the function
to evaluate.

The limits of the plot are of the form [xlo, xhi] or [xlo, xhi, ylo, yhil.

The next three arguments are all optional and any number of them may be given in
any order.

tol is the relative tolerance to use for the plot and defaults to 2e-3 (.2%).

n is the minimum number of points to use. When n is specified, the maximum
stepsize will be xhi - x1o / n. More than n points may still be used in order to meet
the relative tolerance requirement.

The fmt argument specifies the linestyle to be used by the plot command.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

With no output arguments the results are immediately plotted. With two output
arguments the 2-D plot data is returned. The data can subsequently be plotted
manually with plot (x, y).

Example:

fplot (@cos, [0, 2*pil)
fplot ("[cos(x), sin(x)]", [0, 2x*pil)

Programming Notes:

fplot works best with continuous functions. Functions with discontinuities are un-
likely to plot well. This restriction may be removed in the future.

fplot requires that the function accept and return a vector argument. Consider this
when writing user-defined functions and use .*, ./, etc. See the function vectorize
for potentially converting inline or anonymous functions to vectorized versions.

See also: [ezplot], page 314, [plot], page 284, [vectorize], page 528.

Other functions that can create two-dimensional plots directly from a function include
ezplot, ezcontour, ezcontourf and ezpolar.

ezplot (f)
ezplot (
ezplot (fx, fy)
ezplot (
ezplot (
ezplot (hax, ...)
h = ezplot (...)
Plot the 2-D curve defined by the function f.
The function f may be a string, inline function, or function handle and can have
either one or two variables. If f has one variable, then the function is plotted over
the domain -2#pi < x < 2*pi with 500 points.

If f2v is a function of two variables then the implicit function £(x,y) = 0 is calculated
over the meshed domain -2*pi <= x | y <= 2%pi with 60 points in each dimension.

Chapter 15: Plotting 315

For example:
ezplot (@(x, y) x.72 - y.”2 - 1)

If two functions are passed as inputs then the parametric function
x = fx (t)
y = fy ()

is plotted over the domain -2*pi <= t <= 2*pi with 500 points.

If dom is a two element vector, it represents the minimum and maximum values of
both x and y, or t for a parametric plot. If dom is a four element vector, then the
minimum and maximum values are [xmin xmax ymin ymax].

n is a scalar defining the number of points to use in plotting the function.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a vector of graphics handles to the created line objects.

See also: [plot], page 284, [ezplot3], page 340, [ezpolar], page 316, [ezcontour],
page 315, [ezcontourf], page 315, [ezmesh|, page 341, [ezmeshc|, page 342, [ezsurf],

9 9

page 342, [ezsurfc|, page 343.

ezcontour (f)
ezcontour (..., dom)
ezcontour (..., n)
ezcontour (hax, ...)

h = ezcontour (...)
Plot the contour lines of a function.

f is a string, inline function, or function handle with two arguments defining the
function. By default the plot is over the meshed domain -2*pi <= x | y <= 2xpi
with 60 points in each dimension.

If dom is a two element vector, it represents the minimum and maximum values of
both x and y. If dom is a four element vector, then the minimum and maximum
values are [xmin xmax ymin ymax].

n is a scalar defining the number of points to use in each dimension.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created plot.
Example:
f = 0(x,y) sqrt (abs (x .* y)) ./ (1 + x.72 + y."2);
ezcontour (f, [-3, 31);

See also: [contour], page 297, [ezcontourf], page 315, [ezplot], page 314, [ezmeshc],
page 342, [ezsurfc], page 343.

ezcontourf (f)
ezcontourf (..., dom)
ezcontourf (..., n)
ezcontourf (hax, ...)

316 GNU Octave

h = ezcontourf (...)
Plot the filled contour lines of a function.

f is a string, inline function, or function handle with two arguments defining the
function. By default the plot is over the meshed domain -2*pi <= x | y <= 2%pi
with 60 points in each dimension.

If dom is a two element vector, it represents the minimum and maximum values of
both x and y. If dom is a four element vector, then the minimum and maximum
values are [xmin xmax ymin ymax].

n is a scalar defining the number of points to use in each dimension.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created plot.
Example:
f = 0(x,y) sqrt (abs (x .*x y)) ./ (1 + x.72 + y."2);
ezcontourf (f, [-3, 3]1);

See also: [contourf], page 298, [ezcontour|, page 315, [ezplot], page 314, [ezmeshc]
page 342, [ezsurfc|, page 343.

9

ezpolar (f)
ezpolar (..., dom)
ezpolar (..., n)
ezpolar (hax, ...)

h = ezpolar (...)
Plot a 2-D function in polar coordinates.

The function f is a string, inline function, or function handle with a single argument.
The expected form of the function is rho = f(theta). By default the plot is over the
domain 0 <= theta <= 2*pi with 500 points.

If dom is a two element vector, it represents the minimum and maximum values of
theta.

n is a scalar defining the number of points to use in plotting the function.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created plot.
Example:
ezpolar (@(t) sin (5/4 * t), [0, 8*pil);

See also: [polar], page 304, [ezplot], page 314.

15.2.1.3 Two-dimensional Geometric Shapes

rectangle ()

rectangle (..., "Position", pos)

rectangle (..., "Curvature", curv)

rectangle (..., "EdgeColor", ec)
(..

rectangle ., "FaceColor", fc)

Chapter 15: Plotting 317

rectangle (hax, ...)
h = rectangle (...)
Draw a rectangular patch defined by pos and curv.

The variable pos(1:2) defines the lower left-hand corner of the patch and pos(3:4)
defines its width and height. By default, the value of pos is [0, 0, 1, 1].

The variable curv defines the curvature of the sides of the rectangle and may be a
scalar or two-element vector with values between 0 and 1. A value of 0 represents
no curvature of the side, whereas a value of 1 means that the side is entirely curved
into the arc of a circle. If curv is a two-element vector, then the first element is the
curvature along the x-axis of the patch and the second along y-axis.

If curv is a scalar, it represents the curvature of the shorter of the two sides of the
rectangle and the curvature of the other side is defined by

min (pos(1:2)) / max (pos(1:2)) * curv
Additional property/value pairs are passed to the underlying patch command.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created rectangle object.

See also: [patch|, page 374, [line|, page 374, [cylinder|, page 344, [ellipsoid], page 345,
[sphere], page 344.

15.2.2 Three-Dimensional Plots

The function mesh produces mesh surface plots. For example,

tx = ty = linspace (-8, 8, 41)’;
[xx, yy] = meshgrid (tx, ty);

r =sqrt (xx .7 2 +yy .~ 2) + eps;
tz = sin (r) ./ r;

mesh (tx, ty, tz);

produces the familiar “sombrero” plot shown in Figure 15.5. Note the use of the function
meshgrid to create matrices of X and Y coordinates to use for plotting the Z data. The
ndgrid function is similar to meshgrid, but works for N-dimensional matrices.

318 GNU Octave

3-D Sombrero plot

\
06 | — ™~
"o Ll
/ 7
-0.4 J < ;::’ .':’:‘ 2777
10

10

Figure 15.5: Mesh plot.

The meshc function is similar to mesh, but also produces a plot of contours for the
surface.

The plot3 function displays arbitrary three-dimensional data, without requiring it to
form a surface. For example,

t = 0:0.1:10%pi;

r = linspace (0, 1, numel (t));
z = linspace (0, 1, numel (t));
plot3 (r.*sin(t), r.*cos(t), z);

displays the spiral in three dimensions shown in Figure 15.6.

Chapter 15: Plotting 319

plot3 display of 3-D helix

0.8

0.6

0.4

0.2

0.5
0.5

r.*cos (t)
® -0.5 r.xsin (t)

Figure 15.6: Three-dimensional spiral.

Finally, the view function changes the viewpoint for three-dimensional plots.

mesh (x, y, 2)

mesh (z)

mesh (..., ¢)

mesh (..., prop, val, ...)

mesh (hax, ...)

h = mesh (...)
Plot a 3-D wireframe mesh.
The wireframe mesh is plotted using rectangles. The vertices of the rectangles [x,
y] are typically the output of meshgrid. over a 2-D rectangular region in the x-y
plane. z determines the height above the plane of each vertex. If only a single z
matrix is given, then it is plotted over the meshgrid x = 1:columns (z), y = 1:rows
(2). Thus, columns of z correspond to different x values and rows of z correspond to
different y values.
The color of the mesh is computed by linearly scaling the z values to fit the range of the
current colormap. Use caxis and/or change the colormap to control the appearance.
Optionally, the color of the mesh can be specified independently of z by supplying a
color matrix, c.

Any property /value pairs are passed directly to the underlying surface object.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created surface object.

See also: [ezmesh], page 341, [meshc|, page 320, [meshz|, page 320, [trimesh],
page 711, [contour]|, page 297, [surf], page 321, [surface], page 375, [meshgrid],
page 334, [hidden]|, page 321, [shading], page 338, [colormap|, page 749, [caxis],
page 312.

320 GNU Octave

., C)
.., prop, val, ...)
meshc (hax, ...)
h = meshc (...)
Plot a 3-D wireframe mesh with underlying contour lines.

The wireframe mesh is plotted using rectangles. The vertices of the rectangles [x,
y] are typically the output of meshgrid. over a 2-D rectangular region in the x-y
plane. z determines the height above the plane of each vertex. If only a single z
matrix is given, then it is plotted over the meshgrid x = 1:columns (z), y = 1:rows
(z). Thus, columns of z correspond to different x values and rows of z correspond to
different y values.

The color of the mesh is computed by linearly scaling the z values to fit the range of the
current colormap. Use caxis and/or change the colormap to control the appearance.

Optionally the color of the mesh can be specified independently of z by supplying a
color matrix, c.

Any property/value pairs are passed directly to the underlying surface object.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a 2-element vector with a graphics handle to the created
surface object and to the created contour plot.

See also: [ezmeshc|, page 342, [mesh], page 319, [meshz], page 320, [contour],
page 297, [surfc], page 322, [surface|, page 375, [meshgrid], page 334, [hidden],
page 321, [shading], page 338, [colormap], page 749, [caxis], page 312.

meshz (x, y, z)
meshz (z)
meshz (..., ¢)
meshz (..., prop, val, ...)
meshz (hax, ...)

h = meshz (...)

Plot a 3-D wireframe mesh with a surrounding curtain.

The wireframe mesh is plotted using rectangles. The vertices of the rectangles [x, y]
are typically the output of meshgrid. over a 2-D rectangular region in the x-y plane.
z determines the height above the plane of each vertex. If only a single z matrix is
given, then it is plotted over the meshgrid x = 0:columns (z) - 1, y = O:rows (2)
- 1. Thus, columns of z correspond to different x values and rows of z correspond to
different y values.

The color of the mesh is computed by linearly scaling the z values to fit the range of the
current colormap. Use caxis and/or change the colormap to control the appearance.

Optionally the color of the mesh can be specified independently of z by supplying a
color matrix, c.

Any property/value pairs are passed directly to the underlying surface object.

Chapter 15: Plotting 321

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created surface object.

See also: [mesh], page 319, [meshc|, page 320, [contour], page 297, [surf], page 321,
[surface], page 375, [waterfall], page 339, [meshgrid], page 334, [hidden], page 321,
[shading], page 338, [colormap], page 749, [caxis|, page 312.

hidden
hidden on
hidden off
mode = hidden (...)
Control mesh hidden line removal.

When called with no argument the hidden line removal state is toggled.
When called with one of the modes "on" or "off" the state is set accordingly.
The optional output argument mode is the current state.

Hidden Line Removal determines what graphic objects behind a mesh plot are visible.
The default is for the mesh to be opaque and lines behind the mesh are not visible. If
hidden line removal is turned off then objects behind the mesh can be seen through
the faces (openings) of the mesh, although the mesh grid lines are still opaque.

See also: [mesh], page 319, [meshc|, page 320, [meshz|, page 320, [ezmesh], page 341,
[ezmeshc], page 342, [trimesh|, page 711, [waterfall], page 339.

surf
surf
surf (..., ¢)
surf (..., prop, val, ...)
surf (hax, ...)
h = surf (...)

Plot a 3-D surface mesh.

X, y, Z)
z)

~ A~~~

The surface mesh is plotted using shaded rectangles. The vertices of the rectangles
[x, y] are typically the output of meshgrid. over a 2-D rectangular region in the x-y
plane. z determines the height above the plane of each vertex. If only a single z
matrix is given, then it is plotted over the meshgrid x = 1:columns (z), y = 1:rows
(2). Thus, columns of z correspond to different x values and rows of z correspond to
different y values.

The color of the surface is computed by linearly scaling the z values to fit the range
of the current colormap. Use caxis and/or change the colormap to control the
appearance.

Optionally, the color of the surface can be specified independently of z by supplying
a color matrix, c.

Any property /value pairs are passed directly to the underlying surface object.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created surface object.

322 GNU Octave

Note: The exact appearance of the surface can be controlled with the shading com-
mand or by using set to control surface object properties.

See also: [ezsurf|, page 342, [surfc|, page 322, [surfl], page 322, [surfnorm], page 323,
[trisurf], page 712, [contour|, page 297, [mesh], page 319, [surface], page 375,
[meshgrid], page 334, [hidden], page 321, [shading], page 338, [colormap]|, page 749,
[caxis], page 312.

surfc (
surfc (
surfc (..., ¢)
surfc (..., prop, val, ...)
surfc (hax, ...)
h = surfc (...)

Plot a 3-D surface mesh with underlying contour lines.

The surface mesh is plotted using shaded rectangles. The vertices of the rectangles
[x, y] are typically the output of meshgrid. over a 2-D rectangular region in the x-y
plane. z determines the height above the plane of each vertex. If only a single z
matrix is given, then it is plotted over the meshgrid x = 1:columns (z), y = 1:rows
(2). Thus, columns of z correspond to different x values and rows of z correspond to
different y values.

The color of the surface is computed by linearly scaling the z values to fit the range
of the current colormap. Use caxis and/or change the colormap to control the
appearance.

Optionally, the color of the surface can be specified independently of z by supplying
a color matrix, c.

Any property/value pairs are passed directly to the underlying surface object.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created surface object.

Note: The exact appearance of the surface can be controlled with the shading com-
mand or by using set to control surface object properties.

See also: [ezsurfc], page 343, [surf], page 321, [surfl], page 322, [surfnorm|, page 323,
[trisurf], page 712, [contour], page 297, [mesh], page 319, [surface], page 375,
[meshgrid], page 334, [hidden], page 321, [shading], page 338, [colormap], page 749,
[caxis], page 312.

surfl (
surfl (
surfl (..., 1src)
surfl (x, y, z, 1src, P)
surfl (..., "cdata")
surfl (..., "light")
surfl (hax, ...)
h = surfl (...)
Plot a 3-D surface using shading based on various lighting models.

Chapter 15: Plotting 323

The surface mesh is plotted using shaded rectangles. The vertices of the rectangles
[x, y] are typically the output of meshgrid. over a 2-D rectangular region in the x-y
plane. z determines the height above the plane of each vertex. If only a single z
matrix is given, then it is plotted over the meshgrid x = 1:columns (z), y = 1:rows
(2). Thus, columns of z correspond to different x values and rows of z correspond to
different y values.

The default lighting mode "cdata", changes the cdata property of the surface object
to give the impression of a lighted surface. Warning: The alternative mode "light"
mode which creates a light object to illuminate the surface is not implemented (yet).

The light source location can be specified using Isrc. It can be given as a 2-element
vector [azimuth, elevation] in degrees, or as a 3-element vector [Ix, ly, 1z]. The default
value is rotated 45 degrees counterclockwise to the current view.

The material properties of the surface can specified using a 4-element vector P =
[AM D SP exp] which defaults to p = [0.55 0.6 0.4 10].

"AM" strength of ambient light

"D" strength of diffuse reflection
"SP" strength of specular reflection
"EXP" specular exponent

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created surface object.
Example:

colormap (bone (64));
surfl (peaks);
shading interp;

See also: [diffuse], page 332, [specular], page 332, [surf], page 321, [shading], page 338,
[colormap]|, page 749, [caxis|, page 312.

surfnorm (x, y, 2)
surfnorm (z)

surfnorm (..., prop, val, ...)
surfnorm (hax, ...)
[nx, ny, nz] = surfnorm (...)

Find the vectors normal to a meshgridded surface.

If x and y are vectors, then a typical vertex is (x(j), y(i), z(i,j)). Thus, columns of
z correspond to different x values and rows of z correspond to different y values. If
only a single input z is given then x is taken to be 1:rows (z) and y is 1:columns

(=2).

If no return arguments are requested, a surface plot with the normal vectors to the
surface is plotted.

Any property/value input pairs are assigned to the surface object.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

324 GNU Octave

If output arguments are requested then the components of the normal vectors are
returned in nx, ny, and nz and no plot is made. The normal vectors are unnormalized
(magnitude != 1). To normalize, use

mag = sqrt (nx.”2 + ny."2 + nz."2);

nx ./= len; ny ./= len; nz ./= len;
An example of the use of surfnorm is

surfnorm (peaks (25));

Algorithm: The normal vectors are calculated by taking the cross product of the
diagonals of each of the quadrilateral faces in the meshgrid to find the normal vectors
at the center of each face. Next, for each meshgrid point the four nearest normal
vectors are averaged to obtain the final normal to the surface at the meshgrid point.

For surface objects, the "VertexNormals" property contains equivalent information,
except possibly near the boundary of the surface where different interpolation schemes
may yield slightly different values.

See also: [isonormals|, page 326, [quiver3], page 306, [surf], page 321, [meshgrid],

page 334.
fv = isosurface (v, isoval)
fv = isosurface (v)
fv = isosurface (x, y, z, v, isoval)
fv = isosurface (x, y, z, v)
fvc = isosurface (..., col)
fv = isosurface (..., "noshare")
fv = isosurface (..., "verbose")
[f, vl = isosurface (...)
[f, v, c] = isosurface (...)

isosurface (...)
Calculate isosurface of 3-D volume data.

An isosurface connects points with the same value and is analogous to a contour plot,
but in three dimensions.

The input argument v is a three-dimensional array that contains data sampled over
a volume.

The input isoval is a scalar that specifies the value for the isosurface. If isoval is
omitted or empty, a "good" value for an isosurface is determined from v.

When called with a single output argument isosurface returns a structure array
fv that contains the fields faces and vertices computed at the points [x, y, z] =
meshgrid (1:1, 1:m, 1:n) where [1, m, n] = size (v). The output fv can be used
directly as input to the patch function.

If called with additional input arguments x, y, and z that are three-dimensional arrays
with the same size as v or vectors with lengths corresponding to the dimensions of v,
then the volume data is taken at the specified points. If x, y, or z are empty, the grid
corresponds to the indices (1:n) in the respective direction (see [meshgrid], page 334).

The optional input argument col, which is a three-dimensional array of the same size
as v, specifies coloring of the isosurface. The color data is interpolated, as necessary,

Chapter 15: Plotting 325

to match isoval. The output structure array, in this case, has the additional field
facevertexcdata.

If given the string input argument "noshare", vertices may be returned multiple times
for different faces. The default behavior is to eliminate vertices shared by adjacent
faces with unique which may be time consuming.

The string input argument "verbose" is supported for MATLAB compatibility, but
has no effect.

Any string arguments must be passed after the other arguments.

If called with two or three output arguments, return the information about the faces
f, vertices v, and color data c as separate arrays instead of a single structure array.

If called with no output argument, the isosurface geometry is directly plotted with
the patch command and a light object is added to the axes if not yet present.

For example,

[x, y, z] = meshgrid (1:5, 1:5, 1:5);
v = rand (5, 5, 5);
isosurface (x, y, z, v, .5);

will directly draw a random isosurface geometry in a graphics window.

An example of an isosurface geometry with different additional coloring:

N = 15; # Increase number of vertices in each direction
iso = .4; # Change isovalue to .1 to display a sphere
lin = linspace (0, 2, N);

[x, y, 2] = meshgrid (1in, lin, lin);
v = abs ((x-.5).72 + (y-.5).72 + (2-.5).72);
figure Q;

subplot (2,2,1); view (-38, 20);

[f, vert] = isosurface (x, y, z, v, is0);

p = patch ("Faces", f, "Vertices", vert, "EdgeColor", "none");
pbaspect ([1 1 11);

isonormals (x, y, z, v, p)

set (p, "FaceColor", "green", "FacelLighting", "gouraud");
light ("Position", [1 1 5]);

subplot (2,2,2); view (-38, 20);

p = patch ("Faces", f, "Vertices", vert, "EdgeColor", "blue");
pbaspect ([1 1 11);

isonormals (x, y, z, v, p)

set (p, "FaceColor", "none", "EdgeLighting", "gouraud");

light ("Position", [1 1 5]);

subplot (2,2,3); view (-38, 20);

[f, vert, c] = isosurface (x, y, z, v, iso, y);

p = patch ("Faces", f, "Vertices", vert, "FaceVertexCData", c,
"FaceColor", "interp", "EdgeColor", "none");

pbaspect ([1 1 11);

isonormals (x, y, z, v, p)

set (p, "Facelighting", "gouraud");

light ("Position", [1 1 5]);

subplot (2,2,4); view (-38, 20);
p = patch ("Faces", f, "Vertices", vert, "FaceVertexCData", c,

326

[vnl]
[vnl]
[vn]
[vnl]
[vnl]

GNU Octave

"FaceColor", "interp", "EdgeColor", "blue");
pbaspect ([1 1 11);
isonormals (x, y, z, v, p)
set (p, "Facelighting", "gouraud");
light ("Position", [1 1 5]);

See also: [isonormals], page 326, [isocolors], page 327, [isocaps], page 326, [smooth3],
page 329, [reducevolume], page 329, [reducepatch], page 330, [patch], page 374.

= isonormals (val, vert)
isonormals (val, hp)
isonormals (x, y, z, val, vert)

(
E
isonormals (x, y, z, val, hp)
(-
)

isonormals . "negate")

isonormals (val, hp
isonormals (x, y, z, val, hp)
isonormals (..., "negate")

Calculate normals to an isosurface.

The vertex normals vn are calculated from the gradient of the 3-dimensional array val
(size: Ixmxn) with the data for an isosurface geometry. The normals point towards
lower values in val.

If called with one output argument vn and the second input argument vert holds
the vertices of an isosurface, the normals vn are calculated at the vertices vert on a
grid given by [x, y, z] = meshgrid (1:1, 1:m, 1:n). The output argument vn has
the same size as vert and can be used to set the "VertexNormals" property of the
corresponding patch.

If called with further input arguments x, y, and z which are 3-dimensional arrays
with the same size as val, the volume data is taken at these points. Instead of the
vertex data vert, a patch handle hp can be passed to this function.

If the last input argument is the string "negate", compute the reverse vector normals
of an isosurface geometry (i.e., pointed towards higher values in val).

If no output argument is given, the property "VertexNormals" of the patch associated
with the patch handle hp is changed directly.

See also: [isosurface|, page 324, [isocolors|, page 327, [smooth3], page 329.

fvc = isocaps (v, isoval)

fvc = isocaps (V)

fvc = isocaps (x, y, z, v, isoval)

fvc = isocaps (x, y, z, v)

fvc = isocaps (..., whlch_caps)

fvc = isocaps (..., which_plane)

fvc = isocaps (..., "verbose")

[faces, vertices, fvcdata] = isocaps (...)

isocaps (...)

Create end-caps for isosurfaces of 3-D data.

This function places caps at the open ends of isosurfaces.

Chapter 15: Plotting 327

[cd]
[cd]
[cd]
[cd]

The input argument v is a three-dimensional array that contains data sampled over
a volume.

The input isoval is a scalar that specifies the value for the isosurface. If isoval is
omitted or empty, a "good" value for an isosurface is determined from v.

When called with a single output argument, isocaps returns a structure array fvc
with the fields: faces, vertices, and facevertexcdata. The results are computed
at the points [x, y, z] = meshgrid (1:1, 1:m, 1:n) where [1, m, n] = size (v).
The output fve can be used directly as input to the patch function.

If called with additional input arguments x, y, and z that are three-dimensional arrays
with the same size as v or vectors with lengths corresponding to the dimensions of v,
then the volume data is taken at the specified points. If x, y, or z are empty, the grid
corresponds to the indices (1:n) in the respective direction (see [meshgrid], page 334).
The optional parameter which_caps can have one of the following string values which
defines how the data will be enclosed:

"above", "a" (default)
for end-caps that enclose the data above isoval.

"belOW“, llbll
for end-caps that enclose the data below isoval.

The optional parameter which_plane can have one of the following string values to
define which end-cap should be drawn:

"all" (default)
for all of the end-caps.

"xmin" for end-caps at the lower x-plane of the data.
"xmax" for end-caps at the upper x-plane of the data.
"ymin" for end-caps at the lower y-plane of the data.
"ymax" for end-caps at the upper y-plane of the data.
"zmin" for end-caps at the lower z-plane of the data.
"zmax" for end-caps at the upper z-plane of the data.

The string input argument "verbose" is supported for MATLAB compatibility, but
has no effect.

If called with two or three output arguments, the data for faces faces, vertices vertices,
and the color data facevertexcdata are returned in separate arrays instead of a single
structure.

If called with no output argument, the end-caps are drawn directly in the current
figure with the patch command.

See also: [isosurface|, page 324, [isonormals]|, page 326, [patch|, page 374.
= isocolors

(
= isocolors (x, y
isocolors (x,y, z, r, g b, v)
(r, g

isocolors

328 GNU Octave

[cd] = isocolors (..., p)
isocolors (...)
Compute isosurface colors.

If called with one output argument and the first input argument c¢ is a
three-dimensional array that contains color values and the second input argument v
keeps the vertices of a geometry then return a matrix c¢d with color data information
for the geometry at computed points [x, y, z] = meshgrid (1:1, 1:m, 1:n). The
output argument cd can be taken to manually set FaceVertexCData of a patch.

If called with further input arguments x, y and z which are three—dimensional arrays
of the same size than ¢ then the color data is taken at those given points. Instead
of the color data ¢ this function can also be called with RGB values r, g, b. If input
argumnets x, y, z are not given then again meshgrid computed values are taken.

Optionally, the patch handle p can be given as the last input argument to all variations
of function calls instead of the vertices data v. Finally, if no output argument is given
then directly change the colors of a patch that is given by the patch handle p.

For example:

function isofinish (p)
set (gca, "PlotBoxAspectRatioMode", "manual",
"PlotBoxAspectRatio", [1 1 1]);
set (p, "FaceColor", "interp");
set (p, "FacelLighting", "flat");
light ("Position", [1 1 5]); # Available with JHandles

endfunction
N = 15; # Increase number of vertices in each direction
iso = .4; # Change isovalue to .1 to display a sphere

lin = linspace (0, 2, N);

[x, y, z] = meshgrid (lin, lin, lin);

c = abs ((x-.5).72 + (y-.5).72 + (z-.5).72);
figure (); # Open another figure window

subplot (2,2,1); view (-38, 20);

[f, v] = isosurface (x, y, z, ¢, is0);

p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
cdat = rand (size (c)); # Compute random patch color data
isocolors (x, y, z, cdat, p); # Directly set colors of patch
isofinish (p); # Call user function isofinish

subplot (2,2,2); view (-38, 20);

p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");

[r, g, bl = meshgrid (lin, 2-lin, 2-1lin);

cdat = isocolors (x, y, z, c, v); # Compute color data vertices
set (p, "FaceVertexCData", cdat); # Set color data manually
isofinish (p);

subplot (2,2,3); view (-38, 20);

Chapter 15: Plotting 329

p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");

cdat = isocolors (r, g, b, c, p); # Compute color data patch
set (p, "FaceVertexCData", cdat); # Set color data manually

isofinish (p);

subplot (2,2,4); view (-38, 20);

p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
r=g=>b=repmat ([1:N] / N, [N, 1, N]); # Black to white
cdat = isocolors (x, y, z, r, g, b, v);

set (p, "FaceVertexCData", cdat);

isofinish (p);

See also: [isosurface], page 324, [isonormals|, page 326.

smoothed_data = smooth3 (data)
smoothed_data = smooth3 (data, method)
(

smoothed_data = smooth3

data, method, sz)

smoothed_data = smooth3 (data, method, sz, std_dev)

[nx,
[nx,
nv =

Smooth values of 3-dimensional matrix data.

This function can be used, for example, to reduce the impact of noise in data before
calculating isosurfaces.

data must be a non-singleton 3-dimensional matrix. The smoothed data from this
matrix is returned in smoothed_data which is of the same size as data.

The option input method determines which convolution kernel is used for the smooth-
ing process. Possible choices:

"box", "b" (default)
to use a convolution kernel with sharp edges.

"gaussian", Ilgll
to use a convolution kernel that is represented by a non-correlated trivari-
ate normal distribution function.

sz is either a vector of 3 elements representing the size of the convolution kernel in
x-, y- and z-direction or a scalar, in which case the same size is used in all three
dimensions. The default value is 3.

When method is "gaussian", std_dev defines the standard deviation of the trivariate
normal distribution function. std_dev is either a vector of 3 elements representing
the standard deviation of the Gaussian convolution kernel in x-, y- and z-directions
or a scalar, in which case the same value is used in all three dimensions. The default
value is 0.65.

See also: [isosurface|, page 324, [isonormals]|, page 326, [patch|, page 374.

ny, nz, nv] = reducevolume (v, r)

ny, nz, nv] = reducevolume (x, y, z, v, I)
reducevolume (...)

Reduce the volume of the dataset in v according to the values in r.

v is a matrix that is non-singleton in the first 3 dimensions.

330

GNU Octave

r can either be a vector of 3 elements representing the reduction factors in the x-,
y-, and z-directions or a scalar, in which case the same reduction factor is used in all
three dimensions.

reducevolume reduces the number of elements of v by taking only every r-th element
in the respective dimension.

Optionally, x, y, and z can be supplied to represent the set of coordinates of v.
They can either be matrices of the same size as v or vectors with sizes according to
the dimensions of v, in which case they are expanded to matrices (see [meshgrid],
page 334).
If reducevolume is called with two arguments then x, y, and z are assumed to match
the respective indices of v.
The reduced matrix is returned in nv.
Optionally, the reduced set of coordinates are returned in nx, ny, and nz, respectively.
Examples:

v = reshape (1:6%8%4, [6 8 4]);

nv = reducevolume (v, [4 3 2]);

v = reshape (1:6%8%4, [6 8 4]);

x = 1:3:24; y = -14:5:11; =z = linspace (16, 18, 4);

[nx, ny, nz, nv] = reducevolume (x, y, z, v, [4 3 2]);

See also: [isosurface], page 324, [isonormals|, page 326.

reduced_fv = reducepatch (fv)

reduced_fv
reduced_fv

reducepatch (faces, vertices)
reducepatch (patch_handle)

reducepatch (patch_handle)

reduced_fv
reduced_fv

reduced_fv = reducepatch (..., reduction_factor)
= reducepatch (..., "fast")
= reducepatch (..., "verbose")

[reduced_faces, reduces_vertices] = reducepatch (...)

Reduce the number of faces and vertices in a patch object while retaining the overall
shape of the patch.

The input patch can be represented by a structure fv with the fields faces and
vertices, by two matrices faces and vertices (see, e.g., the result of isosurface), or
by a handle to a patch object patch_handle (see [patch], page 374).

The number of faces and vertices in the patch is reduced by iteratively collapsing the
shortest edge of the patch to its midpoint (as discussed, e.g., here: http://1libigl.
github.io/libigl/tutorial/tutorial.html#meshdecimation).

Currently, only patches consisting of triangles are supported. The resulting patch
also consists only of triangles.

If reducepatch is called with a handle to a valid patch patch_handle, and without
any output arguments, then the given patch is updated immediately.

If the reduction_factor is omitted, the resulting structure reduced_fv includes ap-
proximately 50% of the faces of the original patch. If reduction_factor is a fraction
between 0 (excluded) and 1 (excluded), a patch with approximately the corresponding

http://libigl.github.io/libigl/tutorial/tutorial.html#meshdecimation
http://libigl.github.io/libigl/tutorial/tutorial.html#meshdecimation

Chapter 15: Plotting 331

fraction of faces is determined. If reduction_factor is an integer greater than or equal
to 1, the resulting patch has approximately reduction_factor faces. Depending on the
geometry of the patch, the resulting number of faces can differ from the given value
of reduction_factor. This is especially true when many shared vertices are detected.

For the reduction, it is necessary that vertices of touching faces are shared. Shared
vertices are detected automatically. This detection can be skipped by passing the
optional string argument "fast".

With the optional string arguments "verbose", additional status messages are printed
to the command window.

Any string input arguments must be passed after all other arguments.

If called with one output argument, the reduced faces and vertices are returned in a
structure reduced_fv with the fields faces and vertices (see the one output option
of isosurface).

If called with two output arguments, the reduced faces and vertices are returned in
two separate matrices reduced_faces and reduced_vertices.

See also: [isosurface|, page 324, [isonormals], page 326, [reducevolume], page 329,
[patch], page 374.

shrinkfaces (p, sf)
nfv = shrinkfaces (p, sf)
nfv = shrinkfaces (fv, sf)
nfv = shrinkfaces (f, v, sf)
[nf, nv] = shrinkfaces (...)
Reduce the size of faces in a patch by the shrink factor sf.

The patch object can be specified by a graphics handle (p), a patch structure (fv)
with the fields "faces" and "vertices", or as two separate matrices (f, v) of faces
and vertices.

The shrink factor sf is a positive number specifying the percentage of the original
area the new face will occupy. If no factor is given the default is 0.3 (a reduction to
30% of the original size). A factor greater than 1.0 will result in the expansion of
faces.

Given a patch handle as the first input argument and no output parameters, perform
the shrinking of the patch faces in place and redraw the patch.

If called with one output argument, return a structure with fields "faces",
"vertices", and "facevertexcdata" containing the data after shrinking. This
structure can be used directly as an input argument to the patch function.

Caution:: Performing the shrink operation on faces which are not convex can lead to
undesirable results.

Example: a triangulated 3/4 circle and the corresponding shrunken version.

332

GNU Octave

[phi r] = meshgrid (linspace (0, 1.5%pi, 16), linspace (1, 2, 4));
tri = delaunay (phi(:), r(:));

v = [r(:) .*sin(phi(:)) r(:).*cos(phi(:))];

clf O

p = patch ("Faces", tri, "Vertices", v, "FaceColor", "none");

fv = shrinkfaces (p);

patch (fv)

axis equal

grid on

See also: [patch], page 374.

diffuse (sx, sy, sz, 1v)

Calculate the diffuse reflection strength of a surface defined by the normal vector
elements sx, sy, sz.

The light source location vector Iv can be given as a 2-element vector [azimuth,
elevation| in degrees or as a 3-element vector [x, y, z|.

See also: [specular|, page 332, [surfl], page 322.

specular (sx, sy, sz, 1v, vv)
specular (sx, sy, sz, 1v, vv, se)

Calculate the specular reflection strength of a surface defined by the normal vector
elements sx, sy, sz using Phong’s approximation.

The light source location and viewer location vectors are specified using parameters
Iv and vv respectively. The location vectors can given as 2-element vectors [azimuth,
elevation] in degrees or as 3-element vectors [x, y, 7).

An optional sixth argument specifies the specular exponent (spread) se. If not given,
se defaults to 10.

See also: [diffuse], page 332, [surfl], page 322.

lighting (type)
lighting (hax, type)

Set the lighting of patch or surface graphic objects.

Valid arguments for type are

"flat" Draw objects with faceted lighting effects.

"gouraud"
Draw objects with linear interpolation of the lighting effects between the
vertices.

"none" Draw objects without light and shadow effects.

If the first argument hax is an axes handle, then change the lighting effects of objects
in this axis, rather than the current axes returned by gca.

The lighting effects are only visible if at least one light object is present and visible
in the same axes.

See also: [light], page 375, [fill], page 309, [mesh], page 319, [patch], page 374, [pcolor],
page 308, [surf], page 321, [surface], page 375, [shading], page 338.

Chapter 15: Plotting

material
material
material
material
material
material

shiny
dull
metal
default

([2s. ds, ss)
([as, ds, ss, s€])

333

material ([as, ds, ss, se, scr])
material (hlist, ...)

mtypes = material ()

refl_props = material (mtype_string)

Set reflectance properties for the lighting of surfaces and patches.

This function changes the ambient, diffuse, and specular strengths, as well as the
specular exponent and specular color reflectance, of all patch and surface objects
in the current axes. This can be used to simulate, to some extent, the reflectance
properties of certain materials when used with 1ight.

When called with a string, the aforementioned properties are set according to the
values in the following table:

mtype ambient- diffuse- specular- specular- specular-
strength strength strength exponent color-
reflectance
"shiny" 0.3 0.6 0.9 20 1.0
"dull" 0.3 0.8 0.0 10 1.0
"metal" 0.3 0.3 1.0 25 0.5
"default" "default" ‘"default" "default" "default" "default"

When called with a vector of three elements, the ambient, diffuse, and specular
strengths of all patch and surface objects in the current axes are updated. An
optional fourth vector element updates the specular exponent, and an optional fifth
vector element updates the specular color reflectance.

A list of graphic handles can also be passed as the first argument. In this case, the
properties of these handles and all child patch and surface objects will be updated.

Additionally, material can be called with a single output argument. If called without
input arguments, a column cell vector mtypes with the strings for all available mate-
rials is returned. If the one input argument mtype_string is the name of a material, a
1x5 cell vector refl_props with the reflectance properties of that material is returned.
In both cases, no graphic properties are changed.

See also: [light], page 375, [fill], page 309, [mesh], page 319, [patch], page 374, [pcolor],
page 308, [surf], page 321, [surface], page 375.

camlight
camlight
camlight
camlight
camlight
camlight

right

left
headlight
(az, el)

(..., style)

334

GNU Octave

camlight (h1, ...)

h =

[xx,
[xx,
[xx,
[xx,

camlight (...)
Add a light object to a figure using a simple interface.

When called with no arguments, a light object is added to the current plot and is
placed slightly above and to the right of the camera’s current position: this is equiv-
alent to camlight right. The commands camlight left and camlight headlight
behave similarly with the placement being either left of the camera position or cen-
tered on the camera position.

For more control, the light position can be specified by an azimuthal rotation az and
an elevation angle el, both in degrees, relative to the current properties of the camera.

The optional string style specifies whether the light is a local point source ("local",
the default) or placed at infinite distance ("infinite").

If the first argument hl is a handle to a light object, then act on this light object
rather than creating a new object.

The optional return value h is a graphics handle to the light object. This can be used
to move or further change properties of the light object.

Examples:
Add a light object to a plot

sphere (36);
camlight

Position the light source exactly
camlight (45, 30);

Here the light is first pitched upwards from the camera position by 30 degrees. It is
then yawed by 45 degrees to the right. Both rotations are centered around the camera
target.

Return a handle to further manipulate the light object

clf

sphere (36);

hl = camlight ("left");
set (hl, "color", "r");

See also: [light|, page 375.

yyl = meshgrid (x, y)

yy, zz] = meshgrid (x, y, z)

yy] = meshgrid (x)

yy, zz] = meshgrid (x)

Given vectors of x and y coordinates, return matrices xx and yy corresponding to a
full 2-D grid.

The rows of xx are copies of x, and the columns of yy are copies of y. If y is omitted,
then it is assumed to be the same as x.

If the optional z input is given, or zz is requested, then the output will be a full 3-D
grid.

Chapter 15: Plotting 335

meshgrid is most frequently used to produce input for a 2-D or 3-D function that will
be plotted. The following example creates a surface plot of the “sombrero” function.

f = 0(x,y) sin (sqrt (x.72 + y."2)) ./ sqrt (x.72 + y."2);
range = linspace (-8, 8, 41);

[X, Y] = meshgrid (range, range);

Z=1f (X, Y);

surf (X, Y, Z);

Programming Note: meshgrid is restricted to 2-D or 3-D grid generation. The ndgrid
function will generate 1-D through N-D grids. However, the functions are not com-
pletely equivalent. If x is a vector of length M and y is a vector of length N, then
meshgrid will produce an output grid which is NxM. ndgrid will produce an output
which is MxN (transpose) for the same input. Some core functions expect meshgrid
input and others expect ndgrid input. Check the documentation for the function in
question to determine the proper input format.

See also: [ndgrid], page 335, [mesh], page 319, [contour], page 297, [surf], page 321.

ly1, y2, ..., yn] = ndgrid (x1, x2, ..., xn)
[y1, y2, ..., yn] = ndgrid (x)
Given n vectors x1, ..., xn, ndgrid returns n arrays of dimension n.

The elements of the i-th output argument contains the elements of the vector xi
repeated over all dimensions different from the i-th dimension. Calling ndgrid with
only one input argument x is equivalent to calling ndgrid with all n input arguments
equal to x:

[v1, 2, ..., yn] = ndgrid (x, ..., x)
Programming Note: ndgrid is very similar to the function meshgrid except that the
first two dimensions are transposed in comparison to meshgrid. Some core functions

expect meshgrid input and others expect ndgrid input. Check the documentation
for the function in question to determine the proper input format.

See also: [meshgrid], page 334.

plot3 (x, 7, 2)
plot3 (x, y, z, prop, value, ...)
plot3 (x, y, z, fmt)
plot3 (x, cplx)
plot3 (cplx)
plot3 (hax, ...)
h = plot3 (...)

Produce 3-D plots.

Many different combinations of arguments are possible. The simplest form is

plot3 (x, y, z)

in which the arguments are taken to be the vertices of the points to be plotted in three
dimensions. If all arguments are vectors of the same length, then a single continuous
line is drawn. If all arguments are matrices, then each column of is treated as a
separate line. No attempt is made to transpose the arguments to make the number
of rows match.

336

view
view
view
view
view
view

GNU Octave

If only two arguments are given, as

plot3 (x, cplx)
the real and imaginary parts of the second argument are used as the y and z coordi-
nates, respectively.
If only one argument is given, as

plot3 (cplx)
the real and imaginary parts of the argument are used as the y and z values, and
they are plotted versus their index.
Arguments may also be given in groups of three as

plot3 (x1, y1, z1, x2, y2, z2, ...)
in which each set of three arguments is treated as a separate line or set of lines in
three dimensions.
To plot multiple one- or two-argument groups, separate each group with an empty
format string, as

plot3 (x1, c1, "", c2, "", ...)
Multiple property-value pairs may be specified which will affect the line objects drawn
by plot3. If the fmt argument is supplied it will format the line objects in the same
manner as plot.
If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.
The optional return value h is a graphics handle to the created plot.
Example:

z = [0:0.05:5];

plot3 (cos (2xpix*z), sin (2xpix*z), =z, ";helix;");

plot3 (z, exp (2ixpi*z), ";complex sinusoid;");
See also: [ezplot3], page 340, [plot], page 284.

(azimuth, elevation)
([azimuth elevation])
([v 2))

(2)

(3)

(hax, ...)

lazimuth, elevation] = view ()

Query or set the viewpoint for the current axes.

The parameters azimuth and elevation can be given as two arguments or as 2-element
vector. The viewpoint can also be specified with Cartesian coordinates x, y, and z.

The call view (2) sets the viewpoint to azimuth = 0 and elevation = 90, which is the
default for 2-D graphs.

The call view (3) sets the viewpoint to azimuth = -37.5 and elevation = 30, which
is the default for 3-D graphs.

If the first argument hax is an axes handle, then operate on this axis rather than the
current axes returned by gca.

If no inputs are given, return the current azimuth and elevation.

Chapter 15: Plotting 337

slice (x, y, z, v, sx, sy, sz)

slice (x,y, z, v, xi, yi, zi)

slice (v, sx, sy, sz)

slice (v, xi, yi, zi)

slice (..., method)

slice (hax, ...)

h = slice (...)
Plot slices of 3-D data/scalar fields.
Each element of the 3-dimensional array v represents a scalar value at a location given
by the parameters x, y, and z. The parameters x, x, and z are either 3-dimensional
arrays of the same size as the array v in the "meshgrid" format or vectors. The
parameters xi, etc. respect a similar format to x, etc., and they represent the points
at which the array vi is interpolated using interp3. The vectors sx, sy, and sz contain
points of orthogonal slices of the respective axes.

If x, y, z are omitted, they are assumed to be x = 1:size (v, 2),y = 1:size (v, 1)
and z = 1:size (v, 3).
method is one of:

"nearest"
Return the nearest neighbor.

"linear" Linear interpolation from nearest neighbors.
"cubic" Cubic interpolation from four nearest neighbors (not implemented yet).

"spline" Cubic spline interpolation—smooth first and second derivatives through-
out the curve.

The default method is "linear".
If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.
The optional return value h is a graphics handle to the created surface object.
Examples:
[x, y, z] = meshgrid (linspace (-8, 8, 32));
v = sin (sqrt (x.72 + y.72 + z.72)) ./ (sqrt (x.72 + y."2 + z2.72));
slice (x, y, z, v, [1, 0, [1);

[xi, yi] = meshgrid (linspace (-7, 7));
zi = xi + yi;
slice (x, y, z, v, xi, yi, zi);

See also: [interp3|, page 704, [surface], page 375, [pcolor], page 308.

ribbon (y)
ribbon (x, y)
ribbon (X y, width)
ribbon (hax, ...)
h = ribbon (...)

Draw a ribbon plot for the columns of y vs. x.

338 GNU Octave

If x is omitted, a vector containing the row numbers is assumed (1:rows (Y)). Alter-
natively, x can also be a vector with same number of elements as rows of y in which
case the same x is used for each column of y.

The optional parameter width specifies the width of a single ribbon (default is 0.75).

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a vector of graphics handles to the surface objects
representing each ribbon.

See also: [surface|, page 375, [waterfall], page 339.

shading (type)
shading (hax, type)
Set the shading of patch or surface graphic objects.

Valid arguments for type are
"flat" Single colored patches with invisible edges.

"faceted"
Single colored patches with black edges.

"interp" Colors between patch vertices are interpolated and the patch edges are
invisible.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

See also: [fill], page 309, [mesh]|, page 319, [patch], page 374, [pcolor], page 308, [surf],
page 321, [surface], page 375, [hidden], page 321, [lighting], page 332.

scatter3 (x, y, z)
scatter3 (x, y, z, s)
scatter3 (x, y, z, s, ¢)
scatter3 (..., style)
scatter3 (..., "filled")
scatter3 (..., prop, val)
scatter3 (hax, ...)
h = scatter3 (...)

Draw a 3-D scatter plot.

A marker is plotted at each point defined by the coordinates in the vectors x, y, and
Z.

The size of the markers is determined by s, which can be a scalar or a vector of the
same length as x, y, and z. If s is not given, or is an empty matrix, then a default
value of 8 points is used.

The color of the markers is determined by ¢, which can be a string defining a fixed
color; a 3-element vector giving the red, green, and blue components of the color; a
vector of the same length as x that gives a scaled index into the current colormap; or
an Nx3 matrix defining the RGB color of each marker individually.

Chapter 15: Plotting 339

The marker to use can be changed with the style argument, that is a string defining a
marker in the same manner as the plot command. If no marker is specified it defaults
to "o" or circles. If the argument "filled" is given then the markers are filled.

Additional property/value pairs are passed directly to the underlying patch object.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the hggroup object representing
the points.

[x, y, z] = peaks (20);
scatter3 (x(:), y(:), z(:), [1, z(:));

See also: [scatter], page 295, [patch], page 374, [plot], page 284.
waterfall (x, y, z)
waterfall (z)
waterfall (..., ¢)
waterfall (..., prop, val, ...)
waterfall (hax, ...)
h = waterfall (...)

Plot a 3-D waterfall plot.

A waterfall plot is similar to a meshz plot except only mesh lines for the rows of z
(x-values) are shown.

The wireframe mesh is plotted using rectangles. The vertices of the rectangles [x,
y] are typically the output of meshgrid. over a 2-D rectangular region in the x-y
plane. z determines the height above the plane of each vertex. If only a single z
matrix is given, then it is plotted over the meshgrid x = 1:columns (z), y = 1:rows
(2). Thus, columns of z correspond to different x values and rows of z correspond to
different y values.

The color of the mesh is computed by linearly scaling the z values to fit the range of the
current colormap. Use caxis and/or change the colormap to control the appearance.

Optionally the color of the mesh can be specified independently of z by supplying a
color matrix, c.

Any property/value pairs are passed directly to the underlying surface object.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created surface object.
See also: [meshz|, page 320, [mesh]|, page 319, [meshc], page 320, [contour|, page 297,

[surf], page 321, [surface], page 375, [ribbon|, page 337, [meshgrid], page 334, [hidden],
page 321, [shading], page 338, [colormap], page 749, [caxis], page 312.

15.2.2.1 Aspect Ratio

For three-dimensional plots the aspect ratio can be set for data with daspect and for the
plot box with pbaspect. See Section 15.2.1.1 [Axis Configuration|, page 311, for controlling
the x-, y-, and z-limits for plotting.

340 GNU Octave

data_aspect_ratio = daspect ()
daspect (data_aspect_ratio)
daspect (mode)
data_aspect_ratio_mode = daspect ("mode")
daspect (hax, ...)
Query or set the data aspect ratio of the current axes.

The aspect ratio is a normalized 3-element vector representing the span of the x, y,
and z-axis limits.

daspect (mode)

Set the data aspect ratio mode of the current axes. mode is either "auto" or
"manual".

daspect ("mode")

Return the data aspect ratio mode of the current axes.
daspect (hax, ...)

Operate on the axes in handle hax instead of the current axes.

See also: [axis|, page 311, [pbaspect|, page 340, [xlim|, page 313, [ylim], page 313,
[zlim], page 313.

plot_box_aspect_ratio = pbaspect ()
pbaspect (plot_box_aspect_ratio)
pbaspect (mode)
plot_box_aspect_ratio_mode = pbaspect ("mode")
pbaspect (hax, ...)
Query or set the plot box aspect ratio of the current axes.

The aspect ratio is a normalized 3-element vector representing the rendered lengths
of the x, y, and z axes.

pbaspect (mode)

Set the plot box aspect ratio mode of the current axes. mode is either "auto" or
"manual".

pbaspect ("mode")

Return the plot box aspect ratio mode of the current axes.
pbaspect (hax, ...)

Operate on the axes in handle hax instead of the current axes.

See also: [axis|, page 311, [daspect], page 339, [xlim]|, page 313, [ylim|, page 313,
[zlim], page 313.

15.2.2.2 Three-dimensional Function Plotting

ezplot3 (fx, fy, fz)
ezplot3 (.. dom)
ezplot3 (..., n)
ezplot3 (..., "ammate")
ezplot3 (hax, ...)

Chapter 15: Plotting 341

h = ezplot3 (...)
Plot a parametrically defined curve in three dimensions.
fx, fy, and fz are strings, inline functions, or function handles with one argument
defining the function. By default the plot is over the domain 0 <= t <= 2*pi with 500
points.
If dom is a two element vector, it represents the minimum and maximum values of t.
n is a scalar defining the number of points to use in plotting the function.
If the "animate" option is given then the plotting is animated in the style of comet3.
If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.
The optional return value h is a graphics handle to the created plot.
fx = @(t) cos (t);
fy = @(t) sin (t);
fz = @(t) t;
ezplot3 (fx, fy, fz, [0, 10*pil, 100);
See also: [plot3], page 335, [comet3], page 310, [ezplot], page 314, [ezmesh], page 341,
[ezsurf], page 342.
ezmesh (f)

ezmesh (fx, fy, £z)

(
(
ezmesh (.. dom)
(-
(-

ezmesh n)
ezmesh . "c1rc"
ezmesh (hax, ...)

h

ezmesh (...)
Plot the mesh defined by a function.

f is a string, inline function, or function handle with two arguments defining the
function. By default the plot is over the meshed domain -2*pi <= x | y <= 2*pi
with 60 points in each dimension.

If three functions are passed, then plot the parametrically defined function [fx (s,
t), fy (s, t), fz (s, t)].

If dom is a two element vector, it represents the minimum and maximum values of
both x and y. If dom is a four element vector, then the minimum and maximum
values are [xmin xmax ymin ymax].

n is a scalar defining the number of points to use in each dimension.

If the argument "circ" is given, then the function is plotted over a disk centered on
the middle of the domain dom.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created surface object.
Example 1: 2-argument function

= Q@(x,y) sqrt (abs (x .*x y)) ./ (1 + x.72 + y."2);
ezmesh (f, [-3, 31);

342 GNU Octave

Example 2: parametrically defined function
fx = @(s,t) cos (s) .x cos (t);
fy = @(s,t) sin (s) .* cos (t);
fz = @(s,t) sin (t);
ezmesh (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);

See also: [mesh]|, page 319, [ezmeshc], page 342, [ezplot|, page 314, [ezsurf], page 342,
[ezsurfc|, page 343, [hidden], page 321.

ezmeshc (f)
ezmeshc (fx, fy, fz)

ezmeshc (..., dom)
ezmeshc (..., n)
ezmeshc (..., "circ")
ezmeshc (hax, ...)

h = ezmeshc (...)
Plot the mesh and contour lines defined by a function.
f is a string, inline function, or function handle with two arguments defining the
function. By default the plot is over the meshed domain -2*pi <= x | y <= 2xpi
with 60 points in each dimension.
If three functions are passed, then plot the parametrically defined function [fx (s,
t), fy (s, t), fz (s, t)].
If dom is a two element vector, it represents the minimum and maximum values of
both x and y. If dom is a four element vector, then the minimum and maximum
values are [xmin xmax ymin ymax].
n is a scalar defining the number of points to use in each dimension.

If the argument "circ" is given, then the function is plotted over a disk centered on
the middle of the domain dom.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a 2-element vector with a graphics handle for the
created mesh plot and a second handle for the created contour plot.

Example: 2-argument function
f = 0(x,y) sqrt (abs (x .* y)) ./ (1 + x.72 + y."2);
ezmeshc (f, [-3, 31);

See also: [meshc]|, page 320, [ezmesh], page 341, [ezplot], page 314, [ezsurf], page 342,
[ezsurfc|, page 343, [hidden], page 321.

ezsurf (f)

ezsurf (fx, fy, £z)
ezsurf (..., dom)
ezsurf (..., n)
ezsurf (..., "circ"
ezsurf (hax, ...)

h = ezsurf (...)
Plot the surface defined by a function.

Chapter 15: Plotting 343

f is a string, inline function, or function handle with two arguments defining the
function. By default the plot is over the meshed domain -2*pi <= x | y <= 2xpi
with 60 points in each dimension.
If three functions are passed, then plot the parametrically defined function [fx (s,
t), fy (s, t), £z (s, t)].
If dom is a two element vector, it represents the minimum and maximum values of
both x and y. If dom is a four element vector, then the minimum and maximum
values are [xmin xmax ymin ymax].
n is a scalar defining the number of points to use in each dimension.
If the argument "circ" is given, then the function is plotted over a disk centered on
the middle of the domain dom.
If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.
The optional return value h is a graphics handle to the created surface object.
Example 1: 2-argument function

f = 0(x,y) sqrt (abs (x .*x y)) ./ (1 + x.72 + y."2);

ezsurf (£, [-3, 31);
Example 2: parametrically defined function

fx = @(s,t) cos (s8) .* cos (t);

fy = @(s,t) sin (s) .* cos (t);

fz = @(s,t) sin (t);

ezsurf (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);

See also: [surf], page 321, [ezsurfc|, page 343, [ezplot], page 314, [ezmesh], page 341,
[ezmeshc], page 342, [shading], page 338.

ezsurfc (f)

ezsurfc (fx, fy, £z)
ezsurfc (..., dom)
ezsurfc (..., n)
ezsurfc (..., "circ")
ezsurfc (hax, ...)

h = ezsurfc (...)
Plot the surface and contour lines defined by a function.

f is a string, inline function, or function handle with two arguments defining the
function. By default the plot is over the meshed domain -2*pi <= x | y <= 2xpi
with 60 points in each dimension.

If three functions are passed, then plot the parametrically defined function [fx (s,
t), fy (s, t), fz (s, t)].

If dom is a two element vector, it represents the minimum and maximum values of
both x and y. If dom is a four element vector, then the minimum and maximum
values are [xmin xmax ymin ymax].

n is a scalar defining the number of points to use in each dimension.

If the argument "circ" is given, then the function is plotted over a disk centered on
the middle of the domain dom.

344

GNU Octave

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a 2-element vector with a graphics handle for the
created surface plot and a second handle for the created contour plot.

Example:
f = 0(x,y) sqrt (abs (x .* y)) ./ (1 + x.72 + y."2);
ezsurfc (f, [-3, 3]1);

See also: [surfc], page 322, [ezsurf|, page 342, [ezplot], page 314, [ezmesh], page 341,
[ezmeshc], page 342, [shading], page 338.

15.2.2.3 Three-dimensional Geometric Shapes

cylinder

cylinder (r)

cylinder (r, n)

cylinder (hax, ...)

[x, y, z] = cylinder (...)

Plot a 3-D unit cylinder.

The optional input r is a vector specifying the radius along the unit z-axis. The
default is [1 1] indicating radius 1 at Z == 0 and at Z == 1.

The optional input n determines the number of faces around the circumference of the
cylinder. The default value is 20.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

If outputs are requested cylinder returns three matrices in meshgrid format, such
that surf (x, y, z) generates a unit cylinder.

Example:

[x, y, z] = cylinder (10:-1:0, 50);
surf (x, y, 2);
title ("a cone");

See also: [ellipsoid], page 345, [rectangle], page 316, [sphere|, page 344.

sphere ()

sphere (n)

sphere (hax, ...)

[x, y, z] = sphere (...)

Plot a 3-D unit sphere.

The optional input n determines the number of faces around the circumference of the
sphere. The default value is 20.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

If outputs are requested sphere returns three matrices in meshgrid format such that
surf (x, y, z) generates a unit sphere.

Chapter 15: Plotting 345

Example:
[x, y, z] = sphere (40);
surf (3*x, 3%y, 3%z);
axis equal;
title ("sphere of radius 3");

See also: [cylinder], page 344, [ellipsoid], page 345, [rectangle], page 316.

ellipsoid (xc, yc, zc, xr, yr, zr, n)

ellipsoid (..., n)

ellipsoid (hax, ...)

[x, y, z] = ellipsoid (...)
Plot a 3-D ellipsoid.
The inputs xc, yc, zc specify the center of the ellipsoid. The inputs xr, yr, zr specify
the semi-major axis lengths.

—~

The optional input n determines the number of faces around the circumference of the
cylinder. The default value is 20.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

If outputs are requested ellipsoid returns three matrices in meshgrid format, such
that surf (x, y, z) generates the ellipsoid.

See also: [cylinder], page 344, [rectangle], page 316, [sphere], page 344.

15.2.3 Plot Annotations
You can add titles, axis labels, legends, and arbitrary text to an existing plot. For example:

x = -10:0.1:10;

plot (x, sin (x));

title ("sin(x) for x = -10:0.1:10");

xlabel ("x");

ylabel ("sin (x)");

text (pi, 0.7, "arbitrary text");

legend ("sin (x)");

The functions grid and box may also be used to add grid and border lines to the plot.

By default, the grid is off and the border lines are on.

Finally, arrows, text and rectangular or elliptic boxes can be added to highlight parts of
a plot using the annotation function. Those objects are drawn in an invisible axes, on top
of every other axes.

title (string)

title (string, prop, val, ...)

title (hax, ...)

h = title (...)
Specify the string used as a title for the current axis.
An optional list of property /value pairs can be used to change the appearance of the
created title text object.

346 GNU Octave

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created text object.

See also: [xlabel], page 347, [ylabel], page 347, [zlabel], page 347, [text], page 347.

legend (stri, str2, ...)

legend (matstr)

legend (cellstr)

legend (..., "location", pos)

legend (..., "or1entat1on", orient)

legend (hax, ...)

legend (hob]s ol

legend (hax, hobjs, ...)

legend ("option")

[hleg, hleg_obj, hplot, labels] = legend (...)
Display a legend for the current axes using the specified strings as labels.
Legend entries may be specified as individual character string arguments, a character
array, or a cell array of character strings.
If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca. If the handles, hobjs, are not specified then the legend’s
strings will be associated with the axes’ descendants. legend works on line graphs,
bar graphs, etc. A plot must exist before legend is called.

The optional parameter pos specifies the location of the legend as follows:

pos location of the legend
north center top

south center bottom

east right center

west left center

northeast right top (default)

northwest left top

southeast right bottom

southwest left bottom

outside can be appended to any location string

The optional parameter orient determines if the key elements are placed vertically or
horizontally. The allowed values are "vertical" (default) or "horizontal".

The following customizations are available using option:
"show" Show legend on the plot

"hide" Hide legend on the plot

"toggle" Toggles between "hide" and "show"

"boxon" Show a box around legend (default)

"boxoff" Hide the box around legend

"right" Place label text to the right of the keys (default)

Chapter 15: Plotting 347

"left" Place label text to the left of the keys

"off" Delete the legend object

The optional output values are

hleg The graphics handle of the legend object.

hleg_obj Graphics handles to the text and line objects which make up the legend.

hplot Graphics handles to the plot objects which were used in making the leg-
end.
labels A cell array of strings of the labels in the legend.

The legend label text is either provided in the call to legend or is taken from the
DisplayName property of graphics objects. If no labels or DisplayNames are available,
then the label text is simply "datal", "data2", ..., "dataN".

Implementation Note: A legend is implemented as an additional axes object of the
current figure with the "tag" set to "legend". Properties of the legend object may
be manipulated directly by using set.

text (x, y, string)

text (x, y, z, string)

text (..., prop, val, ...)

h = text (...)
Create a text object with text string at position x, y, (z) on the current axes.
Multiple locations can be specified if x, y, (z) are vectors. Multiple strings can be
specified with a character matrix or a cell array of strings.

Optional property/value pairs may be used to control the appearance of the text.
The optional return value h is a vector of graphics handles to the created text objects.

See also: [gtext], page 370, [title], page 345, [xlabel], page 347, [ylabel], page 347,
[zlabel], page 347.

See Section 15.3.3.5 [Text Properties], page 395, for the properties that you can set.

xlabel (string)
xlabel (string, property, val, ...)
xlabel (hax, ...)
h = xlabel (...)
Specify the string used to label the x-axis of the current axis.

An optional list of property /value pairs can be used to change the properties of the
created text label.

If the first argument hax is an axes handle, then operate on this axis rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created text object.

See also: [ylabel|, page 347, [zlabel], page 347, [datetick], page 815, [title], page 345,
[text], page 347.

348

clab
clab
clab
clab
clab
h =

box
box
box
box

grid
grid
grid
grid
grid

GNU Octave

el (c, h)

el (c, h, v)

el (c, h, "manual")

el (¢)

el (..., prop, val, ...)
clabel (...)

Add labels to the contours of a contour plot.

The contour levels are specified by the contour matrix ¢ which is returned by contour,
contourc, contourf, and contour3. Contour labels are rotated to match the local
line orientation and centered on the line. The position of labels along the contour
line is chosen randomly.

If the argument h is a handle to a contour group object, then label this plot rather
than the one in the current axes returned by gca.

By default, all contours are labeled. However, the contours to label can be specified
by the vector v. If the "manual" argument is given then the contours to label can be
selected with the mouse.

Additional property /value pairs that are valid properties of text objects can be given
and are passed to the underlying text objects. Moreover, the contour group prop-
erty "LabelSpacing" is available which determines the spacing between labels on a
contour to be specified. The default is 144 points, or 2 inches.

The optional return value h is a vector of graphics handles to the text objects repre-
senting each label. The "userdata" property of the text objects contains the numer-
ical value of the contour label.

An example of the use of clabel is

[c, h] = contour (peaks (), -4 : 6);
clabel (c, h, -4:2:6, "fontsize", 12);

See also: [contour|, page 297, [contourf], page 298, [contour3], page 299, [meshc],
page 320, [surfc|, page 322, [text], page 347.

on

off

(hax, ...)

Control display of the axis border.

The argument may be either "on" or "off". If it is omitted, the current box state is
toggled.

If the first argument hax is an axes handle, then operate on this axis rather than the
current axes returned by gca.

See also: [axis|, page 311, [grid], page 348.

on

off
minor
minor on

Chapter 15: Plotting 349

grid minor off

grid (hax, ...)
Control the display of plot grid lines.
The function state input may be either "on" or "off". If it is omitted, the current
grid state is toggled.
When the first argument is "minor" all subsequent commands modify the minor grid
rather than the major grid.
If the first argument hax is an axes handle, then operate on this axis rather than the
current axes returned by gca.
To control the grid lines for an individual axis use the set function. For example:

set (gca, "ygrid", "on");

See also: [axis|, page 311, [box], page 348.

colorbar

colorbar (loc)

colorbar (delete_option)
colorbar (hcb, ...)

colorbar (hax, ...)
colorbar (..., "peer", hax, ...)
colorbar (..., "location", loc, . ..)

colorbar (..., prop, val, ...)
h = colorbar (...)
Add a colorbar to the current axes.

A colorbar displays the current colormap along with numerical rulings so that the
color scale can be interpreted.

The optional input loc determines the location of the colorbar. Valid values for loc

are
"EastOutside"
Place the colorbar outside the plot to the right. This is the default.
"East" Place the colorbar inside the plot to the right.
"WestOutside"
Place the colorbar outside the plot to the left.
"West" Place the colorbar inside the plot to the left.
"NorthOutside"

Place the colorbar above the plot.
"North" Place the colorbar at the top of the plot.

"SouthQutside"
Place the colorbar under the plot.

"South" Place the colorbar at the bottom of the plot.

To remove a colorbar from a plot use any one of the following keywords for the
delete_option: "delete", "hide", "off".

350 GNU Octave

If the argument "peer" is given, then the following argument is treated as the axes
handle in which to add the colorbar. Alternatively, If the first argument hax is an
axes handle, then the colorbar is added to this axis, rather than the current axes
returned by gca.

If the first argument hcb is a handle to a colorbar object, then operate on this colorbar
directly.

Additional property/value pairs are passed directly to the underlying axes object.
The optional return value h is a graphics handle to the created colorbar object.
Implementation Note: A colorbar is created as an additional axes to the current figure
with the "tag" property set to "colorbar". The created axes object has the extra
property "location" which controls the positioning of the colorbar.

See also: [colormap], page 749.

annotation (type)

annotation ("line", x, y)
annotation ("arrow", x, y)
annotation ("doublearrow", x, y)
annotation ("textarrow", x, y)
annotation ("textbox", pos)
annotation ("rectangle", pos)
annotation ("ellipse", pos)
annotation (..., prop, val)
annotation (hf, ...)

h = annotation (...)
Draw annotations to emphasize parts of a figure.

You may build a default annotation by specifying only the type of the annotation.

Otherwise you can select the type of annotation and then set its position using either
x and y coordinates for line-based annotations or a position vector pos for others. In
either case, coordinates are interpreted using the "units" property of the annotation
object. The default is "normalized", which means the lower left hand corner of the
figure has coordinates ‘[0 0]’ and the upper right hand corner ‘[1 1]°.

If the first argument hf is a figure handle, then plot into this figure, rather than the
current figure returned by gcf.

Further arguments can be provided in the form of prop/val pairs to customize the
annotation appearance.

The optional return value h is a graphics handle to the created annotation object.
This can be used with the set function to customize an existing annotation object.

All annotation objects share two properties:

e "units": the units in which coordinates are interpreted.
Its value may be one of "centimeters" | "characters" | "inches" |
"{normalized}" | "pixels" | "points".

e "position": a four-element vector [x0 y0 width height].
The vector specifies the coordinates (x0,y0) of the origin of the annotation object,
its width, and its height. The width and height may be negative, depending on
the orientation of the object.

Chapter 15: Plotting 351

Valid annotation types and their specific properties are described below:

n 1ine n

"arrow"

Constructs a line. x and y must be two-element vectors specifying the x
and y coordinates of the two ends of the line.

The line can be customized using "linewidth", "linestyle", and
"color" properties the same way as for 1ine objects.

Construct an arrow. The second point in vectors x and y specifies the
arrowhead coordinates.

Besides line properties, the arrowhead can be customized using
"headlength", "headwidth", and "headstyle" properties. Supported
values for "headstyle" property are: ["diamond" | "ellipse" |
"plain" | "rectangle" | "vbackl" | "{vback2}" | "vback3"]

"doublearrow"

Construct a double arrow. Vectors x and y specify the arrowhead coor-
dinates.

The line and the arrowhead can be customized as for ar-
row annotations, but some property names are duplicated:
"headllength"/"head2length", "headlwidth"/"head2width", etc.
The index 1 marks the properties of the arrowhead at the first point in
x and y coordinates.

"textarrow"

"textbox"

Construct an arrow with a text label at the opposite end from the arrow-
head.

Use the "string" property to change the text string. The line and the
arrowhead can be customized as for arrow annotations, and the text
can be customized using the same properties as text graphics objects.
Note, however, that some text property names are prefixed with "text"
to distinguish them from arrow properties: "textbackgroundcolor",
"textcolor", "textedgecolor", "textlinewidth", "textmargin",
"textrotation".

Construct a box with text inside. pos specifies the "position" property
of the annotation.

Use the "string" property to change the text string. You may use
"backgroundcolor", "edgecolor", "linestyle", and "linewidth"
properties to customize the box background color and edge appearance.
A limited set of text objects properties are also available; Besides
"font..." properties, you may also use "horizontalalignment" and
"verticalalignment" to position the text inside the box.

Finally, the "fitboxtotext" property controls the actual extent of the
box. If "on" (the default) the box limits are fitted to the text extent.

"rectangle"

Construct a rectangle. pos specifies the "position" property of the an-
notation.

352 GNU Octave

You may use "facecolor", "color", "linestyle", and "linewidth"
properties to customize the rectangle background color and edge appear-
ance.

"ellipse"
Construct an ellipse. pos specifies the "position" property of the anno-
tation.

See "rectangle" annotations for customization.

See also: [xlabel], page 347, [ylabel], page 347, [zlabel], page 347, [title|, page 345,
[text], page 347, [gtext], page 370, [legend], page 346, [colorbar]|, page 349.

15.2.4 Multiple Plots on One Page

Octave can display more than one plot in a single figure. The simplest way to do this is to
use the subplot function to divide the plot area into a series of subplot windows that are
indexed by an integer. For example,

subplot (2, 1, 1)
fplot (@sin, [-10, 101);
subplot (2, 1, 2)
fplot (@cos, [-10, 10]);

creates a figure with two separate axes, one displaying a sine wave and the other a cosine
wave. The first call to subplot divides the figure into two plotting areas (two rows and one
column) and makes the first plot area active. The grid of plot areas created by subplot is
numbered in column-major order (top to bottom, left to right).

subplot (rows, cols, index)
subplot (rcn)

subplot (hax)

subplot (..., "align")
subplot (..., "replace")
subplot (..., "position", pos)

subplot (..., prop, val, ...)

hax = subplot (...)
Set up a plot grid with rows by cols subwindows and set the current axes for plotting
(gca) to the location given by index.

If only one numeric argument is supplied, then it must be a three digit value specifying
the number of rows in digit 1, the number of columns in digit 2, and the plot index
in digit 3.

The plot index runs row-wise; First, all columns in a row are numbered and then the
next row is filled.

For example, a plot with 2x3 grid will have plot indices running as follows:

Chapter 15: Plotting 353

index may also be a vector. In this case, the new axis will enclose the grid locations
specified. The first demo illustrates this:

demo ("subplot", 1)

The index of the subplot to make active may also be specified by its axes handle, hax,
returned from a previous subplot command.

If the option "align" is given then the plot boxes of the subwindows will align, but
this may leave no room for axis tick marks or labels.

If the option "replace" is given then the subplot axis will be reset, rather than just
switching the current axis for plotting to the requested subplot.

The "position" property can be used to exactly position the subplot axes within
the current figure. The option pos is a 4-element vector [x, y, width, height] that
determines the location and size of the axes. The values in pos are normalized in the
range [0,1].

Any property /value pairs are passed directly to the underlying axes object.

If the output hax is requested, subplot returns the axis handle for the subplot. This
is useful for modifying the properties of a subplot using set.

See also: [axes|, page 373, [plot], page 284, [gcal, page 377, [set], page 379.

15.2.5 Multiple Plot Windows
You can open multiple plot windows using the figure function. For example,

figure (1);
fplot (@sin, [-10, 101);
figure (2);
fplot (@cos, [-10, 10]);

creates two figures, with the first displaying a sine wave and the second a cosine wave.
Figure numbers must be positive integers.

figure
figure n
figure (n)
figure (..., "property", value, ...)
h = figure (...)
Create a new figure window for plotting.
If no arguments are specified, a new figure with the next available number is created.

If called with an integer n, and no such numbered figure exists, then a new figure with
the specified number is created. If the figure already exists then it is made visible
and becomes the current figure for plotting.

Multiple property-value pairs may be specified for the figure object, but they must
appear in pairs.

The optional return value h is a graphics handle to the created figure object.

See also: [axes|, page 373, [gcf], page 377, [clf], page 357, [close], page 358.

354 GNU Octave

15.2.6 Manipulation of Plot Objects

pan
pan on
pan off
pan xon
pan yon
pan (hfig, option)
Control the interactive panning mode of a figure in the GUI.
Given the option "on" or "off", set the interactive pan mode on or off.
With no arguments, toggle the current pan mode on or off.
Given the option "xon" or "yon", enable pan mode for the x or y axis only.

If the first argument hfig is a figure, then operate on the given figure rather than the
current figure as returned by gcf.

See also: [rotate3d], page 354, [zoom], page 354.

rotate (h, dir, alpha)
rotate (..., origin)
Rotate the plot object h through alpha degrees around the line with direction dir and
origin origin.
The default value of origin is the center of the axes object that is the parent of h.
If h is a vector of handles, they must all have the same parent axes object.

Graphics objects that may be rotated are lines, surfaces, patches, and images.

rotate3d
rotate3d on
rotate3d off
rotate3d (hfig, option)
Control the interactive 3-D rotation mode of a figure in the GUIL

Given the option "on" or "off", set the interactive rotate mode on or off.
With no arguments, toggle the current rotate mode on or off.

If the first argument hfig is a figure, then operate on the given figure rather than the
current figure as returned by gcf.

See also: [pan], page 354, [zoom]|, page 354.

zoom

zoom (factor)

zoom on

zoom off

zoom Xon

zoom yon

zoom out

zoom reset

zoom (hfig, option)
Zoom the current axes object or control the interactive zoom mode of a figure in the
GUL

Chapter 15: Plotting 355

Given a numeric argument greater than zero, zoom by the given factor. If the zoom
factor is greater than one, zoom in on the plot. If the factor is less than one, zoom
out. If the zoom factor is a two- or three-element vector, then the elements specify
the zoom factors for the x, y, and z axes respectively.

Given the option "on" or "off", set the interactive zoom mode on or off.
With no arguments, toggle the current zoom mode on or off.

Given the option "xon" or "yon", enable zoom mode for the x or y-axis only.
Given the option "out", zoom to the initial zoom setting.

Given the option "reset", store the current zoom setting so that zoom out will return
to this zoom level.

If the first argument hfig is a figure, then operate on the given figure rather than the
current figure as returned by gcf.

See also: [pan], page 354, [rotate3d], page 354.

15.2.7 Manipulation of Plot Windows

By default, Octave refreshes the plot window when a prompt is printed, or when waiting
for input. The drawnow function is used to cause a plot window to be updated.

drawnow ()
drawnow ("expose")
drawnow (term, file, debug_file)
Update figure windows and their children.

The event queue is flushed and any callbacks generated are executed.

With the optional argument "expose", only graphic objects are updated and no other
events or callbacks are processed.

The third calling form of drawnow is for debugging and is undocumented.

See also: [refresh], page 355.

Only figures that are modified will be updated. The refresh function can also be used
to cause an update of the current figure, even if it is not modified.

refresh ()
refresh (h)
Refresh a figure, forcing it to be redrawn.

When called without an argument the current figure is redrawn. Otherwise, the figure
with graphic handle h is redrawn.

See also: [drawnow]|, page 355.

Normally, high-level plot functions like plot or mesh call newplot to initialize the state
of the current axes so that the next plot is drawn in a blank window with default property
settings. To have two plots superimposed over one another, use the hold function. For
example,

356

GNU Octave

hold on;

x = -10:0.1:10;
plot (x, sin (x));
plot (x, cos (x));

hold off;

displays sine and cosine waves on the same axes. If the hold state is off, consecutive plotting
commands like this will only display the last plot.

newplot ()

newplot (hfig)
newplot (hax)

hax = newplot (...)

Prepare graphics engine to produce a new plot.

This function is called at the beginning of all high-level plotting functions. It is not
normally required in user programs. newplot queries the "NextPlot" field of the
current figure and axis to determine what to do.

Figure NextPlot

"newll
"add" (default)

"replacechildren"

"replace"

Axis NextPlot
n addll

"replacechildren"

"replace" (default)

Action
Create a new figure and make it the current figure.

Add new graphic objects to the current figure.

Delete child objects whose HandleVisibility is set to "on". Set
NextPlot property to "add". This typically clears a figure, but
leaves in place hidden objects such as menubars. This is equivalent
to clf.

Delete all child objects of the figure and reset all figure properties
to their defaults. However, the following four properties are not
reset: Position, Units, PaperPosition, PaperUnits. This is equiva-
lent to clf reset.

Action
Add new graphic objects to the current axes. This is equivalent
to hold on.

Delete child objects whose HandleVisibility is set to "on", but
leave axis properties unmodified. This typically clears a plot, but
preserves special settings such as log scaling for axes. This is
equivalent to cla.

Delete all child objects of the axis and reset all axis properties
to their defaults. However, the following properties are not reset:
Position, Units. This is equivalent to cla reset.

If the optional input hfig or hax is given then prepare the specified figure or axes
rather than the current figure and axes.

Chap

hold
hold
hold
hold

isho
isho
isho

ter 15: Plotting 357

The optional return value hax is a graphics handle to the created axes object (not
figure).

Caution: Calling newplot may change the current figure and current axis.

on
off
(hax, ...)
Toggle or set the "hold" state of the plotting engine which determines whether new
graphic objects are added to the plot or replace the existing objects.
hold on Retain plot data and settings so that subsequent plot commands are
displayed on a single graph. Line color and line style are advanced for
each new plot added.
hold all (deprecated)
Equivalent to hold on.
hold off Restore default graphics settings which clear the graph and reset axis
properties before each new plot command. (default).
hold Toggle the current hold state.
When given the additional argument hax, the hold state is modified for this axis
rather than the current axes returned by gca.
To query the current hold state use the ishold function.
See also: [ishold], page 357, [cla], page 358, [clf], page 357, [newplot], page 356.
1d
1d (hax)
1d (hfig)

Return true if the next plot will be added to the current plot, or false if the plot
device will be cleared before drawing the next plot.

If the first argument is an axes handle hax or figure handle hfig then operate on this
plot rather than the current one.

See also: [hold], page 357, [newplot], page 356.

To clear the current figure, call the c1f function. To clear the current axis, call the cla
function. To bring the current figure to the top of the window stack, call the shg function.
To delete a graphics object, call delete on its index. To close the figure window, call the
close function.

clf

clf reset
clf (hfig)
clf (hfig, "reset")

h =

clf (...)
Clear the current figure window.

clf operates by deleting child graphics objects with visible handles (HandleVisibility
— "on").

358 GNU Octave
If the optional argument "reset" is specified, delete all child objects including those
with hidden handles and reset all figure properties to their defaults. However, the
following properties are not reset: Position, Units, PaperPosition, PaperUnits.

If the first argument hfig is a figure handle, then operate on this figure rather than
the current figure returned by gcf.

The optional return value h is the graphics handle of the figure window that was
cleared.

See also: [cla], page 358, [close], page 358, [delete], page 358, [reset], page 416.

cla

cla reset

cla (hax)

cla (hax, "reset")

shg

Clear the current axes.

cla operates by deleting child graphic objects with visible handles (HandleVisibility
— Ilonll).

If the optional argument "reset" is specified, delete all child objects including those
with hidden handles and reset all axis properties to their defaults. However, the
following properties are not reset: Position, Units.

If the first argument hax is an axes handle, then operate on this axis rather than the
current axes returned by gca.

See also: [clf], page 357, [delete], page 358, [reset], page 416.

Show the graph window.

Currently, this is the same as executing drawnow.

See also: [drawnow]|, page 355, [figure|, page 353.

delete (file)
delete (filel, file2, ...)
delete (handle)

Delete the named file or graphics handle.

file may contain globbing patterns such as ‘*’. Multiple files to be deleted may be
specified in the same function call.

handle may be a scalar or vector of graphic handles to delete.
Programming Note: Deleting graphics objects is the proper way to remove features
from a plot without clearing the entire figure.

See also: [clf], page 357, [cla], page 358, [unlink], page 817, [rmdir|, page 818.

close

close h

close (h)

close (h, "force")
close all

close all hidden

Chapter 15: Plotting 359

close all force
Close figure window(s).
When called with no arguments, close the current figure. This is equivalent to close
(gct). If the input h is a graphic handle, or vector of graphics handles, then close
each figure in h.
If the argument "all" is given then all figures with visible handles (HandleVisibility
= "on") are closed.
If the argument "all hidden" is given then all figures, including hidden ones, are
closed.
If the argument "force" is given then figures are closed even when
"closerequestfcn" has been altered to prevent closing the window.
Implementation Note: close operates by calling the function specified by the
"closerequestfcn" property for each figure. By default, the function closereq is
used. It is possible that the function invoked will delay or abort removing the figure.
To remove a figure without executing any callback functions use delete. When
writing a callback function to close a window do not use close to avoid recursion.

See also: [closereq], page 359, [delete], page 358.

closereq ()
Close the current figure and delete all graphics objects associated with it.
By default, the "closerequestfcn" property of a new plot figure points to this
function.

See also: [close], page 358, [delete], page 358.

15.2.8 Use of the interpreter Property

All text objects—such as titles, labels, legends, and text—include the property
"interpreter" that determines the manner in which special control sequences in the text
are rendered.

The interpreter property can take three values: "none", "tex", "latex". If the inter-
preter is set to "none" then no special rendering occurs—the displayed text is a verbatim
copy of the specified text. Currently, the "latex" interpreter is not implemented and is
equivalent to "none".

The "tex" option implements a subset of TEX functionality when rendering text. This
allows the insertion of special glyphs such as Greek characters or mathematical symbols.
Special characters are inserted by using a backslash (\) character followed by a code, as
shown in Table 15.1.

Besides special glyphs, the formatting of the text can be changed within the string by
using the codes

\bf Bold font
\it Ttalic font
\sl Oblique Font
\rm Normal font

These codes may be used in conjunction with the { and } characters to limit the change
to a part of the string. For example,

xlabel (’{\bf H} = a {\bf V}’)

360 GNU Octave

where the character >a’ will not appear in bold font. Note that to avoid having Octave
interpret the backslash character in the strings, the strings themselves should be in single
quotes.

It is also possible to change the fontname and size within the text

\fontname{ fontname} Specify the font to use
\fontsize{size} Specify the size of the font to use

The color of the text may also be changed inline using either a string (e.g., "red") or
numerically with a Red-Green-Blue (RGB) specification (.e.g., [1 0 0], also red).

\color{color} Specify the color as a string
\color[rgb|{R G B} Specify the color numerically

Finally, superscripting and subscripting can be controlled with the >~ and ’_’ charac-
ters. If the >~ or ’_’ is followed by a { character, then all of the block surrounded by the {
} pair is superscripted or subscripted. Without the { } pair, only the character immediately
following the =’ or ’_’ is changed.

Chapter 15: Plotting

Greek Lowercase Letters

Code Sym | Code Sym | Code Sym
\alpha o' \beta g \gamma v
\delta 5 \epsilon € \zeta ¢
\eta 7 \theta 0 \vartheta v
\iota L \kappa K \lambda A
\mu 1 \nu v \xi 13
\o 0 \pi ™ \varpi w
\rho p \sigma o \varsigma S
\tau T \upsilon v \phi 1)
\chi X \psi P \omega w

Greek Uppercase Letters
Code Sym | Code Sym | Code Sym
\Gamma r \Delta A \Theta S)
\Lambda A \Xi = \Pi II
\Sigma Y \ Upsilon T \Phi ®
\Psi v \Omega Q

Misc Symbols Type Ord
Code Sym | Code Sym | Code Sym
\aleph N \wp o) \Re R
\Im R \partial 0 \infty 00
\prime / \nabla \Y% \surd Vv
\angle L \forall v \exists 3
\neg - \clubsuit & \diamondsuit &
\heartsuit Q© \spadesuit A

“Large” Operators
Code Sym | Code Sym | Code Sym
\int J

Binary operators
Code Sym | Code Sym | Code Sym
\pm + \cdot : \times X
\ast * \circ o \bullet o
\div + \cap N \cup U
\vee v \wedge A \oplus ®
\otimes ® \oslash @

Table 15.1: Available special characters in TEX mode

361

362 GNU Octave
Relations
Code Sym | Code Sym | Code Sym
\leq < \subset C \subseteq -
\in € \geq > \supset D
\supseteq 2 \ni > \mid]
\equiv = \sim ~ \approx ~
\cong = \propto o< \perp L
Arrows
Code Sym | Code Sym | Code Sym
\leftarrow — \Leftarrow “= \rightarrow —
\Rightarrow = \leftrightarrow > \uparrow 0
\downarrow i}
Openings and Closings
Code Sym | Code Sym | Code Sym
\Ifloor | \langle (\lceil [
\rfloor | \rangle) \reeil 1
Alternate Names
Code Sym | Code Sym | Code Sym
\neq #
Other (not in Appendix F Tables)
Code Sym | Code Sym | Code Sym
\ldots .. \O %) \copyright ©
\deg °

Table 15.1: Available special characters in TEX mode (cont.)

15.2.9 Printing and Saving Plots

The print command allows you to send plots to you printer and to save plots in a variety

of formats.

For example,

print -dpsc

prints the current figure to a color PostScript printer. And,

print -deps foo.eps

saves the current figure to an encapsulated PostScript file called foo.eps.

The current graphic toolkits produce very similar graphic displays but differ in their
capability to display text and in print capabilities. In particular, the OpenGL based toolkits
such as fltk and gt do not support the "interpreter" property of text objects. This
means that when using OpenGL toolkits special symbols drawn with the "tex" interpreter

Chapter 15: Plotting 363

will appear correctly on-screen but will be rendered with interpreter "none" when printing
unless one of the standalone (see below) modes is used. These modes provide access to
the pdflatex processor and therefore allow full use of KITEX commands.

A complete example showing the capabilities of text printing using the
-dpdflatexstandalone option is:

x = 0:0.01:3;

hf = figure Q;

plot (x, erf (x));

hold on;

plot (x, x, "r");

axis ([0, 3, 0, 11);

text (0.65, 0.6175, [’$\displaystyle\leftarrow x = {2\over\sqrt{\pil}}’...|J}
’\int_{0}"{x}e~{-t"2} dt = 0.6175%°]1);

xlabel ("x");

ylabel ("erf (x)");

title ("erf (x) with text annotation");

set (hf, "visible", "off");

print (hf, "plotl5_7.pdf", "-dpdflatexstandalone");

set (hf, "visible", "on");

system ("pdflatex plotl5_7");

open ("plotl5_7.pdf");

The result of this example can be seen in Figure 15.7

erf (x) with text annotation

1
08t 1
2 ("
| —ax=—— [edt=06175 |
ey 7
o)
=
z
0.4t |
0.2t |
O 1 1 1 1 1
0 05 1 15 2 2.5 3

Figure 15.7: Example of inclusion of text with use of ~dpdflatexstandalone

print ()
print (options)
print (filename, options)

364 GNU Octave

print (h, filename, options)
Print a plot, or save it to a file.

Both output formatted for printing (PDF and PostScript), and many bitmapped and
vector image formats are supported.

filename defines the name of the output file. If the filename has no suffix, one is
inferred from the specified device and appended to the filename. If no filename is
specified, the output is sent to the printer.

h specifies the handle of the figure to print. If no handle is specified the current figure
is used.

For output to a printer, PostScript file, or PDF file, the paper size is specified by
the figure’s papersize property. The location and size of the image on the page
are specified by the figure’s paperposition property. The orientation of the page is
specified by the figure’s paperorientation property.

The width and height of images are specified by the figure’s paperpositon(3:4)
property values.

The print command supports many options:

-fh Specify the handle, h, of the figure to be printed. The default is the
current figure.

-Pprinter
Set the printer name to which the plot is sent if no filename is specified.

-Gghostscript_command
Specify the command for calling Ghostscript. For Unix and Windows the
defaults are "gs" and "gswin32c", respectively.

-color
-mono Color or monochrome output.

-solid
-dashed Force all lines to be solid or dashed, respectively.

-portrait

-landscape
Specify the orientation of the plot for printed output. For non-printed
output the aspect ratio of the output corresponds to the plot area defined
by the "paperposition" property in the orientation specified. This op-
tion is equivalent to changing the figure’s "paperorientation" property.

-TextAlphaBits=n

—-GraphicsAlphaBits=n
Octave is able to produce output for various printers, bitmaps, and vector
formats by using Ghostscript. For bitmap and printer output anti-aliasing
is applied using Ghostscript’s Text AlphaBits and GraphicsAlphaBits op-
tions. The default number of bits for each is 4. Allowed values for N are
1, 2, or 4.

-ddevice The available output format is specified by the option device, and is one
of:

Chapter 15: Plotting

365

ps

ps2

psc

psc2 PostScript (level 1 and 2, mono and color). The FLTK graph-
ics toolkit generates PostScript level 3.0.

eps

eps2

epsc

epsc2 Encapsulated PostScript (level 1 and 2, mono and color). The
FLTK graphic toolkit generates PostScript level 3.0.

pslatex

epslatex

pdflatex

pslatexstandalone

epslatexstandalone

pdflatexstandalone
Generate a WIEX file filename.tex for the text portions of
a plot and a file filename. (ps|eps|pdf) for the remaining
graphics. The graphics file suffix .psleps|pdf is determined
by the specified device type. The IXTEX file produced by the
‘standalone’ option can be processed directly by KTEX. The
file generated without the ‘standalone’ option is intended to
be included from another IATEX document. In either case, the
IXTEX file contains an \includegraphics command so that
the generated graphics file is automatically included when
the IXTEX file is processed. The text that is written to the
IXTEX file contains the strings exactly as they were speci-
fied in the plot. If any special characters of the TEX mode
interpreter were used, the file must be edited before IXTEX
processing. Specifically, the special characters must be en-
closed with dollar signs ($... $), and other characters that
are recognized by ITEX may also need editing (.e.g., braces).
The ‘pdflatex’ device, and any of the ‘standalone’ formats,
are not available with the Gnuplot toolkit.

epscairo

pdfcairo

epscairolatex

pdfcairolatex

epscairolatexstandalone
pdfcairolatexstandalone

Generate Cairo based output when using the Gnuplot graph-
ics toolkit. The ‘epscairo’ and ‘pdfcairo’ devices are syn-
onymous with the ‘epsc’ device. The ITEX variants gen-
erate a IATEX file, filename.tex, for the text portions of a
plot, and an image file, filename. (eps|pdf), for the graph

366

GNU Octave

portion of the plot. The ‘standalone’ variants behave as
described for ‘epslatexstandalone’ above.

ill
aifm Adobe Tllustrator (Obsolete for Gnuplot versions > 4.2)
canvas Javascript-based drawing on HTML5 canvas viewable in a
web browser (only available for the Gnuplot graphics toolkit).
cdr
corel CorelDraw
dxf AutoCAD
emf
meta Microsoft Enhanced Metafile
fig XFig. For the Gnuplot graphics toolkit, the additional op-
tions -textspecial or -textnormal can be used to control
whether the special flag should be set for the text in the fig-
ure. (default is ~textnormal)
gif GIF image (only available for the Gnuplot graphics toolkit)
hpgl HP plotter language
jpg
jpeg JPEG image
latex KTEX picture environment (only available for the Gnuplot
graphics toolkit).
mf Metafont
png Portable network graphics
pbm PBMplus
pdf Portable document format
svg Scalable vector graphics
tikz
tikzstandalone

Generate a IWTEX file using PGF/TikZ. For the FLTK toolkit the result
is PGF. The ‘tikzstandalone’ device produces a WTEX document which
includes the TikZ file (‘tikzstandalone’ is only available for the Gnuplot
graphics toolkit).

If the device is omitted, it is inferred from the file extension, or if there
is no filename it is sent to the printer as PostScript.

-dghostscript_device

Additional devices are supported by Ghostscript. Some examples are;

pdfwrite
ljet2p

Produces pdf output from eps
HP LaserJet ITP

Chapter 15: Plotting 367

pcx24b 24-bit color PCX file format

ppm Portable Pixel Map file format

For a complete list, type system ("gs -h") to see what formats and
devices are available.

When Ghostscript output is sent to a printer the size is determined by the
figure’s "papersize" property. When the output is sent to a file the size
is determined by the plot box defined by the figure’s "paperposition"

property.

-append Append PostScript or PDF output to a pre-existing file of the same type.
-rNUM Resolution of bitmaps in pixels per inch. For both metafiles and SVG the
default is the screen resolution; for other formats it is 150 dpi. To specify
screen resolution, use "-r0".
-loose
-tight Force a tight or loose bounding box for eps files. The default is loose.
-preview Add a preview to eps files. Supported formats are:
—-interchange
Provide an interchange preview.
-metafile
Provide a metafile preview.
-pict Provide pict preview.
-tiff Provide a tiff preview.
-Sxsize,ysize
Plot size in pixels for EMF, GIF, JPEG, PBM, PNG, and SVG. For
PS, EPS, PDF, and other vector formats the plot size is in points. This
option is equivalent to changing the size of the plot box associated with
the "paperposition" property. When using the command form of the
print function you must quote the xsize,ysize option. For example, by
writing "-5640,480".
-Ffontname

-Ffontname:size

-F:size

Use fontname and/or fontsize for all text. fontname is ignored for some
devices: dxf, fig, hpgl, etc.

The filename and options can be given in any order.

Example: Print to a file using the pdf device.

figure (1);

clf O;

surf (peaks);
print figurel.pdf

Example: Print to a file using jpg device.
clf O;
surf (peaks);
print -djpg figure2.jpg

368 GNU Octave

Example: Print to printer named PS_printer using ps format.

clf O;
surf (peaks);
print -dpswrite -PPS_printer

See also: [saveas|, page 368, [hgsave], page 369, [orient], page 368, [figure], page 353.
saveas (h, filename)

saveas (h, filename, fmt)
Save graphic object h to the file filename in graphic format fmt.

fmt should be one of the following formats:

ps PostScript

eps Encapsulated PostScript
jprg JPEG Image

png PNG Image

emf Enhanced Meta File

pdf Portable Document Format

All device formats specified in print may also be used. If fmt is omitted it is extracted
from the extension of filename. The default format is "pdf".

clf O;
surf (peaks);
saveas (1, "figurel.png");

See also: [print|, page 363, [hgsave|, page 369, [orient], page 368.

orient (orientation)
orient (hfig, orientation)
orientation = orient ()
orientation = orient (hfig)
Query or set the print orientation for figure hfig.

Valid values for orientation are "portrait", "landscape", and "tall".

The "landscape" option changes the orientation so the plot width is larger than the
plot height. The "paperposition" is also modified so that the plot fills the page,
while leaving a 0.25 inch border.

The "tall" option sets the orientation to "portrait" and fills the page with the
plot, while leaving a 0.25 inch border.

The "portrait" option (default) changes the orientation so the plot height is larger
than the plot width. It also restores the default "paperposition" property.

When called with no arguments, return the current print orientation.

If the argument hfig is omitted, then operate on the current figure returned by gcf.
See also: [print|, page 363, [saveas]|, page 368.

Chapter 15: Plotting 369

print and saveas are used when work on a plot has finished and the output must be in a
publication-ready format. During intermediate stages it is often better to save the graphics
object and all of its associated information so that changes—to colors, axis limits, marker
styles, etc.—can be made easily from within Octave. The hgsave/hgload commands can
be used to save and re-create a graphics object.

hgsave (filename)

hgsave (h, filename)

hgsave (h, filename, fmt)
Save the graphics handle h to the file filename in the format fmt.
If unspecified, h is the current figure as returned by gcf.

When filename does not have an extension the default filename extension .ofig will
be appended.

If present, fmt should be one of the following;:

e -binary, -float-binary

e -hdf5, -float-hdfb

e -V7,-v7, -7, -mat7-binary

e -V6, -v6, -6, -mat6-binary

e —-text

e -zip, -z
When producing graphics for final publication use print or saveas. When it is impor-
tant to be able to continue to edit a figure as an Octave object, use hgsave/hgload.

See also: [hgload], page 369, [hdl2struct], page 380, [saveas|, page 368, [print],
page 363.

h = hgload (filename)
Load the graphics object in filename into the graphics handle h.

If filename has no extension, Octave will try to find the file with and without the
standard extension of .ofig.

See also: [hgsave], page 369, [struct2hdl], page 381.
15.2.10 Interacting with Plots

The user can select points on a plot with the ginput function or select the position at which
to place text on the plot with the gtext function using the mouse.

[x, y, buttons] = ginput (n)

[x, y, buttons] = ginput ()
Return the position and type of mouse button clicks and/or key strokes in the current
figure window.
If n is defined, then capture n events before returning. When n is not defined ginput
will loop until the return key RET is pressed.

The return values x, y are the coordinates where the mouse was clicked in the units
of the current axes. The return value button is 1, 2, or 3 for the left, middle, or right
button. If a key is pressed the ASCII value is returned in button.

370 GNU Octave

Implementation Note: ginput is intenteded for 2-D plots. For 3-D plots see the
currentpoint property of the current axes which can be transformed with knowledge
of the current view into data units.

See also: [gtext|, page 370, [waitforbuttonpress|, page 370.

waitforbuttonpress ()
b = waitforbuttonpress ()
Wait for mouse click or key press over the current figure window.

The return value of b is 0 if a mouse button was pressed or 1 if a key was pressed.

See also: [waitfor], page 801, [ginput], page 369, [kbhit], page 247.

gtext (s)

gtext ({si1, s2,...})

gtext ({s1;s2;...})

gtext (..., prop, val, ...)

h = gtext (...)
Place text on the current figure using the mouse.
The text is defined by the string s. If s is a cell string organized as a row vector then
each string of the cell array is written to a separate line. If s is organized as a column
vector then one string element of the cell array is placed for every mouse click.

Optional property/value pairs are passed directly to the underlying text objects.
The optional return value h is a graphics handle to the created text object(s).

See also: [ginput], page 369, [text], page 347.

More sophisticated user interaction mechanisms can be obtained using the ui* family of
functions, see Section 35.3 [UI Elements|, page 794.

15.2.11 Test Plotting Functions

The functions sombrero and peaks provide a way to check that plotting is working. Typing
either sombrero or peaks at the Octave prompt should display a three-dimensional plot.

sombrero ()
sombrero (n)
z = sombrero (...)
[x, y, z] = sombrero (...)
Plot the familiar 3-D sombrero function.
The function plotted is
sin(y/(x* +y?))
(x* +y?)
Called without a return argument, sombrero plots the surface of the above function
over the meshgrid [-8,8] using surf.

If n is a scalar the plot is made with n grid lines. The default value for n is 41.

When called with output arguments, return the data for the function evaluated over
the meshgrid. This can subsequently be plotted with surf (x, y, 2).

See also: [peaks|, page 371, [meshgrid|, page 334, [mesh], page 319, [surf], page 321.

Chapter 15: Plotting 371

peaks ()
peaks (n)
peaks (x, y)

z = peaks (...)
[x, y, z] = peaks (...)
Plot a function with lots of local maxima and minima.

The function has the form

Fz,y) = 3(1 —)2 ~410%) _ 1 (356 —z® - y5> - ée(_(”l)z_yz)
Called without a return argument, peaks plots the surface of the above function using
surf.

If n is a scalar, peaks plots the value of the above function on an n-by-n mesh over
the range [-3,3]. The default value for n is 49.

If n is a vector, then it represents the grid values over which to calculate the function.
If x and y are specified then the function value is calculated over the specified grid
of vertices.

When called with output arguments, return the data for the function evaluated over
the meshgrid. This can subsequently be plotted with surf (x, y, 2).

See also: [sombrero|, page 370, [meshgrid|, page 334, [mesh], page 319, [surf],
page 321.

15.3 Graphics Data Structures

15.3.1 Introduction to Graphics Structures

The graphics functions use pointers, which are of class graphics_handle, in order to address
the data structures which control visual display. A graphics handle may point to any one of
a number of different base object types and these objects are the graphics data structures
themselves. The primitive graphic object types are: figure, axes, line, text, patch,
surface, text, image, and light.

Each of these objects has a function by the same name, and, each of these functions
returns a graphics handle pointing to an object of the corresponding type. In addition
there are several functions which operate on properties of the graphics objects and which
also return handles: the functions plot and plot3 return a handle pointing to an object
of type line, the function subplot returns a handle pointing to an object of type axes, the
function £ill returns a handle pointing to an object of type patch, the functions area,
bar, barh, contour, contourf, contour3, surf, mesh, surfc, meshc, errorbar, quiver,
quiver3, scatter, scatter3, stair, stem, stem3 each return a handle to a complex data
structure as documented in [Data Sources|, page 424.

The graphics objects are arranged in a hierarchy:
1. The root is at 0. In other words, get (0) returns the properties of the root object.
2. Below the root are figure objects.

3. Below the figure objects are axes objects.

372 GNU Octave

4. Below the axes objects are line, text, patch, surface, image, and 1ight objects.

Graphics handles may be distinguished from function handles (see Section 11.11.1 [Func-
tion Handles|, page 206) by means of the function ishandle. ishandle returns true if its
argument is a handle of a graphics object. In addition, a figure or axes object may be tested
using isfigure or isaxes respectively. The test functions return true only if the argument
is both a handle and of the correct type (figure or axes).

The whos function can be used to show the object type of each currently defined graphics
handle. (Note: this is not true today, but it is, I hope, considered an error in whos. It may
be better to have whos just show graphics_handle as the class, and provide a new function
which, given a graphics handle, returns its object type. This could generalize the ishandle()
functions and, in fact, replace them.)

The get and set commands are used to obtain and set the values of properties of graphics
objects. In addition, the get command may be used to obtain property names.

For example, the property "type" of the graphics object pointed to by the graphics
handle h may be displayed by:
get (h, "type")

The properties and their current values are returned by get (h) where h is a handle
of a graphics object. If only the names of the allowed properties are wanted they may be
displayed by: get (h, "").

Thus, for example:

h = figure ();
get (h, "type")
ans = figure
get (h, ||||);

error: get: ambiguous figure property name ; possible matches:

__enhanced__ hittest resize
__graphics_toolkit__ integerhandle resizefcn
__guidata__ interruptible selected
__modified__ inverthardcopy selectionhighlight
__myhandle__ keypressfcn selectiontype
__plot_stream__ keyreleasefcn tag

alphamap menubar toolbar
beingdeleted mincolormap type

busyaction name uicontextmenu
buttondownfcn nextplot units

children numbertitle userdata

clipping outerposition visible
closerequestfcn paperorientation windowbuttondownfcn
color paperposition windowbuttonmotionfcn
colormap paperpositionmode windowbuttonupfcn
createfcn papersize windowkeypressfcn
currentaxes papertype windowkeyreleasefcn
currentcharacter paperunits windowscrollwheelfcn
currentobject parent windowstyle
currentpoint pointer wvisual

deletefcn pointershapecdata wvisualmode
dockcontrols pointershapehotspot xdisplay
doublebuffer position xvisual

filename renderer xvisualmode
handlevisibility renderermode

Chapter 15: Plotting 373

The root figure has index 0. Its properties may be displayed by: get (0, "").
The uses of get and set are further explained in [get], page 379, [set], page 379.
res = isprop (obj, "prop")
Return true if prop is a property of the object obj.

obj may also be an array of objects in which case res will be a logical array indicating
whether each handle has the property prop.

For plotting, obj is a handle to a graphics object. Otherwise, obj should be an
instance of a class.

See also: [get], page 379, [set], page 379, [ismethod], page 769, [isobject], page 768.

15.3.2 Graphics Objects

The hierarchy of graphics objects was explained above. See Section 15.3.1 [Introduction to
Graphics Structures|, page 371. Here the specific objects are described, and the properties
contained in these objects are discussed. Keep in mind that graphics objects are always
referenced by handle.

root figure the top level of the hierarchy and the parent of all figure objects. The handle
index of the root figure is 0.

figure A figure window.

axes A set of axes. This object is a child of a figure object and may be a parent of
line, text, image, patch, surface, or light objects.

line A line in two or three dimensions.

text Text annotations.

image A bitmap image.

patch A filled polygon, currently limited to two dimensions.

surface A three-dimensional surface.

light A light object used for lighting effects on patches and surfaces.

15.3.2.1 Creating Graphics Objects

You can create any graphics object primitive by calling the function of the same name as
the object; In other words, figure, axes, line, text, image, patch, surface, and light
functions. These fundamental graphic objects automatically become children of the current
axes object as if hold on was in place. Separately, axes will automatically become children
of the current figure object and figures will become children of the root object 0.

If this auto-joining feature is not desired then it is important to call newplot first to
prepare a new figure and axes for plotting. Alternatively, the easier way is to call a high-
level graphics routine which will both create the plot and then populate it with low-level
graphics objects. Instead of calling line, use plot. Or use surf instead of surface. Or
use £ill instead of patch.

374 GNU Octave

axes ()
axes (property, value, ...)

axes (hax)

h = axes (...)

Create an axes object and return a handle to it, or set the current axes to hax.
Called without any arguments, or with property/value pairs, construct a new axes.
For accepted properties and corresponding values, see [set], page 379.

Called with a single axes handle argument hax, the function makes hax the current
axis. It also restacks the axes in the corresponding figure so that hax is the first
entry in the list of children. This causes hax to be displayed on top of any other axes
objects (Z-order stacking).

See also: [gcal, page 377, [set], page 379, [get], page 379.

line ()

line (x, y)

line (X y, property, value, ...)
line (x, y, 2)

line (x, y, z, property, value, .. .)
line (property, value, ...)

line (hax, ...)

h = line (...)
Create line object from x and y (and possibly z) and insert in the current axes.
Multiple property-value pairs may be specified for the line object, but they must
appear in pairs.
If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.
The optional return value h is a graphics handle (or vector of handles) to the line
objects created.

See also: [image|, page 746, [patch], page 374, [rectangle|, page 316, [surface],
page 375, [text], page 347.

patch ()

patch (x, , c)

patch (x, y, z, ¢)

patch (fv)

patch ("Faces", faces, " Vertices", verts, ...)

patch (..., prop, val, ...)

patch (hax, ...)

= patch (...)

Create patch object in the current axes with vertices at locations (x, y) and of color
c.

If the vertices are matrices of size MxN then each polygon patch has M vertices and a
total of N polygons will be created. If some polygons do not have M vertices use NaN
to represent "no vertex". If the z input is present then 3-D patches will be created.

The color argument ¢ can take many forms. To create polygons which all share a
single color use a string value (e.g., "r" for red), a scalar value which is scaled by

Chapter 15: Plotting 375

caxis and indexed into the current colormap, or a 3-element RGB vector with the
precise TrueColor.

If ¢ is a vector of length N then the ith polygon will have a color determined by scaling
entry c(i) according to caxis and then indexing into the current colormap. More
complicated coloring situations require directly manipulating patch property/value
pairs.

Instead of specifying polygons by matrices x and y, it is possible to present a unique
list of vertices and then a list of polygon faces created from those vertices. In this case
the "Vertices" matrix will be an Nx2 (2-D patch) or Nx3 (3-D patch). The MxN
"Faces" matrix describes M polygons having N vertices—each row describes a single
polygon and each column entry is an index into the "Vertices" matrix to identify a
vertex. The patch object can be created by directly passing the property/value pairs
"Vertices"/verts, "Faces"/faces as inputs.

A third input form is to create a structure fv with the fields "vertices", "faces",
and optionally "facevertexcdata".

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created patch object.

Implementation Note: Patches are highly configurable objects. To truly customize
them requires setting patch properties directly. Useful patch properties are: "cdata",
"edgecolor", "facecolor", "faces", "facevertexcdata".

See also: [fill], page 309, [get], page 379, [set], page 379.

surface (x, y, z, ¢)
surface (x, y, 2)
surface (z, ¢)
surface (z)
surface (..., prop, val, ...)
surface (hax, ...)
h = surface (...)
Create a surface graphic object given matrices x and y from meshgrid and a matrix
of values z corresponding to the x and y coordinates of the surface.

If x and y are vectors, then a typical vertex is (x(j), ¥(i), z(i,j)). Thus, columns of
z correspond to different x values and rows of z correspond to different y values. If
only a single input z is given then x is taken to be 1:rows (z) and y is 1:columns

(2).
Any property/value input pairs are assigned to the surface object.

If the first argument hax is an axes handle, then plot into this axis, rather than the
current axes returned by gca.

The optional return value h is a graphics handle to the created surface object.
See also: [surf], page 321, [mesh], page 319, [patch], page 374, [line], page 374.
light ()

light (..., prop, val, ...)
light (hax, ...)

376 GNU Octave

h = 1light (...)

Create light object in the current axes or for axes hax.

When a light object is present in an axes object and the properties "EdgeLighting" or
"FaceLighting" of a patch or surface object are set to a value other than "none",
these objects are drawn with light and shadow effects. Supported values for these
properties are "none" (no lighting effects), "flat" (faceted look of the objects) and
"gouraud" (linear interpolation of the lighting effects between the vertices). For
patch objects, the normals must be set manually (property "VertexNormals").

Up to eight light objects are supported per axes.

Lighting is only supported for graphics toolkits supporting OpenGL (i.e. "f1tk" and
"qt n)'
The following properties specific to the light object can be passed with their respective
values:

"Color": The color of the light object can be passed as an
RGB-vector (e.g., [1 0 0] for red) or as a string (e.g., "r" for red). The
default color is white ([1 1 11).

"Position": The direction from which the light emanates as an
1x3-vector. The default direction is [1 0 1].

"Style": This string defines whether the light emanates from a
light source at infinite distance ("infinite") or from a local point source
("local").

If 1light is called with an axes handle hax, it must be passed as the first argument.

Optionally, the handle to the light object is returned in h.

See also: [get], page 379, [set], page 379, [patch], page 374, [surface], page 375,
[lighting], page 332, [material], page 333.

15.3.2.2 Handle Functions

To determine whether a variable is a graphics object index, or an index to an axes or figure,
use the functions ishandle, isaxes, and isfigure.

ishandle (h)
Return true if h is a graphics handle and false otherwise.

h may also be a matrix of handles in which case a logical array is returned that is
true where the elements of h are graphics handles and false where they are not.

See also: [isaxes]|, page 377, [isfigure], page 377.
ishghandle (h)

ishghandle (h, type)
Return true if h is a graphics handle (of type type) and false otherwise.

When no type is specified the function is equivalent to ishandle.

See also: [ishandle], page 376.

Chapter 15: Plotting 377

isaxes (h)
Return true if h is an axes graphics handle and false otherwise.
If h is a matrix then return a logical array which is true where the elements of h are
axes graphics handles and false where they are not.

See also: [isaxes|, page 377, [ishandle], page 376.

isfigure (h)
Return true if h is a figure graphics handle and false otherwise.
If h is a matrix then return a logical array which is true where the elements of h are
figure graphics handles and false where they are not.

See also: [isaxes]|, page 377, [ishandle], page 376.

The function gcf returns an index to the current figure object, or creates one if none
exists. Similarly, gca returns the current axes object, or creates one (and its parent figure
object) if none exists.

h = gcf ()

Return a handle to the current figure.
The current figure is the default target for graphics output. If multiple figures exist,
gect returns the last created figure or the last figure that was clicked on with the
mouse.
If a current figure does not exist, create one and return its handle. The handle may
then be used to examine or set properties of the figure. For example,

fplot (@sin, [-10, 10]);

fig = gcf O;

set (fig, "numbertitle", "off", "name", "sin plot")
plots a sine wave, finds the handle of the current figure, and then renames the figure
window to describe the contents.
Note: To find the current figure without creating a new one if it does not exist, query
the "CurrentFigure" property of the root graphics object.

get (0, "currentfigure");

See also: [gcal, page 377, [gco], page 378, [gcbf], page 419, [gcbo], page 418, [get],
page 379, [set], page 379.

h = gca ()
Return a handle to the current axis object.
The current axis is the default target for graphics output. In the case of a figure with
multiple axes, gca returns the last created axes or the last axes that was clicked on
with the mouse.

If no current axes object exists, create one and return its handle. The handle may
then be used to examine or set properties of the axes. For example,

ax = gca);

set (ax, "position", [0.5, 0.5, 0.5, 0.5]);
creates an empty axes object and then changes its location and size in the figure
window.

378 GNU Octave

Note: To find the current axis without creating a new axes object if it does not exist,
query the "CurrentAxes" property of a figure.

get (gcf, "currentaxes");

See also: [gcf]|, page 377, [gco|, page 378, [gebf], page 419, [gcbo], page 418, [get],
page 379, [set], page 379.

h = gco ()

gco (fig)

Return a handle to the current object of the current figure, or a handle to the current
object of the figure with handle fig.

The current object of a figure is the object that was last clicked on. It is stored in
the "CurrentObject" property of the target figure.

ag
I

If the last mouse click did not occur on any child object of the figure, then the current
object is the figure itself.

If no mouse click occurred in the target figure, this function returns an empty matrix.

Programming Note: The value returned by this function is not necessarily the same
as the one returned by gcbo during callback execution. An executing callback can be
interrupted by another callback and the current object may be changed.

See also: [gcbol, page 418, [gcal, page 377, [gef], page 377, [gebf], page 419, [get],
page 379, [set], page 379.

The get and set functions may be used to examine and set properties for graphics
objects. For example,

get (0)
= ans =

{
type = root
currentfigure = [](0x0)
children = [](0x0)
visible = on

}

returns a structure containing all the properties of the root figure. As with all functions
in Octave, the structure is returned by value, so modifying it will not modify the internal
root figure plot object. To do that, you must use the set function. Also, note that in this
case, the currentfigure property is empty, which indicates that there is no current figure
window.

The get function may also be used to find the value of a single property. For example,

get (gca (), "xlim")
= [01]

returns the range of the x-axis for the current axes object in the current figure.
To set graphics object properties, use the set function. For example,
set (gca (), "xlim", [-10, 101);

sets the range of the x-axis for the current axes object in the current figure to ‘[-10, 10]".

Chapter 15: Plotting 379

Default property values can also be queried if the set function is called without a value
argument. When only one argument is given (a graphic handle) then a structure with
defaults for all properties of the given object type is returned. For example,

set (gca ())

returns a structure containing the default property values for axes objects. If set is called
with two arguments (a graphic handle and a property name) then only the defaults for the
requested property are returned.

val = get (h)
val = get (h, p)
Return the value of the named property p from the graphics handle h.

If p is omitted, return the complete property list for h.

If h is a vector, return a cell array including the property values or lists respectively.

See also: [set], page 379.

set (h, property, value, .. .)
set (h, properties, values)
set (h, pv)
value_list = set (h, property)
all_value_list = set (h)
Set named property values for the graphics handle (or vector of graphics handles) h.

There are three ways to give the property names and values:
e as a comma separated list of property, value pairs

Here, each property is a string containing the property name, each value is a
value of the appropriate type for the property.

e as a cell array of strings properties containing property names and a cell array
values containing property values.

In this case, the number of columns of values must match the number of elements
in properties. The first column of values contains values for the first entry in
properties, etc. The number of rows of values must be 1 or match the number
of elements of h. In the first case, each handle in h will be assigned the same
values. In the latter case, the first handle in h will be assigned the values from
the first row of values and so on.

e as a structure array pv

Here, the field names of pv represent the property names, and the field values
give the property values. In contrast to the previous case, all elements of pv will
be set in all handles in h independent of the dimensions of pv.

set is also used to query the list of values a named property will take. clist = set
(h, "property") will return the list of possible values for "property" in the cell list
clist. If no output variable is used then the list is formatted and printed to the screen.

If no property is specified (slist = set (h)) then a structure slist is returned where
the fieldnames are the properties of the object h and the fields are the list of possible
values for each property. If no output variable is used then the list is formatted and
printed to the screen.

380 GNU Octave

For example,

hf = figure O;
set (hf, "paperorientation")
= paperorientation: [landscape | {portrait} | rotated]

shows the paperorientation property can take three values with the default being
"portrait".

See also: [get], page 379.

parent = ancestor (h, type)

parent = ancestor (h, type, "toplevel")
Return the first ancestor of handle object h whose type matches type, where type is
a character string.

If type is a cell array of strings, return the first parent whose type matches any of the
given type strings.

If the handle object h itself is of type type, return h.

If "toplevel" is given as a third argument, return the highest parent in the object
hierarchy that matches the condition, instead of the first (nearest) one.

See also: [findobj], page 414, [findall], page 415, [allchild], page 380.

h = allchild (handles)
Find all children, including hidden children, of a graphics object.

This function is similar to get (h, "children"), but also returns hidden objects
(HandleVisibility = "off").

If handles is a scalar, h will be a vector. Otherwise, h will be a cell matrix of the
same size as handles and each cell will contain a vector of handles.

See also: [findall], page 415, [findobj], page 414, [get], page 379, [set], page 379.

findfigs ()
Find all visible figures that are currently off the screen and move them onto the screen.

See also: [allchild], page 380, [figure]|, page 353, [get], page 379, [set], page 379.

Figures can be printed or saved in many graphics formats with print and saveas.
Occasionally, however, it may be useful to save the original Octave handle graphic directly
so that further modifications can be made such as modifying a title or legend.

This can be accomplished with the following functions by

fig_struct = hdl2struct (gcf);
save myplot.fig -struct fig_struct;

fig_struct = load ("myplot.fig");
struct2hdl (fig_struct);

s = hdl2struct (h)
Return a structure, s, whose fields describe the properties of the object, and its
children, associated with the handle, h.

Chapter 15: Plotting 381

= il <
I

hnew
hnew

15.3

The fields of the structure s are "type", "handle", "properties", "children", and
"special.

See also: [struct2hdl], page 381, [hgsave], page 369, [findobj], page 414.

= struct2hdl (s)

struct2hdl (s, p)

struct2hdl (s, p, hilev)

Construct a graphics handle object h from the structure s.

The structure must contain the fields "handle", "type", "children", "properties",
and "special".

If the handle of an existing figure or axes is specified, p, the new object will be created
as a child of that object. If no parent handle is provided then a new figure and the
necessary children will be constructed using the default values from the root figure.
A third boolean argument hilev can be passed to specify whether the function should
preserve listeners/callbacks, e.g., for legends or hggroups. The default is false.

See also: [hdl2struct], page 380, [hgload], page 369, [findobj], page 414.

= copyobj (horig)

= copyobj (horig, hparent)

Construct a copy of the graphic objects associated with the handles horig and return
new handles hnew to the new objects.

If a parent handle hparent (root, figure, axes, or hggroup) is specified, the copied
object will be created as a child of hparent.

If horig is a vector of handles, and hparent is a scalar, then each handle in the vector
hnew has its "Parent" property set to hparent. Conversely, if horig is a scalar and
hparent a vector, then each parent object will receive a copy of horig. If horig and
hparent are both vectors with the same number of elements then hnew(i) will have
parent hparent(i).

See also: [struct2hdl], page 381, [hdl2struct], page 380, [findobj], page 414.

)

.3 Graphics Object Properties

In this Section the graphics object properties are discussed in detail, starting with the root
figure properties and continuing through the objects hierarchy. The documentation about a
specific graphics object can be displayed using doc function, e.g., doc ("axes properties")
will show Section 15.3.3.3 [Axes Properties|, page 387.

The allowed values for radio (string) properties can be retrieved programmatically or
displayed using the one or two arguments call to set function. See [set], page 379.

In

15.3

the following documentation, default values are enclosed in { }.

.3.1 Root Figure Properties

The root figure properties are:

modified__: "off" | {"on"

beingdeleted: {"off"} | "on"

beingdeleted is unused.

382 GNU Octave

busyaction: "cancel" | {"queue"}
busyaction is unused.

buttondownfcn: string | function handle, def. [] (0x0)
buttondownfcn is unused.

callbackobject (read-only): graphics handle, def. [1(0x0)
Graphics handle of the current object whose callback is executing.

children (read-only): vector of graphics handles, def. [](0x1)
Graphics handles of the root’s children.

clipping: "off" | {"on"
clipping is unused.

commandwindowsize (read-only): def. [0 0]
createfcn: string | function handle, def. [](0x0)
createfcn is unused.

currentfigure: graphics handle, def. [](0x0)
Graphics handle of the current figure.

deletefcn: string | function handle, def. [](0x0)
deletefcn is unused.

fixedwidthfontname: string, def. "Courier"
handlevisibility: "callback" | "off" | {"on"
handlevisibility is unused.

hittest: "off" | {"on"
hittest is unused.

interruptible: "off" | {"on"
interruptible is unused.

monitorpositions (read-only):
monitorpositions is unused.

parent: graphics handle, def. [] (0x0)
Root figure has no parent graphics object. parent is always empty.

pointerlocation: two-element vector, def. [0 0]
pointerlocation is unused.

pointerwindow (read-only): graphics handle, def. 0
pointerwindow is unused.

screendepth (read-only): double
screenpixelsperinch (read-only): double
screensize (read-only): four-element vector
selected: {"off"} | "on"

selected is unused.

selectionhighlight: "off" | {"on"
selectionhighlight is unused.

Chapter 15: Plotting 383

showhiddenhandles: {"off"} | "on"
If showhiddenhandles is "on", all graphics objects handles are visible in their
parents’ children list, regardless of the value of their handlevisibility prop-
erty.

tag: string, def. ""
A user-defined string to label the graphics object.

type (read-only): string
Class name of the graphics object. type is always "root"

uicontextmenu: graphics handle, def. [](0x0)
uicontextmenu is unused.

units: "centimeters" | "inches" | "normalized" | {"pixels"} | "points"
userdata: Any Octave data, def. [](0x0)
User-defined data to associate with the graphics object.

visible: "off" | {"on"
visible is unused.

15.3.3.2 Figure Properties

The figure properties are:

s =

scalar structure containing the fields:

valid = default = doc = The value for the papersize, and paperposition properties de-
pends upon __prop__. The horizontal and vertical values for papersize and paperposition
reverse order when __prop-_ is switched between "portrait" and "landscape". printde-
fault =1

s =

scalar structure containing the fields:

valid = default = doc = __prop__ is deprecated. Use sizechangedfcn instead. printde-
fault = 1

s =

scalar structure containing the fields:

valid = default = doc = Callback triggered when the figure window size is changed.
printdefault = 1

__modified__: "off" | {"on"
alphamap: def. 64-by-1 double
Transparency is not yet implemented for figure objects. alphamap is unused.

beingdeleted: {"off"} | "on"

busyaction: "cancel" | {"queue"}

buttondownfcn: string | function handle, def. [](0x0)

children (read-only): vector of graphics handles, def. [](0x1)
Graphics handles of the figure’s children.

clipping: "off" | {"on"
clipping is unused.

384 GNU Octave

closerequestfcn: string | function handle, def. "closereq"
color: colorspec, def. [1 1 1]
Color of the figure background. See Section 15.4.1 [colorspec|, page 417.

colormap: N-by-3 matrix, def. 64-by-3 double
A matrix containing the RGB color map for the current axes.

createfcn: string | function handle, def. [1(0x0)
Callback function executed immediately after figure has been created.
Function is set by using default property on root object, e.g., set (0,
"defaultfigurecreatefcn", *disp ("figure created!")’).

currentaxes: graphics handle, def. [] (0x0)
Handle to the graphics object of the current axes.

currentcharacter (read-only): def. ""
currentcharacter is unused.

currentobject (read-only): graphics handle, def. [](0x0)

currentpoint (read-only): two-element vector, def. [0; 0]
A 1-by-2 matrix which holds the coordinates of the point over which the mouse
pointer was when a mouse event occurred. The X and Y coordinates are in
units defined by the figure’s units property and their origin is the lower left
corner of the plotting area.

Events which set currentpoint are

A mouse button was pressed
always

A mouse button was released
only if the figure’s callback windowbuttonupfcn is defined

The pointer was moved while pressing the mouse button (drag)
only if the figure’s callback windowbuttonmotionfcn is defined

deletefcn: string | function handle, def. [](0x0)
Callback function executed immediately before figure is deleted.

dockcontrols: {"off"} | "on"
dockcontrols is unused.

filename: string, def. ""
The filename used when saving the plot figure.

graphicssmoothing: "off" | {"on"
Use smoothing techniques to reduce the appearance of jagged lines.

handlevisibility: "callback" | "off" | {"on"
If handlevisibility is "off", the figure’s handle is not visible in its parent’s
"children" property.

hittest: "off" | {"on"
integerhandle: "off" | {"on"
Assign the next lowest unused integer as the Figure number.

Chapter 15: Plotting 385

interruptible: "off" | {"on"
inverthardcopy: "off" | {"on"
Replace the figure and axes background color with white when printing.

keypressfcn: string | function handle, def. [] (0x0)

keyreleasefcn: string | function handle, def. [](0x0)
With keypressfcn, the keyboard callback functions. These callback functions
are called when a key is pressed/released respectively. The functions are called
with two input arguments. The first argument holds the handle of the calling
figure. The second argument holds an event structure which has the following

members:
Character:

The ASCII value of the key
Key: Lowercase value of the key
Modifier:

A cell array containing strings representing the modifiers pressed
with the key.

menubar: {"figure"} | "none"
Control the display of the figure menu bar in the upper left of the figure.

name: string, def. ""
Name to be displayed in the figure title bar. The name is displayed to the right
of any title determined by the numbertitle property.

nextplot: {"add"} | "new" | "replace" | "replacechildren"

numbertitle: "off" | {"on"
Display "Figure" followed by the numerical figure handle value in the figure
title bar.

outerposition: four-element vector, def. [-1 -1 -1 -1]

paperorientation: "landscape" | {"portrait"}
The value for the papersize, and paperposition properties depends upon
paperorientation. The horizontal and vertical values for papersize and
paperposition reverse order when paperorientation is switched between
"portrait" and "landscape".

paperposition: four-element vector, def. [0.25000 2.50000 8.00000 6.00000]

Vector [left bottom width height] defining the position and size of the figure
(in paperunits units) on the printed page. The position [left bottom] defines
the lower left corner of the figure on the page, and the size is defined by [width
height]. For output formats not implicitly rendered on paper, width and
height define the size of the image and the position information is ignored.
Setting paperposition also forces the paperpositionmode property to be set
to "manual".

paperpositionmode: "auto" | {"manual"}
If paperpositionmode is set to "auto", the paperposition property is auto-
matically computed: the printed figure will have the same size as the on-screen

386 GNU Octave

figure and will be centered on the output page. Setting the paperpositionmode
to "auto" does not modify the value of the paperposition property.

papersize: two-element vector, def. [8.5000 11.0000]
Vector [width height] defining the size of the paper for printing. Setting
the papersize property to a value, not associated with one of the defined
papertypes and consistent with the setting for paperorientation, forces
the papertype property to the value "<custom>". If papersize is set to
a value associated with a supported papertype and consistent with the
paperorientation, the papertype value is modified to the associated value.

papertype: "<custom>" | "a" | "a0" | "ail" | "a2" | "a3" | "a4" | "ab" | "arch-a" |
"arch-b" | "arch-c" | "arch-d" | "arch-e" | "b" | "b0" | "b1" | "b2" | "b3" | "b4"
| "b&"™ | "c" | "d" | "e" | "tabloid" | "uslegal" | {"usletter"}
Name of the paper used for printed output. Setting papertype also changes
papersize, while maintaining consistency with the paperorientation prop-
erty.

paperunits: "centimeters" | {"inches"} | "normalized" | "points"
The unit used to compute the paperposition property. For paperunits set to
"pixels", the conversion between physical units (ex: "inches") and "pixels"
is dependent on the screenpixelsperinch property of the root object.

parent: graphics handle, def. 0
Handle of the parent graphics object.

pointer: {"arrow"} | "botl" | "botr" | "bottom" | "circle" | "cross" |
"crosshair" | "custom" | "fleur" | "fullcrosshair" | "hand" | "ibeam" | "left" |
llrightll I lltopll | Iltoplll I lltoprll I IIWatCh"

pointer is unused.

pointershapecdata: def. 16-by-16 double
pointershapecdata is unused.

pointershapehotspot: def. [0 0]
pointershapehotspot is unused.

position: four-element vector, def. [300 200 560 420]
renderer: {"opengl"} | "painters"
renderermode: {"auto"} | "manual"
resize: "off" | {"on"
resize is unused.

resizefcn: string | function handle, def. [] (0x0)
resizefcn is deprecated. Use sizechangedfcn instead.

selected: {"off"} | "on"
selectionhighlight: "off" | {"on"
selectiontype: "alt" | "extend" | {"normal"} | "open"
sizechangedfcn: string | function handle, def. [] (0x0)
Callback triggered when the figure window size is changed.

tag: string, def. ""
A user-defined string to label the graphics object.

Chapter 15: Plotting 387

toolbar: {"auto"} | "figure" | "none"
Control the display of the toolbar along the bottom of the figure window. When
set to "auto", the display is based on the value of the menubar property.

type (read-only): string
Class name of the graphics object. type is always "figure"

uicontextmenu: graphics handle, def. [](0x0)
Graphics handle of the uicontextmenu object that is currently associated to
this figure object.

units: "centimeters" | "characters" | "inches" | "normalized" | {"pixels"} |
"points"
The unit used to compute the position and outerposition properties.

userdata: Any Octave data, def. [](0x0)
User-defined data to associate with the graphics object.

visible: "off" | {"on"
If visible is "off", the figure is not rendered on screen.

windowbuttondownfcn: string | function handle, def. [(0x0)
See [windowbuttonupfen property], page 387.

windowbuttonmotionfcn: string | function handle, def. [1(0x0)
See [windowbuttonupfen property|, page 387.

windowbuttonupfcn: string | function handle, def. [] (0x0)
With windowbuttondownfcn and windowbuttonmotionfcn, the mouse callback
functions. These callback functions are called when a mouse button is pressed,
dragged, or released respectively. When these callback functions are executed,
the currentpoint property holds the current coordinates of the cursor.

windowkeypressfcn: string | function handle, def. [](0x0)
windowkeyreleasefcn: string | function handle, def. [](0x0)
windowscrollwheelfcn: string | function handle, def. [] (0x0)
windowstyle: "docked" | "modal" | {"normal"}

The window style of a figure. One of the following values:

normal Set the window style as non modal.
modal Set the window as modal so that it will stay on top of all normal
figures.

docked Setting the window style as docked currently does not dock the
window.

Changing modes of a visible figure may cause the figure to close and reopen.

15.3.3.3 Axes Properties

The axes properties are:
__modified__: "off" | {"on"
activepositionproperty: {"outerposition"} | "position"
alim: def. [0 1]
Transparency is not yet implemented for axes objects. alim is unused.

388 GNU Octave

alimmode: {"auto"} | "manual"
ambientlightcolor: def. [1 1 1]
Light is not yet implemented for axes objects. ambientlightcolor is unused.

beingdeleted: {"off"} | "on"
box: {"off"} | "on"
Control whether the axes has a surrounding box.

boxstyle: {"back"} | "full"
boxstyle is unused.

busyaction: "cancel" | {"queue"}

buttondownfcn: string | function handle, def. [] (0x0)

cameraposition: three-element vector, def. [0.50000 0.50000 9.16025]

camerapositionmode: {"auto"} | "manual"

cameratarget: three-element vector, def. [0.50000 0.50000 0.50000]

cameratargetmode: {"auto"} | "manual"

cameraupvector: three-element vector, def. [-0 1 0]

cameraupvectormode: {"auto"} | "manual"

cameraviewangle: scalar, def. 6.6086

cameraviewanglemode: {"auto"} | "manual"

children (read-only): vector of graphics handles, def. [](0x1)
Graphics handles of the axes’s children.

clim: two-element vector, def. [0 1]
Define the limits for the color axis of image children. Setting clim also forces
the climmode property to be set to "manual". See [pcolor function], page 308.

climmode: {"auto"} | "manual"
clipping: "off" | {"on"
clipping is unused.

clippingstyle: {"3dbox"} | "rectangle"
clippingstyle is unused.

color: colorspec, def. [1 1 1]
Color of the axes background. See Section 15.4.1 [colorspec|, page 417.

colororder: N-by-3 RGB matrix, def. 7-by-3 double
RGB values used by plot function for automatic line coloring.

colororderindex: def. 1
colororderindex is unused.

createfcn: string | function handle, def. [] (0x0)
Callback function executed immediately after axes has been created.
Function is set by using default property on root object, e.g., set (O,
"defaultaxescreatefcn", ’disp ("axes created!")’).

currentpoint: 2-by-3 matrix, def. 2-by-3 double
Matrix [xf, yf, zf; xb, yb, zb] which holds the coordinates (in axes data
units) of the point over which the mouse pointer was when the mouse button
was pressed. If a mouse callback function is defined, currentpoint holds the

Chapter 15: Plotting 389

pointer coordinates at the time the mouse button was pressed. For 3-D plots,
the first row of the returned matrix specifies the point nearest to the current
camera position and the second row the furthest point. The two points forms
a line which is perpendicular to the screen.

dataaspectratio: three-element vector, def. [1 1 1]
Specify the relative height and width of the data displayed in the axes. Set-
ting dataaspectratio to [1, 2] causes the length of one unit as displayed
on the x-axis to be the same as the length of 2 units on the y-axis. Setting
dataaspectratio also forces the dataaspectratiomode property to be set to
"manual".

dataaspectratiomode: {"auto"} | "manual"
deletefcn: string | function handle, def. [] (0x0)
Callback function executed immediately before axes is deleted.

drawmode: "fast" | {"normal"}
fontangle: "italic" | {"normal"}
fontname: string, def. "*"
Name of the font used for axes annotations.

fontsize: scalar, def. 10
Size of the font used for axes annotations. See [fontunits property|, page 389.

fontsmoothing: "off" | {"on"
fontsmoothing is unused.

fontunits: "centimeters" | "inches" | "normalized" | "pixels" | {"points"}
Unit used to interpret fontsize property.

fontweight: "bold" | {"normal"}
gridalpha: def. 0.15000
Transparency is not yet implemented for axes objects. gridalpha is unused.

gridalphamode: {"auto"} | "manual"
gridalphamode is unused.

gridcolor: def. [0.15000 0.15000 0.15000]
gridcolor is unused.

gridcolormode: {"auto"} | "manual"
gridcolormode is unused.

gridlinestyle: {n_u} | n__n | n_om | n.n | "none"

handlevisibility: "callback" | "off" | {"on“
If handlevisibility is "off", the axes’s handle is not visible in its parent’s
"children" property.

hittest: "off" | {"on"

interruptible: "off" | {"on"

labelfontsizemultiplier: def. 1.1000
labelfontsizemultiplier is unused.

390

GNU Octave

layer: {"bottom"} | "top"

Control whether the axes is drawn below child graphics objects (ticks, labels,
etc. covered by plotted objects) or above.

linestyleorder: def. "-"

linestyleorder is unused.

linestyleorderindex: def. 1

linestyleorderindex is unused.

linewidth: def. 0.50000
minorgridalpha: def. 0.25000

Transparency is not yet implemented for axes objects. minorgridalpha is
unused.

minorgridalphamode: {"auto"} | "manual"

minorgridalphamode is unused.

minorgridcolor: def. [0.10000 0.10000 0.10000]

minorgridcolor is unused.

minorgridcolormode: {"auto"} | "manual"

minorgridcolormode is unused.

minorgridlinestyle: "-" | "—=" | "= " | {":"} | "none"
mousewheelzoom: scalar in the range (0, 1), def. 0.50000

Fraction of axes limits to zoom for each wheel movement.

nextplot: "add" | {"replace"} | "replacechildren"
outerposition: four-element vector, def. [0 0 1 1]

Specify the position of the plot including titles, axes, and legend. The four
elements of the vector are the coordinates of the lower left corner and width
and height of the plot, in units normalized to the width and height of the plot
window. For example, [0.2, 0.3, 0.4, 0.5] sets the lower left corner of the
axes at (0.2,0.3) and the width and height to be 0.4 and 0.5 respectively. See
[position property], page 390.

parent: graphics handle

Handle of the parent graphics object.

pickableparts: "all" | "none" | {"visible"}

pickableparts is unused.

plotboxaspectratio: def. [1 1 1]
plotboxaspectratiomode: {"auto"} | "manual"
position: four-element vector, def. [0.13000 0.11000 0.77500 0.81500]

Specify the position of the plot excluding titles, axes, and legend. The four
elements of the vector are the coordinates of the lower left corner and width
and height of the plot, in units normalized to the width and height of the plot
window. For example, [0.2, 0.3, 0.4, 0.5] sets the lower left corner of the
axes at (0.2,0.3) and the width and height to be 0.4 and 0.5 respectively. See
[outerposition property], page 390.

Chapter 15: Plotting 391

projection: {"orthographic"} | "perspective"
projection is unused.

selected: {"off"} | "on"

selectionhighlight: "off" | {"on"

sortmethod: "childorder" | {"depth"}
sortmethod is unused.

tag: string, def. ""
A user-defined string to label the graphics object.
tickdir: {"in"} | "out"
Control whether axes tick marks project "in" to the plot box or "out".
tickdirmode: {"auto"} | "manual"
ticklabelinterpreter: "latex" | "none" | {"tex"

Control the way x/y/zticklabel properties are interpreted. See
[Use of the interpreter property|, page 359.

ticklength: two-element vector, def. [0.010000 0.025000]
Two-element vector [2D1en 3Dlen] specifying the length of the tickmarks rel-
ative to the longest visible axis.

tightinset (read-only): def. [0.042857 0.038106 0.000000 0.023810]
title: graphics handle
Graphics handle of the title text object.

titlefontsizemultiplier: def. 1.1000
titlefontsizemultiplier is unused.

titlefontweight: {"bold"} | "normal"
titlefontweight is unused.

type (read-only): string
Class name of the graphics object. type is always "axes"

uicontextmenu: graphics handle, def. [] (0x0)
Graphics handle of the uicontextmenu object that is currently associated to
this axes object.

units: "centimeters" | "characters" | "inches" | {"normalized"} | "pixels" |
"points"
userdata: Any Octave data, def. [](0x0)

User-defined data to associate with the graphics object.

view: two-element vector, def. [0 90]
Two-element vector [azimuth elevation] specifying the viewpoint for three-
dimensional plots

visible: "off" | {"on"
If visible is "off", the axes is not rendered on screen.

xaxislocation: {"bottom"} | "origin" | "top" | "zero"
xcolor: {colorspec} | "none", def. [0.15000 0.15000 0.15000]
Color of the x-axis. See Section 15.4.1 [colorspec], page 417.

392 GNU Octave

xcolormode: {"auto"} | "manual"
xcolormode is unused.

xdir: {"normal"} | "reverse"
xgrid: {"off"} | "on"
Control whether major x grid lines are displayed.

xlabel: graphics handle
Graphics handle of the x label text object.

xlim: two-element vector, def. [0 1]
Two-element vector [xmin xmax] specifying the limits for the x-axis. Set-
ting x1im also forces the xlimmode property to be set to "manual". See
[xlim function], page 313.

xlimmode: {"auto"} | "manual"
xminorgrid: {"off"} | "on"
Control whether minor x grid lines are displayed.

xminortick: {"off"} | "on"

xscale: {"linear"} | "log"

xtick: vector
Position of x tick marks. Setting xtick also forces the xtickmode property to
be set to "manual".

xticklabel: string | cell array of strings, def. 1-by-6 cell
Labels of x tick marks. Setting xticklabel also forces the xticklabelmode
property to be set to "manual".

xticklabelmode: {"auto"} | "manual"
xticklabelrotation: def. O
xticklabelrotation is unused.

xtickmode: {"auto"} | "manual"
yaxislocation: {"left"} | "origin" | "right" | "zero"
ycolor: {colorspec} | "none", def. [0.15000 0.15000 0.15000]
Color of the y-axis. See Section 15.4.1 [colorspec], page 417.

ycolormode: {"auto"} | "manual"
ycolormode is unused.

ydir: {"normal"} | "reverse"
ygrid: {"off"} | "on"
Control whether major y grid lines are displayed.

ylabel: graphics handle
Graphics handle of the y label text object.

ylim: two-element vector, def. [0 1]
Two-element vector [ymin ymax] specifying the limits for the y-axis. Set-
ting ylim also forces the ylimmode property to be set to "manual". See
[ylim function], page 313.

Chapter 15: Plotting 393

ylimmode: {"auto"} | "manual"

yminorgrid: {"off"} | "on"
Control whether minor y grid lines are displayed.

yminortick: {"off"} | "on"

yscale: {"linear"} | "log"

ytick: vector
Position of y tick marks. Setting ytick also forces the ytickmode property to
be set to "manual".

yticklabel: string | cell array of strings, def. 1-by-6 cell
Labels of y tick marks. Setting yticklabel also forces the yticklabelmode
property to be set to "manual".

yticklabelmode: {"auto"} | "manual"
yticklabelrotation: def. O
yticklabelrotation is unused.

ytickmode: {"auto"} | "manual"
zcolor: {colorspec} | "none", def. [0.15000 0.15000 0.15000]
Color of the z-axis. See Section 15.4.1 [colorspec], page 417.

zcolormode: {"auto"} | "manual"
zcolormode is unused.

zdir: {"normal"} | "reverse"
zgrid: {"off"} | "on"

Control whether major z grid lines are displayed.
zlabel: graphics handle

Graphics handle of the z label text object.

zlim: two-element vector, def. [0 1]
Two-element vector [zmin zmaz] specifying the limits for the z-axis. Set-
ting zlim also forces the zlimmode property to be set to "manual". See
[zlim function], page 313.

zlimmode: {"auto"} | "manual"

zminorgrid: {"off"} | "on"
Control whether minor z grid lines are displayed.

zminortick: {"off"} | "on"

zscale: {"linear"} | "log"

ztick: vector
Position of z tick marks. Setting ztick also forces the ztickmode property to
be set to "manual".

zticklabel: string | cell array of strings, def. 1-by-6 cell
Labels of z tick marks. Setting zticklabel also forces the zticklabelmode
property to be set to "manual".

zticklabelmode: {"auto"} | "manual"
zticklabelrotation: def. 0
zticklabelrotation is unused.

ztickmode: {"auto"} | "manual"

394 GNU Octave

15.3.3.4 Line Properties

The line properties are:

__modified__: "off" | {"on"

beingdeleted: {"off"} | "on"

busyaction: "cancel" | {"queue"}

buttondownfcn: string | function handle, def. [1(0x0)

children (read-only): vector of graphics handles, def. [](0x1)
children is unused.

clipping: "off" | {"on"
If clipping is "on", the line is clipped in its parent axes limits.

color: colorspec, def. [0 0 0]
Color of the line object. See Section 15.4.1 [colorspec], page 417.

createfcn: string | function handle, def. [] (0x0)
Callback function executed immediately after line has been created.
Function is set by using default property on root object, e.g., set (0,
"defaultlinecreatefcn", *disp ("line created!")’).

deletefcn: string | function handle, def. [](0x0)
Callback function executed immediately before line is deleted.

displayname: string | cell array of strings, def. ""
Text for the legend entry corresponding to this line.

handlevisibility: "callback" | "off" | {"on"
If handlevisibility is "off", the line’s handle is not visible in its parent’s
"children" property.

hittest: "off" | {"on"

interpreter: "latex" | "none" | {"tex"
interruptible: "off" | {"on"
linestyle: {Il_ll} | n__mn I ||_.|| I ll:ll | "none"

See Section 15.4.2 [Line Styles|, page 417.

linewidth: def. 0.50000
Width of the line object measured in points.

marker: ll*ll | II+|| | n . n | ||<ll I ll>|| | n-~n | ||d|| | "diaIIlOIld" | ||hll I "heXagraIn" |
{"nOnell} | "O" | "pll | "pentagraﬂl" I IIS" | "Square" | "V" | "X"
Shape of the marker for each data point. See Section 15.4.3 [Marker Styles],
page 417.

markeredgecolor: {"auto"} | "none"
Color of the edge of the markers. When set to "auto", the marker edges have
the same color as the line. If set to "none", no marker edges are displayed. This
property can also be set to any color. See Section 15.4.1 [colorspec], page 417.

markerfacecolor: "auto" | {"none"
Color of the face of the markers. When set to "auto", the marker faces have the
same color as the line. If set to "none", the marker faces are not displayed. This
property can also be set to any color. See Section 15.4.1 [colorspec], page 417.

Chapter 15: Plotting 395

markersize: scalar, def. 6
Size of the markers measured in points.

parent: graphics handle
Handle of the parent graphics object.

selected: {"off"} | "on"
selectionhighlight: "off" | {"on"
tag: string, def. ""
A user-defined string to label the graphics object.

type (read-only): string
Class name of the graphics object. type is always "line"
uicontextmenu: graphics handle, def. [](0x0)

Graphics handle of the uicontextmenu object that is currently associated to
this line object.

userdata: Any Octave data, def. [](0x0)
User-defined data to associate with the graphics object.

visible: "off" | {"on"
If visible is "off", the line is not rendered on screen.

xdata: vector, def. [0 1]
Vector of x data to be plotted.

xdatasource: string, def. ""
Name of a vector in the current base workspace to use as x data.

ydata: vector, def. [0 1]
Vector of y data to be plotted.

ydatasource: string, def. ""
Name of a vector in the current base workspace to use as y data.

zdata: vector, def. [](0x0)
Vector of z data to be plotted.

zdatasource: string, def. ""
Name of a vector in the current base workspace to use as z data.

15.3.3.5 Text Properties

The text properties are:

__modified__: "off" | {"on"

backgroundcolor: colorspec, def. "none"
Background area is not yet implemented for text objects. backgroundcolor is
unused.

beingdeleted: {"off"} | "on"

busyaction: "cancel" | {"queue"}

buttondownfcn: string | function handle, def. [1(0x0)

children (read-only): vector of graphics handles, def. [](0x1)
children is unused.

396 GNU Octave

clipping: "off" | {"on"
If clipping is "on", the text is clipped in its parent axes limits.

color: colorspec, def. [0 0 0]
Color of the text. See Section 15.4.1 [colorspec], page 417.

createfcn: string | function handle, def. [1(0x0)
Callback function executed immediately after text has been created.
Function is set by using default property on root object, e.g., set (0,
"defaulttextcreatefcn", *disp ("text created!")’).

deletefcn: string | function handle, def. [](0x0)
Callback function executed immediately before text is deleted.

displayname: def. ""
edgecolor: colorspec, def. "none"
Background area is not yet implemented for text objects. edgecolor is unused.

editing: {"off"} | "on"
extent (read-only): def. [0.000000 -0.005843 0.000000 0.032136]
fontangle: "italic" | {"normal"} | "oblique"
Flag whether the font is italic or normal. fontangle is currently unused.

fontname: string, def. "*"
The font used for the text.

fontsize: scalar, def. 10
The font size of the text as measured in fontunits.

fontunits: "centimeters" | "inches" | "normalized" | "pixels" | {"points"}
The units used to interpret fontsize property.

fontweight: "bold" | "demi" | "light" | {"normal"}
Control variant of base font used: bold, light, normal, etc.

handlevisibility: "callback" | "off" | {"on"
If handlevisibility is "off", the text’s handle is not visible in its parent’s
"children" property.

hittest: "off" | {"on"

horizontalalignment: "center" | {"left"} | "right"

interpreter: "latex" | "none" | {"tex"
Control the way the "string" property 1is interpreted. See
[Use of the interpreter property], page 359.

interruptible: "off" | {"on"
linestyle: {u_u} | n__mn I ||_. " I n . " | "none"
Background area is not yet implemented for text objects. 1inestyle is unused.

linewidth: scalar, def. 0.50000
Background area is not yet implemented for text objects. linewidth is unused.

margin: scalar, def. 2
Background area is not yet implemented for text objects. margin is unused.

Chapter 15: Plotting 397

parent: graphics handle
Handle of the parent graphics object.

position: four-element vector, def. [0 0 O]
Vector [X0 YO Z0] where X0, YO and Z0 indicate the position of the text anchor
as defined by verticalalignment and horizontalalignment.

rotation: scalar, def. 0
The angle of rotation for the displayed text, measured in degrees.

selected: {"off"} | "on"
selectionhighlight: "off" | {"on"
string: string, def. ""

The text object string content.

tag: string, def. ""
A user-defined string to label the graphics object.

type (read-only): string
Class name of the graphics object. type is always "text"

uicontextmenu: graphics handle, def. [](0x0)
Graphics handle of the uicontextmenu object that is currently associated to
this text object.

units: "centimeters" | {"data"} | "inches" | "normalized" | "pixels" | "points"
userdata: Any Octave data, def. [](0x0)
User-defined data to associate with the graphics object.

verticalalignment: "baseline" | "bottom" | "cap" | {"middle"} | "top"
visible: "off" | {"on"
If visible is "off", the text is not rendered on screen.

15.3.3.6 Image Properties
The image properties are:

__modified__: "off" | {"on"
alphadata: scalar | matrix, def. 1
Transparency is not yet implemented for image objects. alphadata is unused.

alphadatamapping: "direct" | {"none"} | "scaled"
Transparency is not yet implemented for image objects. alphadatamapping is
unused.

beingdeleted: {"off"} | "on"

busyaction: "cancel" | {"queue"}

buttondownfcn: string | function handle, def. [](0x0)

cdata: matrix, def. 64-by-64 double

cdatamapping: {"direct"} | "scaled"

children (read-only): vector of graphics handles, def. [](0x1)
children is unused.

clipping: "off" | {"on"
If clipping is "on", the image is clipped in its parent axes limits.

398 GNU Octave

createfcn: string | function handle, def. [](0x0)
Callback function executed immediately after image has been created.
Function is set by using default property on root object, e.g., set (0,
"defaultimagecreatefcn", ’disp ("image created!")’).

deletefcn: string | function handle, def. [](0x0)
Callback function executed immediately before image is deleted.

displayname: string | cell array of strings, def. ""
Text for the legend entry corresponding to this image.

handlevisibility: "callback" | "off" |{"on"
If handlevisibility is "off", the image’s handle is not visible in its parent’s
"children" property.

hittest: "off" | {"on"
interruptible: "off" | {"on"
parent: graphics handle
Handle of the parent graphics object.

selected: {"off"} | "on"
selectionhighlight: "off" | {"on"
tag: string, def. ""
A user-defined string to label the graphics object.

type (read-only): string
Class name of the graphics object. type is always "image"

uicontextmenu: graphics handle, def. [] (0x0)
Graphics handle of the uicontextmenu object that is currently associated to
this image object.

userdata: Any Octave data, def. [](0x0)
User-defined data to associate with the graphics object.

visible: "off" | {"on"
If visible is "off", the image is not rendered on screen.

xdata: two-element vector, def. [1 64]
Two-element vector [xmin xmax] specifying the x coordinates of the first and
last columns of the image.

Setting xdata to the empty matrix ([]) will restore the default value of [1
columns (image)].

ydata: two-element vector, def. [1 64]
Two-element vector [ymin ymax] specifying the y coordinates of the first and
last rows of the image.

Setting ydata to the empty matrix ([]) will restore the default value of [1
rows (image)].

15.3.3.7 Patch Properties
The patch properties are:

Chapter 15: Plotting 399

modified__: "off" | {"on"

alphadatamapping: "direct" | "none" | {"scaled"}
Transparency is not yet implemented for patch objects. alphadatamapping is
unused.

ambientstrength: scalar, def. 0.30000
Strength of the ambient light. Value between 0.0 and 1.0

backfacelighting: "1it" | {"reverselit"} | "unlit"
"1lit": The normals are used as is for lighting. "reverselit": The normals
are always oriented towards the point of view. "unlit": Faces with normals
pointing away from the point of view are unlit.

beingdeleted: {"off"} | "on"

busyaction: "cancel" | {"queue"}

buttondownfcn: string | function handle, def. [] (0x0)

cdata: scalar | matrix, def. [](0x0)
Data defining the patch object color. Patch color can be defined for faces or
for vertices.

If cdata is a scalar index into the current colormap or a RGB triplet, it defines
the color of all faces.

If cdata is an N-by-1 vector of indices or an N-by-3 (RGB) matrix, it defines
the color of each one of the N faces.

If cdata is an N-by-M or an N-by-M-by-3 (RGB) matrix, it defines the color at
each vertex.

cdatamapping: "direct" | {"scaled"}
children (read-only): vector of graphics handles, def. [](0x1)
children is unused.

clipping: "off" | {"on"
If clipping is "on", the patch is clipped in its parent axes limits.

createfcn: string | function handle, def. [](0x0)
Callback function executed immediately after patch has been created.
Function is set by using default property on root object, e.g., set (0,
"defaultpatchcreatefcn", ’disp ("patch created!")’).

deletefcn: string | function handle, def. [] (0x0)
Callback function executed immediately before patch is deleted.

diffusestrength: scalar, def. 0.60000
Strength of the diffuse reflex. Value between 0.0 (no diffuse reflex) and 1.0 (full
diffuse reflex).

displayname: def. ""
Text of the legend entry corresponding to this patch.

edgealpha: scalar | matrix, def. 1
Transparency is not yet implemented for patch objects. edgealpha is unused.

400 GNU Octave

edgecolor: def. [0 0 0]

edgelighting: "flat" | "gouraud" | {"none"} | "phong"
When set to a value other than "none", the edges of the object are drawn with
light and shadow effects. Supported values are "none" (no lighting effects),
"flat" (facetted look) and "gouraud" (linear interpolation of the lighting ef-
fects between the vertices). "phong" is deprecated and has the same effect as
"gouraud".

facealpha: scalar | matrix, def. 1
Transparency is not yet implemented for patch objects. facealpha is unused.

facecolor: {colorspec} | "none" | "flat" | "interp", def. [0 0 0]

facelighting: {"flat"} | "gouraud" | "none" | "phong"
When set to a value other than "none", the faces of the object are drawn with
light and shadow effects. Supported values are "none" (no lighting effects),
"flat" (facetted look) and "gouraud" (linear interpolation of the lighting ef-
fects between the vertices). "phong" is deprecated and has the same effect as
"gouraud".

facenormals: def. [](0x0)

facenormalsmode: {"auto"} | "manual"

faces: def. [1 2 3]

facevertexalphadata: scalar | matrix, def. [1(0x0)
Transparency is not yet implemented for patch objects. facevertexalphadata
is unused.

facevertexcdata: def. [](0x0)

handlevisibility: "callback" | "off" | {"on"
If handlevisibility is "off", the patch’s handle is not visible in its parent’s
"children" property.

hittest: "off" | {"on"
interpreter: "latex" | "none" | {"tex"
interpreter is unused.

interruptible: "off" | {"on"

linestyle: {n_u} | n__n | n_.m I nen | "none"

linewidth: def. 0.50000

marker: ll*ll | II+|| | II.ll I ||<ll I II>II | n-=n | Ildll I I|diamondll l llhll l llhexagramll |
{Ilnonell} | IIOII | Ilpll I IIPentagramll I IISII | "Square" | IIVII | "X“

See [line marker property|, page 394.

markeredgecolor: {"auto"} | "flat" | "none"
See [line markeredgecolor property], page 394.

markerfacecolor: "auto" | "flat" | {"none"
See [line markerfacecolor property|, page 394.

markersize: scalar, def. 6
See [line markersize property], page 394.

parent: graphics handle
Handle of the parent graphics object.

Chapter 15: Plotting 401

selected: {"off"} | "on"

selectionhighlight: "off" | {"on"

specularcolorreflectance: scalar, def. 1
Reflectance for specular color. Value between 0.0 (color of underlying face) and
1.0 (color of light source).

specularexponent: scalar, def. 10
Exponent for the specular reflex. The lower the value, the more the reflex is
spread out.

specularstrength: scalar, def. 0.90000
Strength of the specular reflex. Value between 0.0 (no specular reflex) and 1.0
(full specular reflex).

tag: string, def. ""
A user-defined string to label the graphics object.

type (read-only): string
Class name of the graphics object. type is always "patch"
uicontextmenu: graphics handle, def. [] (0x0)

Graphics handle of the uicontextmenu object that is currently associated to
this patch object.

userdata: Any Octave data, def. [](0x0)
User-defined data to associate with the graphics object.

vertexnormals: def. [](0x0)
vertexnormalsmode: {"auto"} | "manual"
vertices: vector | matrix, def. 3-by-2 double
visible: "off" | {"on"
If visible is "off", the patch is not rendered on screen.

xdata: vector | matrix, def. [0; 1; 0]
ydata: vector | matrix, def. [1; 1; 0]
zdata: vector | matrix, def. [] (0x0)

15.3.3.8 Surface Properties

The surface properties are:

__modified__: "off" | {"on"
alphadata: scalar | matrix, def. 1
Transparency is not yet implemented for surface objects. alphadata is unused.

alphadatamapping: "direct" | "none" | {"scaled"}
Transparency is not yet implemented for surface objects. alphadatamapping
is unused.

ambientstrength: scalar, def. 0.30000
Strength of the ambient light. Value between 0.0 and 1.0

backfacelighting: "1it" | {"reverselit"} | "unlit"
"1it": The normals are used as is for lighting. "reverselit": The normals
are always oriented towards the point of view. "unlit": Faces with normals
pointing away from the point of view are unlit.

402 GNU Octave

beingdeleted: {"off"} | "on"

busyaction: "cancel" | {"queue"}

buttondownfcn: string | function handle, def. [] (0x0)

cdata: matrix, def. 3-by-3 double

cdatamapping: "direct" | {"scaled"}

cdatasource: def. ""

children (read-only): vector of graphics handles, def. [](0x1)
children is unused.

clipping: "off" | {"on"
If clipping is "on", the surface is clipped in its parent axes limits.

createfcn: string | function handle, def. [](0x0)
Callback function executed immediately after surface has been created.
Function is set by using default property on root object, e.g., set (0,
"defaultsurfacecreatefcn", ’disp ("surface created!")’).

deletefcn: string | function handle, def. [] (0x0)
Callback function executed immediately before surface is deleted.

diffusestrength: scalar, def. 0.60000

Strength of the diffuse reflex. Value between 0.0 (no diffuse reflex) and 1.0 (full
diffuse reflex).

displayname: def. ""
Text for the legend entry corresponding to this surface.

edgealpha: scalar, def. 1
Transparency is not yet implemented for surface objects. edgealpha is unused.

edgecolor: def. [0 0 0]

edgelighting: "flat" | "gouraud" | {"none"} | "phong"
When set to a value other than "none", the edges of the object are drawn with
light and shadow effects. Supported values are "none" (no lighting effects),
"flat" (facetted look) and "gouraud" (linear interpolation of the lighting ef-
fects between the vertices). "phong" is deprecated and has the same effect as
"gouraud".

facealpha: scalar | matrix, def. 1
Transparency is not yet implemented for surface objects. facealpha is unused.

facecolor: {"flat"} | "interp" | "none" | "texturemap"

facelighting: {"flat"} | "gouraud" | "none" | "phong"
When set to a value other than "none", the faces of the object are drawn with
light and shadow effects. Supported values are "none" (no lighting effects),
"flat" (facetted look) and "gouraud" (linear interpolation of the lighting ef-
fects between the vertices). "phong" is deprecated and has the same effect as
"gouraud".

Chapter 15: Plotting 403

facenormals: def. [](0x0)

facenormalsmode: {"auto"} | "manual"

handlevisibility: "callback" | "off" | {"on"
If handlevisibility is "off", the surface’s handle is not visible in its parent’s
"children" property.

hittest: "off" | {"on"

interpreter: "latex" | "none" | {"tex"
interruptible: "off" | {"on"
linestyle: {Il_ll} | n__mn | ||_.|| l ll:ll | "none"

See Section 15.4.2 [Line Styles|, page 417.

linewidth: def. 0.50000
See [line linewidth property], page 394.

marker: "x" | nyn | non I ngn I nyu | n-~n | ngn I "diamond" I np" I "hexagram" |
{"none" | gt | npu I “pentagra.m" I gt | "square" | LRVl | Nyt
See Section 15.4.3 [Marker Styles], page 417.

markeredgecolor: {"auto"} | "flat" | "none"
See [line markeredgecolor property], page 394.

markerfacecolor: "auto" | "flat" | {"none"
See [line markerfacecolor property|, page 394.

markersize: scalar, def. 6
See [line markersize property|, page 394.

meshstyle: {"both"} | "column" | "row"
parent: graphics handle
Handle of the parent graphics object.

selected: {"off"} | "on"

selectionhighlight: "off" | {"on"

specularcolorreflectance: scalar, def. 1
Reflectance for specular color. Value between 0.0 (color of underlying face) and
1.0 (color of light source).

specularexponent: scalar, def. 10
Exponent for the specular reflex. The lower the value, the more the reflex is
spread out.

specularstrength: scalar, def. 0.90000
Strength of the specular reflex. Value between 0.0 (no specular reflex) and 1.0
(full specular reflex).

tag: string, def. ""
A user-defined string to label the graphics object.

type (read-only): string
Class name of the graphics object. type is always "surface"
uicontextmenu: graphics handle, def. [](0x0)

Graphics handle of the uicontextmenu object that is currently associated to
this surface object.

404 GNU Octave

userdata: Any Octave data, def. [](0x0)
User-defined data to associate with the graphics object.

vertexnormals: def. 3-by-3-by-3 double
vertexnormalsmode: {"auto"} | "manual"
visible: "off" | {"on"
If visible is "off", the surface is not rendered on screen.

xdata: matrix, def. [1 2 3]
xdatasource: def. ""

ydata: matrix, def. [1; 2; 3]
ydatasource: def. ""

zdata: matrix, def. 3-by-3 double
zdatasource: def. ""

15.3.3.9 Light Properties
The light properties are:

__modified__: "off" | {"on"

beingdeleted: {"off"} | "on"

busyaction: "cancel" | {"queue"}

buttondownfcn: string | function handle, def. [] (0x0)

children (read-only): vector of graphics handles, def. [](0x1)
children is unused.

clipping: "off" | {"on"
If clipping is "on", the light is clipped in its parent axes limits.

color: colorspec, def. [1 1 1]
Color of the light source. See Section 15.4.1 [colorspec|, page 417.

createfcn: string | function handle, def. [] (0x0)
Callback function executed immediately after light has been created.
Function is set by using default property on root object, e.g., set (0,
"defaultlightcreatefcn", ’disp ("light created!")’).

deletefcn: string | function handle, def. [] (0x0)
Callback function executed immediately before light is deleted.

handlevisibility: "callback" | "off" | {"on"
If handlevisibility is "off", the light’s handle is not visible in its parent’s
"children" property.

hittest: "off" | {"on"
interruptible: "off" | {"on"
parent: graphics handle
Handle of the parent graphics object.

position: def. [1 0 1]
Position of the light source.

Chapter 15: Plotting 405

selected: {"off"} | "on"

selectionhighlight: "off" | {"on"

style: {"infinite"} | "local"
This string defines whether the light emanates from a light source at infinite
distance ("infinite") or from a local point source ("local").

tag: string, def. ""
A user-defined string to label the graphics object.

type (read-only): string
Class name of the graphics object. type is always "light"

uicontextmenu: graphics handle, def. [](0x0)
Graphics handle of the uicontextmenu object that is currently associated to
this light object.

userdata: Any Octave data, def. [](0x0)
User-defined data to associate with the graphics object.

visible: "off" | {"on"
If visible is "off", the light is not rendered on screen.

15.3.3.10 Uimenu Properties

The uimenu properties are:

__modified__: "off" | {"on"

accelerator: def. ""

beingdeleted: {"off"} | "on"

busyaction: "cancel" | {"queue"}

buttondownfcn: string | function handle, def. [](0x0)
buttondownfcn is unused.

callback: def. [](0x0)

checked: {"off"} | "on"

children (read-only): vector of graphics handles, def. [](0x1)
Graphics handles of the uimenu’s children.

clipping: "off" | {"on"
If clipping is "on", the uimenu is clipped in its parent axes limits.

createfcn: string | function handle, def. [] (0x0)
Callback function executed immediately after uimenu has been created.
Function is set by using default property on root object, e.g., set (O,
"defaultuimenucreatefcn", ’disp ("uimenu created!")’).

deletefcn: string | function handle, def. [](0x0)
Callback function executed immediately before uimenu is deleted.

enable: "off" | {"on"

foregroundcolor: def. [0 0 0]

handlevisibility: "callback" | "off" | {"on"
If handlevisibility is "off", the uimenu’s handle is not visible in its parent’s
"children" property.

406 GNU Octave

hittest: "off" | {"on"
interruptible: "off" | {"on"
label: def. ""
parent: graphics handle
Handle of the parent graphics object.

position: def. 1
selected: {"off"} | "on"
selectionhighlight: "off" | {"on"
separator: {"off"} | "on"
tag: string, def. ""
A user-defined string to label the graphics object.

type (read-only): string
Class name of the graphics object. type is always "uimenu"

uicontextmenu: graphics handle, def. [](0x0)
Graphics handle of the uicontextmenu object that is currently associated to
this uimenu object.

userdata: Any Octave data, def. [](0x0)
User-defined data to associate with the graphics object.

visible: "off" | {"on"
If visible is "off", the uimenu is not rendered on screen.

15.3.3.11 Uibuttongroup Properties

The uibuttongroup properties are:

__modified__: "off" | {"on"
backgroundcolor: def. [0.90980 0.90980 0.90588]
beingdeleted: {"off"} | "on"
bordertype: "beveledin" | "beveledout" | {"etchedin"} | "etchedout" | "line" |
"none"
borderwidth: def. 1
busyaction: "cancel" | {"queue"}
buttondownfcn: string | function handle, def. [](0x0)
children (read-only): vector of graphics handles, def. [](0x1)
Graphics handles of the uibuttongroup’s children.

clipping: "off" | {"on"
If clipping is "on", the uibuttongroup is clipped in its parent axes limits.

createfcn: string | function handle, def. [1(0x0)
Callback function executed immediately after uibuttongroup has been
created. Function is set by using default property on root object, e.g.,
set (0, "defaultuibuttongroupcreatefcn", ’disp ("uibuttongroup
created!")’).

deletefcn: string | function handle, def. [] (0x0)
Callback function executed immediately before uibuttongroup is deleted.

Chapter 15: Plotting 407

fontangle: "italic" | {"normal"} | "oblique"

fontname: def. "*"

fontsize: def. 10

fontunits: "centimeters" | "inches" | "normalized" | "pixels" | {"points"}

fontweight: "bold" | "demi" | "light" | {"normal"}

foregroundcolor: def. [0.18039 0.20392 0.21176]

handlevisibility: "callback" | "off" | {"on"
If handlevisibility is "off", the uibuttongroup’s handle is not visible in its
parent’s "children" property.

highlightcolor: def. [1 1 1]
hittest: "off" | {"on"
interruptible: "off" | {"on"
parent: graphics handle
Handle of the parent graphics object.

position: def. [0 0 1 1]
resizefcn: def. [](0x0)
selected: {"off"} | "on"
selectedobject: def. [](0x0)
selectionchangedfcn: def. [](0x0)
selectionhighlight: "off" | {"on"
shadowcolor: def. [0.75816 0.75816 0.75489]
sizechangedfcn: def. [](0x0)
tag: string, def. ""
A user-defined string to label the graphics object.

title: def. ""
titleposition: "centerbottom" | "centertop" | "leftbottom" | {"lefttop"} |
"rightbottom" | "righttop"
type (read-only): string
Class name of the graphics object. type is always "uibuttongroup"

uicontextmenu: graphics handle, def. [](0x0)
Graphics handle of the uicontextmenu object that is currently associated to
this uibuttongroup object.

units: "centimeters" | "characters" | "inches" | {"normalized"} | "pixels" |
"points"
userdata: Any Octave data, def. [](0x0)

User-defined data to associate with the graphics object.

visible: "off" | {"on"
If visible is "off", the uibuttongroup is not rendered on screen.

15.3.3.12 Uicontextmenu Properties

The uicontextmenu properties are:

408 GNU Octave

__modified__: "off" | {"on"

beingdeleted: {"off"} | "on"

busyaction: "cancel" | {"queue"}

buttondownfcn: string | function handle, def. [](0x0)
buttondownfcn is unused.

callback: def. [](0x0)
children (read-only): vector of graphics handles, def. [] (0x1)
Graphics handles of the uicontextmenu’s children.

clipping: "off" | {"on"
If clipping is "on", the uicontextmenu is clipped in its parent axes limits.

createfcn: string | function handle, def. [] (0x0)
Callback function executed immediately after uicontextmenu has been
created. Function is set by using default property on root object, e.g.,
set (0, "defaultuicontextmenucreatefcn", ’disp ("uicontextmenu
created!")’).

deletefcn: string | function handle, def. [](0x0)
Callback function executed immediately before uicontextmenu is deleted.

handlevisibility: "callback" | "off" | {"on"
If handlevisibility is "off", the uicontextmenu’s handle is not visible in its
parent’s "children" property.

hittest: "off" | {"on"
interruptible: "off" | {"on"
parent: graphics handle
Handle of the parent graphics object.

position: def. [0 0]
selected: {"off"} | "on"
selectionhighlight: "off" | {"on"
tag: string, def. ""
A user-defined string to label the graphics object.

type (read-only): string
Class name of the graphics object. type is always "uicontextmenu"

uicontextmenu: graphics handle, def. [] (0x0)
Graphics handle of the uicontextmenu object that is currently associated to
this uicontextmenu object.

userdata: Any Octave data, def. [](0x0)
User-defined data to associate with the graphics object.

visible: "off" | {"on"
If visible is "off", the uicontextmenu is not rendered on screen.

15.3.3.13 Uipanel Properties

The uipanel properties are:

Chapter 15: Plotting 409

__modified__: "off" | {"on"
backgroundcolor: def. [0.90980 0.90980 0.90588]
beingdeleted: {"off"} | "on"
bordertype: "beveledin" | "beveledout" | {"etchedin"} | "etchedout" | "line"
llnone“
borderwidth: def. 1
busyaction: "cancel" | {"queue"}
buttondownfcn: string | function handle, def. [] (0x0)
children (read-only): vector of graphics handles, def. [](0x1)
Graphics handles of the uipanel’s children.

clipping: "off" | {"on"
If clipping is "on", the uipanel is clipped in its parent axes limits.

createfcn: string | function handle, def. [](0x0)
Callback function executed immediately after uipanel has been created.
Function is set by using default property on root object, e.g., set (0,
"defaultuipanelcreatefcn", ’disp ("uipanel created!")’).

deletefcn: string | function handle, def. [] (0x0)
Callback function executed immediately before uipanel is deleted.

fontangle: "italic" | {"normal"} | "oblique"

fontname: def. "x"

fontsize: def. 10

fontunits: "centimeters" | "inches" | "normalized" | "pixels" | {"points"}

fontweight: "bold" | "demi" | "light" | {"normal"}

foregroundcolor: def. [0.18039 0.20392 0.21176]

handlevisibility: "callback" | "off" | {"on"
If handlevisibility is "off", the uipanel’s handle is not visible in its parent’s
"children" property.

highlightcolor: def. [1 1 1]
hittest: "off" | {"on"
interruptible: "off" | {"on"
parent: graphics handle
Handle of the parent graphics object.

position: def. [00 1 1]
resizefcn: def. [](0x0)
selected: {"off"} | "on"
selectionhighlight: "off" | {"on"
shadowcolor: def. [0.75816 0.75816 0.75489]
tag: string, def. ""
A user-defined string to label the graphics object.

title: def. ""
titleposition: "centerbottom" | "centertop" | "leftbottom" | {"lefttop"} |
"rightbottom" | "righttop"
type (read-only): string
Class name of the graphics object. type is always "uipanel"

410 GNU Octave

uicontextmenu: graphics handle, def. [](0x0)
Graphics handle of the uicontextmenu object that is currently associated to
this uipanel object.

units: "centimeters" | "characters" | "inches" | {"normalized"} | "pixels" |
"points"
userdata: Any Octave data, def. [](0x0)

User-defined data to associate with the graphics object.

visible: "off" | {"on"
If visible is "off", the uipanel is not rendered on screen.

15.3.3.14 Uicontrol Properties

The uicontrol properties are:

__modified__: "off" | {"on"

backgroundcolor: def. [0.90980 0.90980 0.90588]

beingdeleted: {"off"} | "on"

busyaction: "cancel" | {"queue"}

buttondownfcn: string | function handle, def. [] (0x0)

callback: def. [](0x0)

cdata: def. [](0x0)

children (read-only): vector of graphics handles, def. [](0x1)
Graphics handles of the uicontrol’s children.

clipping: "off" | {"on"
If clipping is "on", the uicontrol is clipped in its parent axes limits.

createfcn: string | function handle, def. [1(0x0)
Callback function executed immediately after uicontrol has been created.
Function is set by using default property on root object, e.g., set (0,
"defaultuicontrolcreatefcn", ’disp ("uicontrol created!")’).

deletefcn: string | function handle, def. [](0x0)
Callback function executed immediately before uicontrol is deleted.

enable: "inactive" | "off" | {"on"

extent (read-only): def. [0 0 0 0]

fontangle: "italic" | {"normal"} | "oblique"

fontname: def. "x"

fontsize: def. 10

fontunits: "centimeters" | "inches" | "normalized" | "pixels" | {"points"}

fontweight: "bold" | "demi" | "light" | {"normal"}

foregroundcolor: def. [0.18039 0.20392 0.21176]

handlevisibility: "callback" | "off" | {"on"
If handlevisibility is "off", the uicontrol’s handle is not visible in its par-
ent’s "children" property.

Chapter 15: Plotting 411

hittest: "off" | {"on"
horizontalalignment: {"center"} | "left" | "right"
interruptible: "off" | {"on"
keypressfcn: def. [](0x0)
listboxtop: def. 1
max: def. 1
min: def. O
parent: graphics handle
Handle of the parent graphics object.

position: def. [0 0 80 30]

selected: {"off"} | "on"
selectionhighlight: "off" | {"on"
sliderstep: def. [0.010000 0.100000]

string: def. ""
style: "checkbox" | "edit" | "frame" | "listbox" | "popupmenu" | {"pushbutton"}
| "radiobutton" | "slider" | "text" | "togglebutton"

tag: string, def. ""
A user-defined string to label the graphics object.

tooltipstring: def. ""
type (read-only): string
Class name of the graphics object. type is always "uicontrol"

uicontextmenu: graphics handle, def. [](0x0)
Graphics handle of the uicontextmenu object that is currently associated to
this uicontrol object.

units: "centimeters" | "characters" | "inches" | "normalized" | {"pixels"} |
"points"
userdata: Any Octave data, def. [](0x0)

User-defined data to associate with the graphics object.

value: def. 1
verticalalignment: "bottom" | {"middle"} | "top"
visible: "off" | {"on"

If visible is "off", the uicontrol is not rendered on screen.

15.3.3.15 Uitoolbar Properties

The uitoolbar properties are:

__modified__: "off" | {"on"

beingdeleted: {"off"} | "on"

busyaction: "cancel" | {"queue"}

buttondownfcn: string | function handle, def. [](0x0)
buttondownfcn is unused.

children (read-only): vector of graphics handles, def. [](0x1)
Graphics handles of the uitoolbar’s children.
clipping: "off" | {"on"
If clipping is "on", the uitoolbar is clipped in its parent axes limits.

412 GNU Octave

createfcn: string | function handle, def. [](0x0)
Callback function executed immediately after uitoolbar has been created.
Function is set by using default property on root object, e.g., set (0,
"defaultuitoolbarcreatefcn", ’disp ("uitoolbar created!")’).

deletefcn: string | function handle, def. [] (0x0)
Callback function executed immediately before uitoolbar is deleted.

handlevisibility: "callback" | "off" |{"on“
If handlevisibility is "off", the uitoolbar’s handle is not visible in its par-
ent’s "children" property.

hittest: "off" | {"on"
interruptible: "off" | {"on"
parent: graphics handle
Handle of the parent graphics object.

selected: {"off"} | "on"
selectionhighlight: "off" | {"on"
tag: string, def. ""
A user-defined string to label the graphics object.

type (read-only): string
Class name of the graphics object. type is always "uitoolbar"

uicontextmenu: graphics handle, def. [](0x0)
Graphics handle of the uicontextmenu object that is currently associated to
this uitoolbar object.

userdata: Any Octave data, def. [](0x0)
User-defined data to associate with the graphics object.

visible: "off" | {"on"
If visible is "off", the uitoolbar is not rendered on screen.

15.3.3.16 Uipushtool Properties

The uipushtool properties are:

__modified__: "off" | {"on"

beingdeleted: {"off"} | "on"

busyaction: "cancel" | {"queue"}

buttondownfcn: string | function handle, def. [](0x0)
buttondownfcn is unused.

cdata: def. [](0x0)
children (read-only): vector of graphics handles, def. [] (0x1)
Graphics handles of the uipushtool’s children.

clickedcallback: def. [](0x0)
clipping: "off" | {"on"
If clipping is "on", the uipushtool is clipped in its parent axes limits.

Chapter 15: Plotting 413

createfcn: string | function handle, def. [](0x0)
Callback function executed immediately after uipushtool has been created.
Function is set by using default property on root object, e.g., set (0,
"defaultuipushtoolcreatefcn", ’disp ("uipushtool created!")’).

deletefcn: string | function handle, def. [](0x0)
Callback function executed immediately before uipushtool is deleted.

enable: "off" |{"on"

handlevisibility: "callback" | "off" |{"on"
If handlevisibility is "off", the uipushtool’s handle is not visible in its
parent’s "children" property.

hittest: "off" | {"on"
interruptible: "off" | {"on"
parent: graphics handle
Handle of the parent graphics object.

selected: {"off"} | "on"
selectionhighlight: "off" | {"on"
separator: {"off"} | "on"
tag: string, def. ""
A user-defined string to label the graphics object.

tooltipstring: def. ""
type (read-only): string
Class name of the graphics object. type is always "uipushtool"
uicontextmenu: graphics handle, def. [](0x0)
Graphics handle of the uicontextmenu object that is currently associated to
this uipushtool object.

userdata: Any Octave data, def. [](0x0)
User-defined data to associate with the graphics object.

visible: "off" | {"on"
If visible is "off", the uipushtool is not rendered on screen.

15.3.3.17 Uitoggletool Properties
The uitoggletool properties are:

__modified__: "off" | {"on"

beingdeleted: {"off"} | "on"

busyaction: "cancel" | {"queue"}

buttondownfcn: string | function handle, def. [] (0x0)
buttondownfcn is unused.

cdata: def. [](0x0)
children (read-only): vector of graphics handles, def. [](0x1)
Graphics handles of the uitoggletool’s children.

clickedcallback: def. [](0x0)
clipping: "off" | {"on"
If clipping is "on", the uitoggletool is clipped in its parent axes limits.

414 GNU Octave

createfcn: string | function handle, def. [](0x0)
Callback function executed immediately after uitoggletool has been created.
Function is set by using default property on root object, e.g., set (0,
"defaultuitoggletoolcreatefcn", ’disp ("uitoggletool created!")’).

deletefcn: string | function handle, def. [](0x0)
Callback function executed immediately before uitoggletool is deleted.

enable: "off" |{"on"

handlevisibility: "callback" | "off" |{"on“
If handlevisibility is "off", the uitoggletool’s handle is not visible in its
parent’s "children" property.

hittest: "off" | {"on"
interruptible: "off" | {"on"
offcallback: def. [](0x0)
oncallback: def. [](0x0)
parent: graphics handle
Handle of the parent graphics object.

selected: {"off"} | "on"
selectionhighlight: "off" | {"on"
separator: {"off"} | "on"
state: {"off"} | "on"
tag: string, def. ""
A user-defined string to label the graphics object.

tooltipstring: def. ""
type (read-only): string
Class name of the graphics object. type is always "uitoggletool"

uicontextmenu: graphics handle, def. [] (0x0)
Graphics handle of the uicontextmenu object that is currently associated to
this uitoggletool object.

userdata: Any Octave data, def. [](0x0)
User-defined data to associate with the graphics object.

visible: "off" | {"on"
If visible is "off", the uitoggletool is not rendered on screen.

15.3.4 Searching Properties

h = findobj ()

h = findobj (prop_name, prop_value, ...)

h = findobj (prop_name, prop_value, "-logical_op", prop_name,
prop_value)

h = findobj ("-property", prop_name)

h = findobj ("-regexp", prop_name, pattern)

h = findobj (hlist, ...)

h = findobj (hlist, "flat", ...)

Chapter 15: Plotting 415

h = findobj (hlist, "-depth", d, ...)

s s <

[= s s = 5

Find graphics object with specified property values.
The simplest form is
findobj (prop_name, prop_value)

which returns the handles of all objects which have a property named prop_name
that has the value prop_value. If multiple property/value pairs are specified then
only objects meeting all of the conditions are returned.

The search can be limited to a particular set of objects and their descendants, by
passing a handle or set of handles hlist as the first argument.

The depth of the object hierarchy to search can be limited with the "-depth" argu-
ment. An example of searching only three generations of children is:

findobj (hlist, "-depth", 3, prop_name, prop_value)

Specifying a depth d of 0, limits the search to the set of objects passed in hlist. A
depth d of 0 is equivalent to the "flat" argument.

A specified logical operator may be applied to the pairs of prop_name and prop_value.
The supported logical operators are: "-and", "-or", "-xor", "-not".

Objects may also be matched by comparing a regular expression to the property val-
ues, where property values that match regexp (prop_value, pattern) are returned.

Finally, objects may be matched by property name only by using the "-property"
option.

Implementation Note: The search only includes objects with visible handles (Handle-
Visibility = "on"). See [findall], page 415, to search for all objects including hidden
ones.

See also: [findall], page 415, [allchild], page 380, [get], page 379, [set], page 379.

findall ()

findall (prop_name, prop_value, ...)

findall (prop_name, prop_value, "-logical_op", prop_name,
prop_value)

findall ("-property", prop_name)

findall ("-regexp", prop_name, pattern)

findall (hlist, ...)

findall (hlist, "flat", ...)

findall (hlist, "-depth", d, ...)

Find graphics object, including hidden ones, with specified property values.

The return value h is a list of handles to the found graphic objects.

findall performs the same search as findobj, but it includes hidden objects (Han-
dleVisibility = "off"). For full documentation, see [findobj|, page 414.

See also: [findobj], page 414, [allchild], page 380, [get], page 379, [set], page 379.

416 GNU Octave

15.3.5 Managing Default Properties

Object properties have two classes of default values, factory defaults (the initial values) and
user-defined defaults, which may override the factory defaults.

Although default values may be set for any object, they are set in parent objects and
apply to child objects, of the specified object type. For example, setting the default color
property of line objects to "green", for the root object, will result in all 1ine objects
inheriting the color "green" as the default value.

set (0, "defaultlinecolor", "green");

sets the default line color for all objects. The rule for constructing the property name to
set a default value is

default + object-type + property-name

This rule can lead to some strange looking names, for example defaultlinelinewidth"
specifies the default linewidth property for line objects.

The example above used the root figure object, 0, so the default property value will
apply to all line objects. However, default values are hierarchical, so defaults set in a figure
objects override those set in the root figure object. Likewise, defaults set in axes objects
override those set in figure or root figure objects. For example,

subplot (2, 1, 1);

set (0, "defaultlinecolor", "red");

set (1, "defaultlinecolor", "green");

set (gca (), "defaultlinecolor", "blue");

line (1:10, rand (1, 10));

subplot (2, 1, 2);

line (1:10, rand (1, 10));

figure (2)

line (1:10, rand (1, 10));
produces two figures. The line in first subplot window of the first figure is blue because it
inherits its color from its parent axes object. The line in the second subplot window of the
first figure is green because it inherits its color from its parent figure object. The line in the
second figure window is red because it inherits its color from the global root figure parent
object.

To remove a user-defined default setting, set the default property to the value "remove".
For example,

set (gca (), "defaultlinecolor", "remove");

removes the user-defined default line color setting from the current axes object. To quickly
remove all user-defined defaults use the reset function.

reset (h)
Reset the properties of the graphic object h to their default values.

For figures, the properties "position", "units", "windowstyle", and "paperunits"
are not affected. For axes, the properties "position" and "units" are not affected.
The input h may also be a vector of graphic handles in which case each individual
object will be reset.

See also: [cla], page 358, [clf], page 357, [newplot], page 356.

Chapter 15: Plotting 417

Getting the "default" property of an object returns a list of user-defined defaults set
for the object. For example,

get (gca (), "default");
returns a list of user-defined default values for the current axes object.
Factory default values are stored in the root figure object. The command
get (0, "factory");

returns a list of factory defaults.

15.4 Advanced Plotting

15.4.1 Colors

Colors may be specified as RGB triplets with values ranging from zero to one, or by name.
Recognized color names include "blue", "black", "cyan", "green", "magenta", "red",
"white", and "yellow".

15.4.2 Line Styles
Line styles are specified by the following properties:

linestyle
May be one of

-t Solid line. [default]
-t Dashed line.

e Dotted line.

=" A dash-dot line.

"none" No line. Points will still be marked using the current Marker Style.

linewidth
A number specifying the width of the line. The default is 1. A value of 2 is
twice as wide as the default, etc.

15.4.3 Marker Styles
Marker styles are specified by the following properties:

marker A character indicating a plot marker to be place at each data point, or "none",
meaning no markers should be displayed.

markeredgecolor
The color of the edge around the marker, or "auto", meaning that the edge
color is the same as the face color. See Section 15.4.1 [Colors|, page 417.

markerfacecolor
The color of the marker, or "none" to indicate that the marker should not be
filled. See Section 15.4.1 [Colors|, page 417.

markersize
A number specifying the size of the marker. The default is 1. A value of 2 is
twice as large as the default, etc.

418 GNU Octave

The colstyle function will parse a plot-style specification and will return the color,
line, and marker values that would result.

[style, color, marker, msg] = colstyle (linespec)
Parse linespec and return the line style, color, and markers given.

In the case of an error, the string msg will return the text of the error.

15.4.4 Callbacks

Callback functions can be associated with graphics objects and triggered after certain events
occur. The basic structure of all callback function is

function mycallback (src, data)

endfunction
where src gives a handle to the source of the callback, and code gives some event specific

data. This can then be associated with an object either at the objects creation or later with
the set function. For example,

plot (x, "DeleteFcn", @(s, e) disp ("Window Deleted"))
where at the moment that the plot is deleted, the message "Window Deleted" will be
displayed.
Additional user arguments can be passed to callback functions, and will be passed after
the 2 default arguments. For example:

plot (x, "DeleteFcn", {@mycallback, "1"})

function mycallback (src, data, al)
fprintf ("Closing plot %d\n", al);
endfunction
The basic callback functions that are available for all graphics objects are

e CreateFcn This is the callback that is called at the moment of the objects creation. It
is not called if the object is altered in any way, and so it only makes sense to define
this callback in the function call that defines the object. Callbacks that are added to
CreateFcn later with the set function will never be executed.

e DeleteFcn This is the callback that is called at the moment an object is deleted.

e ButtonDownFcn This is the callback that is called if a mouse button is pressed while
the pointer is over this object. Note, that the gnuplot interface does not respect this
callback.

The object and figure that the event occurred in that resulted in the callback being
called can be found with the gcbo and gcbf functions.

h = gcbo ()

[h, fig]l = gcbo ()
Return a handle to the object whose callback is currently executing.
If no callback is executing, this function returns the empty matrix. This handle is
obtained from the root object property "CallbackObject".

Chapter 15: Plotting 419

When called with a second output argument, return the handle of the figure containing
the object whose callback is currently executing. If no callback is executing the second
output is also set to the empty matrix.

See also: [gcbf], page 419, [gco|, page 378, [gca], page 377, [gcf], page 377, [get],
page 379, [set], page 379.

fig = gcbf ()
Return a handle to the figure containing the object whose callback is currently exe-
cuting.
If no callback is executing, this function returns the empty matrix. The handle
returned by this function is the same as the second output argument of gcbo.

See also: [gcbo], page 418, [gef], page 377, [geo|, page 378, [gcal, page 377, [get],
page 379, [set], page 379.

Callbacks can equally be added to properties with the addlistener function described
below.

15.4.5 Application-defined Data

Octave has a provision for attaching application-defined data to a graphics handle. The
data can be anything which is meaningful to the application, and will be completely ignored
by Octave.

setappdata (h, name, value)
setappdata (h, namel, valuel, name2, values3, .. .)
Set the application data name to value for the graphics object with handle h.

h may also be a vector of graphics handles. If the application data with the specified
name does not exist, it is created. Multiple name/value pairs can be specified at a
time.

See also: [getappdata], page 419, [isappdatal, page 420, [rmappdatal, page 419,
[guidatal], page 800, [get], page 379, [set], page 379, [getpref], page 802, [setpref],
page 802.

value = getappdata (h, name)

appdata = getappdata (h)
Return the value of the application data name for the graphics object with handle h.
h may also be a vector of graphics handles. If no second argument name is given then

getappdata returns a structure, appdata, whose fields correspond to the appdata
properties.

See also: [setappdatal, page 419, [isappdata], page 420, [rmappdata], page 419,
[guidatal], page 800, [get], page 379, [set], page 379, [getpref], page 802, [setpref],
page 802.

rmappdata (h, name)
rmappdata (h, namel, name2, .. .)
Delete the application data name from the graphics object with handle h.

420 GNU Octave

h may also be a vector of graphics handles. Multiple application data names may be
supplied to delete several properties at once.

See also: [setappdatal, page 419, [getappdata], page 419, [isappdata], page 420.

valid = isappdata (h, name)
Return true if the named application data, name, exists for the graphics object with
handle h.

h may also be a vector of graphics handles.

See also: [getappdata], page 419, [setappdatal, page 419, [rmappdatal, page 419,
[guidata], page 800, [get], page 379, [set], page 379, [getpref], page 802, [setpref],
page 802.

15.4.6 Object Groups

A number of Octave high level plot functions return groups of other graphics objects or
they return graphics objects that have their properties linked in such a way that changes to
one of the properties results in changes in the others. A graphic object that groups other
objects is an hggroup

hggroup ()
hggroup (hax)

hggroup (..., property, value, ...)

h = hggroup (...)
Create handle graphics group object with axes parent hax.

If no parent is specified, the group is created in the current axes.

Multiple property/value pairs may be specified for the hggroup, but they must appear
in pairs.

The optional return value h is a graphics handle to the created hggroup object.

Programming Note: An hggroup is a way to group base graphics objects such as line
objects or patch objects into a single unit which can react appropriately. For example,
the individual lines of a contour plot are collected into a single hggroup so that they
can be made visible/invisible with a single command, set (hg_handle, "visible",
"off").

See also: [addproperty], page 420, [addlistener|, page 421.

For example a simple use of a hggroup might be
x = 0:0.1:10;
hg = hggroup ();
plot (x, sin (x), "color", [1, O, 0], "parent", hg);
hold on
plot (x, cos (x), "color", [0, 1, O], "parent", hg);
set (hg, "visible", "off");
which groups the two plots into a single object and controls their visibility directly. The

default properties of an hggroup are the same as the set of common properties for the other
graphics objects. Additional properties can be added with the addproperty function.

Chapter 15: Plotting 421

addproperty (name, h, type)
addproperty (name, h, type, arg, ...)
Create a new property named name in graphics object h.

type determines the type of the property to create. args usually contains the default
value of the property, but additional arguments might be given, depending on the
type of the property.

The supported property types are:

string

any

radio

boolean

double

handle

data

color

A string property. arg contains the default string value.

An un-typed property. This kind of property can hold any octave value.
args contains the default value.

A string property with a limited set of accepted values. The first argu-
ment must be a string with all accepted values separated by a vertical
bar (’|’). The default value can be marked by enclosing it with a '{* '}’
pair. The default value may also be given as an optional second string
argument.

A boolean property. This property type is equivalent to a radio property
with "on|off" as accepted values. arg contains the default property value.

A scalar double property. arg contains the default value.

A handle property. This kind of property holds the handle of a graphics
object. arg contains the default handle value. When no default value is
given, the property is initialized to the empty matrix.

A data (matrix) property. arg contains the default data value. When no
default value is given, the data is initialized to the empty matrix.

A color property. arg contains the default color value. When no default
color is given, the property is set to black. An optional second string
argument may be given to specify an additional set of accepted string
values (like a radio property).

type may also be the concatenation of a core object type and a valid property name
for that object type. The property created then has the same characteristics as the
referenced property (type, possible values, hidden state. . .). This allows one to clone
an existing property into the graphics object h.

Examples:

addproperty ("my_property", gcf, "string", "a string value");
addproperty ("my_radio", gcf, "radio", "val_1l|val_2|{val_3}");
addproperty ("my_style", gcf, "linelinestyle", "--");

See also: [addlistener], page 421, [hggroup]|, page 420.

Once a property in added to an hggroup, it is not linked to any other property of either
the children of the group, or any other graphics object. Add so to control the way in which
this newly added property is used, the addlistener function is used to define a callback
function that is executed when the property is altered.

422 GNU Octave

addlistener (h, prop, fcn)
Register fcn as listener for the property prop of the graphics object h.
Property listeners are executed (in order of registration) when the property is set.
The new value is already available when the listeners are executed.
prop must be a string naming a valid property in h.
fcn can be a function handle, a string or a cell array whose first element is a function
handle. If fcn is a function handle, the corresponding function should accept at least
2 arguments, that will be set to the object handle and the empty matrix respectively.
If fen is a string, it must be any valid octave expression. If fen is a cell array, the first
element must be a function handle with the same signature as described above. The
next elements of the cell array are passed as additional arguments to the function.

Example:
function my_listener (h, dummy, pl)
fprintf ("my_listener called with pil=%s\n", pl);
endfunction

addlistener (gcf, "position", {@my_listener, "my string"})

See also: [addproperty], page 420, [hggroup], page 420.

dellistener (h, prop, fcn)
Remove the registration of fcn as a listener for the property prop of the graphics
object h.
The function fen must be the same variable (not just the same value), as was passed
to the original call to addlistener.

If fcn is not defined then all listener functions of prop are removed.
Example:
function my_listener (h, dummy, pl)
fprintf ("my_listener called with pl=Y%s\n", pl);
endfunction

¢ = {@my_listener, "my string"};
addlistener (gcf, "position", c);
dellistener (gcf, "position", c);

An example of the use of these two functions might be
x = 0:0.1:10;
hg = hggroup ();
h = plot (x, sin (x), "color", [1, O, 0], "parent", hg);
addproperty ("linestyle", hg, "linelinestyle", get (h, "linestyle"));
addlistener (hg, "linestyle", Qupdate_props);
hold on
plot (x, cos (x), "color", [0, 1, O], "parent", hg);

function update_props (h, d)
set (get (h, "children"), "linestyle", get (h, "linestyle"));
endfunction

Chapter 15: Plotting 423

that adds a linestyle property to the hggroup and propagating any changes its value to
the children of the group. The 1linkprop function can be used to simplify the above to be
x = 0:0.1:10;
hg = hggroup O;
hi plot (x, sin (x), "color", [1, O, 0], "parent", hg);
addproperty ("linestyle", hg, "linelinestyle", get (h, "linestyle"));
hold on
h2 = plot (x, cos (x), "color", [0, 1, O], "parent", hg);
hlink = linkprop ([hg, hl, h2], "color");

hlink = linkprop (h, "prop")
hlink = linkprop (h, {"propl", "prop2", ...})
Link graphic object properties, such that a change in one is propagated to the others.

The input h is a vector of graphic handles to link.

prop may be a string when linking a single property, or a cell array of strings for
multiple properties. During the linking process all properties in prop will initially be
set to the values that exist on the first object in the list h.

The function returns hlink which is a special object describing the link. As long as
the reference hlink exists the link between graphic objects will be active. This means
that hlink must be preserved in a workspace variable, a global variable, or otherwise
stored using a function such as setappdata, guidata. To unlink properties, execute
clear hlink.
An example of the use of linkprop is

x = 0:0.1:10;

subplot (1,2,1);

hl = plot (x, sin (x));

subplot (1,2,2);

h2 = plot (x, cos (x));

hlink = linkprop ([hl, h2], {"color","linestyle"});

set (hl, "color", "green");

set (h2, "linestyle", "--");

See also: [linkaxes], page 423.

linkaxes (hax)

linkaxes (hax, optstr)
Link the axis limits of 2-D plots such that a change in one is propagated to the others.
The axes handles to be linked are passed as the first argument hax.
The optional second argument is a string which defines which axis limits will be linked.
The possible values for optstr are:

nx" Link x-axes

"y Link y-axes
"xy" (default)
Link both axes

"off" Turn off linking

424 GNU Octave

If unspecified the default is to link both X and Y axes.

When linking, the limits from the first axes in hax are applied to the other axes in
the list. Subsequent changes to any one of the axes will be propagated to the others.

See also: [linkprop|, page 423, [addproperty], page 420.

These capabilities are used in a number of basic graphics objects. The hggroup objects
created by the functions of Octave contain one or more graphics object and are used to:

e group together multiple graphics objects,
e create linked properties between different graphics objects, and

e to hide the nominal user data, from the actual data of the objects.

For example the stem function creates a stem series where each hggroup of the stem series
contains two line objects representing the body and head of the stem. The ydata property
of the hggroup of the stem series represents the head of the stem, whereas the body of the
stem is between the baseline and this value. For example

h = stem (1:4)

get (h, "xdata")

= [1 2 3 4]

get (get (h, "children") (1), "xdata")

= [1 1 NaN 2 2 NaN 3 3 NaN 4 4 NaN]’

shows the difference between the xdata of the hggroup of a stem series object and the
underlying line.

The basic properties of such group objects is that they consist of one or more linked
hggroup, and that changes in certain properties of these groups are propagated to other
members of the group. Whereas, certain properties of the members of the group only apply
to the current member.

In addition the members of the group can also be linked to other graphics objects through
callback functions. For example the baseline of the bar or stem functions is a line object,
whose length and position are automatically adjusted, based on changes to the correspond-
ing hggroup elements.

15.4.6.1 Data Sources in Object Groups

All of the group objects contain data source parameters. There are string parameters that
contain an expression that is evaluated to update the relevant data property of the group
when the refreshdata function is called.

refreshdata ()

refreshdata (h)

refreshdata (h, workspace)
Evaluate any ‘datasource’ properties of the current figure and update the plot if the
corresponding data has changed.
If the first argument h is a list of graphic handles, then operate on these objects rather
than the current figure returned by gcf.

The optional second argument workspace can take the following values:

"base" Evaluate the datasource properties in the base workspace. (default).

Chapter 15: Plotting 425

"caller" Evaluate the datasource properties in the workspace of the function that
called refreshdata.

An example of the use of refreshdata is:

x = 0:0.1:10;
y = sin (x);
plot (x, y, "ydatasource", "y");
for i =1 : 100
pause (0.1);
y = sin (x + 0.1xi);
refreshdata ();
endfor

15.4.6.2 Area Series

Area series objects are created by the area function. Each of the hggroup elements contains
a single patch object. The properties of the area series are

basevalue
The value where the base of the area plot is drawn.

linewidth

linestyle
The line width and style of the edge of the patch objects making up the areas.
See Section 15.4.2 [Line Styles|, page 417.

edgecolor

facecolor
The line and fill color of the patch objects making up the areas. See
Section 15.4.1 [Colors|, page 417.

xdata

ydata The x and y coordinates of the original columns of the data passed to area
prior to the cumulative summation used in the area function.

xdatasource

ydatasource

Data source variables.

15.4.6.3 Bar Series

Bar series objects are created by the bar or barh functions. Each hggroup element contains
a single patch object. The properties of the bar series are

showbaseline

baseline

basevalue
The property showbaseline flags whether the baseline of the bar series is dis-
played (default is "on"). The handle of the graphics object representing the
baseline is given by the baseline property and the y-value of the baseline by
the basevalue property.

426 GNU Octave

Changes to any of these properties are propagated to the other members of the
bar series and to the baseline itself. Equally, changes in the properties of the
base line itself are propagated to the members of the corresponding bar series.

barwidth

barlayout

horizontal
The property barwidth is the width of the bar corresponding to the width vari-
able passed to bar or barh. Whether the bar series is "grouped" or "stacked"
is determined by the barlayout property and whether the bars are horizontal
or vertical by the horizontal property.
Changes to any of these property are propagated to the other members of the
bar series.

linewidth

linestyle
The line width and style of the edge of the patch objects making up the bars.
See Section 15.4.2 [Line Styles|, page 417

edgecolor

facecolor
The line and fill color of the patch objects making up the bars. See Section 15.4.1
[Colors|, page 417.

xdata The nominal x positions of the bars. Changes in this property and propagated
to the other members of the bar series.

ydata The y value of the bars in the hggroup.

xdatasource

ydatasource

Data source variables.

15.4.6.4 Contour Groups

Contour group objects are created by the contour, contourf and contour3 functions. The
are equally one of the handles returned by the surfc and meshc functions. The properties
of the contour group are

contourmatrix
A read only property that contains the data return by contourc used to create
the contours of the plot.

fill A radio property that can have the values "on" or "off" that flags whether the
contours to plot are to be filled.

zlevelmode

zlevel The radio property zlevelmode can have the values "none", "auto", or

"manual". When its value is "none" there is no z component to the plotted
contours. When its value is "auto" the z value of the plotted contours is at
the same value as the contour itself. If the value is "manual", then the z value
at which to plot the contour is determined by the zlevel property.

Chapter 15: Plotting 427

levellistmode

levellist

levelstepmode

levelstep
If levellistmode is "manual", then the levels at which to plot the contours
is determined by levellist. If levellistmode is set to "auto", then the
distance between contours is determined by levelstep. If both levellistmode
and levelstepmode are set to "auto", then there are assumed to be 10 equal
spaced contours.

textlistmode

textlist

textstepmode

textstep If textlistmode is "manual", then the labeled contours is determined by
textlist. If textlistmode is set to "auto", then the distance between labeled
contours is determined by textstep. If both textlistmode and textstepmode
are set to "auto", then there are assumed to be 10 equal spaced labeled con-
tours.

showtext Flag whether the contour labels are shown or not.

labelspacing
The distance between labels on a single contour in points.

linewidth

linestyle

linecolor
The properties of the contour lines. The properties linewidth and linestyle
are similar to the corresponding properties for lines. The property linecolor
is a color property (see Section 15.4.1 [Colors|, page 417), that can also have
the values of "none" or "auto". If linecolor is "none", then no contour line
is drawn. If linecolor is "auto" then the line color is determined by the
colormap.

xdata
ydata
zdata The original x, y, and z data of the contour lines.

xdatasource
ydatasource
zdatasource
Data source variables

15.4.6.5 Error Bar Series

Error bar series are created by the errorbar function. Each hggroup element contains two
line objects representing the data and the errorbars separately. The properties of the error
bar series are

color The RGB color or color name of the line objects of the error bars. See
Section 15.4.1 [Colors], page 417.

428 GNU Octave

linewidth

linestyle
The line width and style of the line objects of the error bars. See Section 15.4.2
[Line Styles|, page 417.

marker

markeredgecolor

markerfacecolor

markersize
The line and fill color of the markers on the error bars. See Section 15.4.1
[Colors|, page 417.

xdata

ydata

ldata

udata

xldata

xudata The original x, y, 1, u, xI, xu data of the error bars.

xdatasource
ydatasource
ldatasource
udatasource
xldatasource
xudatasource
Data source variables

15.4.6.6 Line Series

Line series objects are created by the plot and plot3 functions and are of the type line.
The properties of the line series with the ability to add data sources.

color The RGB color or color name of the line objects. See Section 15.4.1 [Colors],
page 417.

linewidth

linestyle
The line width and style of the line objects. See Section 15.4.2 [Line Styles],
page 417.

marker
markeredgecolor
markerfacecolor
markersize
The line and fill color of the markers. See Section 15.4.1 [Colors|, page 417

xdata
ydata
zdata The original x, y and z data.

Chapter 15: Plotting 429

xdatasource
ydatasource
zdatasource
Data source variables

15.4.6.7 Quiver Group

Quiver series objects are created by the quiver or quiver3 functions. Each hggroup element
of the series contains three line objects as children representing the body and head of the
arrow, together with a marker as the point of origin of the arrows. The properties of the
quiver series are

autoscale

autoscalefactor
Flag whether the length of the arrows is scaled or defined directly from
the u, v and w data. If the arrow length is flagged as being scaled by the
autoscale property, then the length of the autoscaled arrow is controlled by
the autoscalefactor.

maxheadsize
This property controls the size of the head of the arrows in the quiver series.
The default value is 0.2.

showarrowhead
Flag whether the arrow heads are displayed in the quiver plot.

color The RGB color or color name of the line objects of the quiver. See Section 15.4.1
[Colors|, page 417.

linewidth

linestyle
The line width and style of the line objects of the quiver. See Section 15.4.2
[Line Styles], page 417.

marker

markerfacecolor

markersize
The line and fill color of the marker objects at the original of the arrows. See
Section 15.4.1 [Colors|, page 417.

xdata

ydata

zdata The origins of the values of the vector field.

udata

vdata

wdata The values of the vector field to plot.

430 GNU Octave

xdatasource
ydatasource
zdatasource
udatasource
vdatasource
wdatasource
Data source variables

15.4.6.8 Scatter Group

Scatter series objects are created by the scatter or scatter3 functions. A single hggroup
element contains as many children as there are points in the scatter plot, with each child
representing one of the points. The properties of the stem series are

linewidth
The line width of the line objects of the points. See Section 15.4.2 [Line Styles],
page 417.

marker

markeredgecolor

markerfacecolor
The line and fill color of the markers of the points. See Section 15.4.1 [Colors],
page 417.

xdata

ydata

zdata The original x, y and z data of the stems.

cdata The color data for the points of the plot. Each point can have a separate color,

or a unique color can be specified.

sizedata The size data for the points of the plot. Each point can its own size or a unique
size can be specified.

xdatasource
ydatasource
zdatasource
cdatasource
sizedatasource
Data source variables.

15.4.6.9 Stair Group

Stair series objects are created by the stair function. Each hggroup element of the series
contains a single line object as a child representing the stair. The properties of the stair
series are

color The RGB color or color name of the line objects of the stairs. See Section 15.4.1
[Colors], page 417.

linewidth

linestyle
The line width and style of the line objects of the stairs. See Section 15.4.2
[Line Styles|, page 417.

Chapter 15: Plotting 431

marker

markeredgecolor

markerfacecolor

markersize
The line and fill color of the markers on the stairs. See Section 15.4.1 [Colors],
page 417.

xdata
ydata The original x and y data of the stairs.

xdatasource
ydatasource
Data source variables.

15.4.6.10 Stem Series

Stem series objects are created by the stem or stem3 functions. Each hggroup element
contains a single line object as a child representing the stems. The properties of the stem
series are

showbaseline

baseline

basevalue
The property showbaseline flags whether the baseline of the stem series is
displayed (default is "on"). The handle of the graphics object representing
the baseline is given by the baseline property and the y-value (or z-value for
stem3) of the baseline by the basevalue property.

Changes to any of these property are propagated to the other members of the
stem series and to the baseline itself. Equally changes in the properties of the
base line itself are propagated to the members of the corresponding stem series.

color The RGB color or color name of the line objects of the stems. See Section 15.4.1
[Colors|, page 417.

linewidth

linestyle
The line width and style of the line objects of the stems. See Section 15.4.2
[Line Styles], page 417.

marker

markeredgecolor

markerfacecolor

markersize
The line and fill color of the markers on the stems. See Section 15.4.1 [Colors],
page 417.

xdata
ydata
zdata The original x, y and z data of the stems.

432 GNU Octave

xdatasource
ydatasource
zdatasource
Data source variables

15.4.6.11 Surface Group

Surface group objects are created by the surf or mesh functions, but are equally one of
the handles returned by the surfc or meshc functions. The surface group is of the type
surface.

The properties of the surface group are

edgecolor

facecolor
The RGB color or color name of the edges or faces of the surface. See
Section 15.4.1 [Colors], page 417.

linewidth

linestyle
The line width and style of the lines on the surface. See Section 15.4.2 [Line
Styles], page 417.

marker

markeredgecolor

markerfacecolor

markersize
The line and fill color of the markers on the surface. See Section 15.4.1 [Colors],
page 417.

xdata
ydata
zdata
cdata The original x, y, z and ¢ data.

xdatasource
ydatasource
zdatasource
cdatasource
Data source variables

15.4.7 Graphics Toolkits

name = graphics_toolkit ()
name = graphics_toolkit (hlist)
graphics_toolkit (name)
graphics_toolkit (hlist, name)
Query or set the default graphics toolkit which is assigned to new figures.

With no inputs, return the current default graphics toolkit. If the input is a list of
figure graphic handles, hlist, then return the name of the graphics toolkit in use for
each figure.

Chapter 15: Plotting 433

When called with a single input name set the default graphics toolkit to name. If the
toolkit is not already loaded, it is initialized by calling the function __init_name__.
If the first input is a list of figure handles, hlist, then the graphics toolkit is set to
name for these figures only.

See also: [available_graphics_toolkits], page 433.
available_graphics_toolkits ()

Return a cell array of registered graphics toolkits.

See also: [graphics_toolkit], page 432, [register_graphics_toolkit], page 433.
loaded_graphics_toolkits ()

Return a cell array of the currently loaded graphics toolkits.

See also: [available_graphics_toolkits], page 433.
register_graphics_toolkit (toolkit)

List toolkit as an available graphics toolkit.

See also: [available_graphics_toolkits], page 433.

15.4.7.1 Customizing Toolkit Behavior

The specific behavior of the backend toolkit may be modified using the following utility
functions. Note: Not all functions apply to every graphics toolkit.

[prog, args] = gnuplot_binary ()

[old_prog, old_args] = gnuplot_binary (new_prog, argl, ...)
Query or set the name of the program invoked by the plot command when the graphics
toolkit is set to "gnuplot".

Additional arguments to pass to the external plotting program may also be given.
The default value is "gnuplot" with no additional arguments. See Appendix E [In-
stallation], page 931.

See also: [graphics_toolkit], page 432.

435

16 Matrix Manipulation

There are a number of functions available for checking to see if the elements of a matrix
meet some condition, and for rearranging the elements of a matrix. For example, Octave
can easily tell you if all the elements of a matrix are finite, or are less than some specified
value. Octave can also rotate the elements, extract the upper- or lower-triangular parts, or
sort the columns of a matrix.

16.1 Finding Elements and Checking Conditions

The functions any and all are useful for determining whether any or all of the elements
of a matrix satisfy some condition. The find function is also useful in determining which
elements of a matrix meet a specified condition.

any (x)
any (x, dim)
For a vector argument, return true (logical 1) if any element of the vector is nonzero.
For a matrix argument, return a row vector of logical ones and zeros with each element
indicating whether any of the elements of the corresponding column of the matrix are
nonzero. For example:
any (eye (2, 4))
= [1,1, 0, 0]
If the optional argument dim is supplied, work along dimension dim. For example:
any (eye (2, 4), 2)
= [1; 1]

See also: [all], page 435.
all (x)
all (x, dim)
For a vector argument, return true (logical 1) if all elements of the vector are nonzero.

For a matrix argument, return a row vector of logical ones and zeros with each element
indicating whether all of the elements of the corresponding column of the matrix are
nonzero. For example:
all ([2, 3; 1, 01)
= [1,0]
If the optional argument dim is supplied, work along dimension dim.

See also: [any], page 435.

Since the comparison operators (see Section 8.4 [Comparison Ops|, page 145) return
matrices of ones and zeros, it is easy to test a matrix for many things, not just whether the
elements are nonzero. For example,

all (all (rand (5) < 0.9))
= 0

tests a random 5 by 5 matrix to see if all of its elements are less than 0.9.

Note that in conditional contexts (like the test clause of if and while statements) Octave
treats the test as if you had typed all (all (condition)).

436 GNU Octave

z = xor (x,)
xor (x1,x2,...)
Return the exclusive or of x and y.

N
I

For boolean expressions x and y, xor (x, y) is true if and only if one of x or y is
true. Otherwise, if x and y are both true or both false, xor returns false.

The truth table for the xor operation is

Xy z

—_— o = O
_ =0 O
_= = O

0

If more than two arguments are given the xor operation is applied cumulatively from
left to right:

(...((x1 XOR x2) XOR x3) XOR ...)
See also: [and], page 147, [or], page 148, [not|, page 148.

diff (x)

diff (x, k)

diff (x, k, dim)
If x is a vector of length n, diff (x) is the vector of first differences xo —x1,...,x, —
Tpo1-
If x is a matrix, diff (x) is the matrix of column differences along the first non-
singleton dimension.
The second argument is optional. If supplied, diff (x, k), where k is a non-negative
integer, returns the k-th differences. It is possible that k is larger than the first non-
singleton dimension of the matrix. In this case, diff continues to take the differences
along the next non-singleton dimension.
The dimension along which to take the difference can be explicitly stated with the
optional variable dim. In this case the k-th order differences are calculated along this
dimension. In the case where k exceeds size (x, dim) an empty matrix is returned.

See also: [sort], page 444, [merge], page 149.

isinf (x)
Return a logical array which is true where the elements of x are infinite and false
where they are not.
For example:
isinf ([13, Inf, NA, NaNJ])
= [0, 1, 0, 0]

See also: [isfinite], page 437, [isnan|, page 436, [isna], page 43.
isnan (x)

Return a logical array which is true where the elements of x are NaN values and false
where they are not.

Chapter 16: Matrix Manipulation 437

NA values are also considered NaN values. For example:
isnan ([13, Inf, NA, NaNJ])
= [0, 0,1, 1]

See also: [isnal, page 43, [isinf], page 436, [isfinite]|, page 437.

isfinite (x)
Return a logical array which is true where the elements of x are finite values and false
where they are not.

For example:
isfinite ([13, Inf, NA, NaN])
:> [1 s O b 0 s O]

See also: [isinf], page 436, [isnan]|, page 436, [isna|, page 43.

lerr, yi, ...] = common_size (xi, ...)
Determine if all input arguments are either scalar or of common size.
If true, err is zero, and yi is a matrix of the common size with all entries equal to xi

if this is a scalar or xi otherwise. If the inputs cannot be brought to a common size,
err is 1, and yi is xi. For example:

[err, a, b] common_size ([1 2; 3 4], 5)
= err = 0
=a=1[1, 2; 3, 4]
= b=1[5, 5; 5, 51

This is useful for implementing functions where arguments can either be scalars or of
common size.

See also: [size|, page 45, [size_equal|, page 46, [numel], page 44, [ndims|, page 44.

idx = find (x)

idx = find (x, n)

idx = find (x, n, direction)
(i, j1 = find (...)

[i, j, v] = find (...)
Return a vector of indices of nonzero elements of a matrix, as a row if x is a row
vector or as a column otherwise.

To obtain a single index for each matrix element, Octave pretends that the columns
of a matrix form one long vector (like Fortran arrays are stored). For example:

find (eye (2))
= [1; 4]

If two inputs are given, n indicates the maximum number of elements to find from
the beginning of the matrix or vector.

If three inputs are given, direction should be one of "first" or "last", requesting

only the first or last n indices, respectively. However, the indices are always returned
in ascending order.

438

idx
idx

GNU Octave

If two outputs are requested, find returns the row and column indices of nonzero
elements of a matrix. For example:
[i, j] = find (2 * eye (2))
=i=10[1; 2]
=j=01;2]
If three outputs are requested, find also returns a vector containing the nonzero
values. For example:
[i, j, vl = find (3 * eye (2))
=i=10[1; 2]
= j=012]1
= v [3; 3]
Note that this function is particularly useful for sparse matrices, as it extracts the
nonzero elements as vectors, which can then be used to create the original matrix.
For example:

sz = size (a);
(i, j, vl = find (a);
b = sparse (i, j, v, sz(1), sz(2));

See also: [nonzeros|, page 564.
= lookup (table, y)

lookup (table, y, opt)
Lookup values in a sorted table.

This function is usually used as a prelude to interpolation.

If table is increasing and idx = lookup (table, y), then table(idx(i)) <=y (i) <
table(idx(i+1)) for all y(i) within the table. If y(i) < table(1) then idx(i) is
0. If y(i) >= table(end) or isnan (y(i)) then idx(i) is n.

If the table is decreasing, then the tests are reversed. For non-strictly monotonic
tables, empty intervals are always skipped. The result is undefined if table is not
monotonic, or if table contains a NaN.

The complexity of the lookup is O(M*log(N)) where N is the size of table and
M is the size of y. In the special case when y is also sorted, the complexity is
O(min(M*log(N),M+N)).

table and y can also be cell arrays of strings (or y can be a single string). In this
case, string lookup is performed using lexicographical comparison.

If opts is specified, it must be a string with letters indicating additional options.

m table(idx(i)) == val(i) if val(i) occurs in table; otherwise, idx (i)
is zero.

b idx (i) is alogical 1 or 0, indicating whether val(i) is contained in table
or not.

1 For numeric lookups the leftmost subinterval shall be extended to infinity

(i.e., all indices at least 1)

r For numeric lookups the rightmost subinterval shall be extended to infin-
ity (i.e., all indices at most n-1).

Chapter 16: Matrix Manipulation 439

If you wish to check if a variable exists at all, instead of properties its elements may
have, consult Section 7.3 [Status of Variables], page 127.

16.2 Rearranging Matrices

fliplr (x)
Flip array left to right.
Return a copy of x with the order of the columns reversed. In other words, x is
flipped left-to-right about a vertical axis. For example:
fliplr ([1, 2; 3, 41)
= 2 1
4 3

See also: [flipud], page 439, [flip], page 439, [rot90], page 440, [rotdim]|, page 440.

flipud (x)
Flip array upside down.
Return a copy of x with the order of the rows reversed. In other words, x is flipped
upside-down about a horizontal axis. For example:
flipud ([1, 2; 3, 41)
= 3 4
1 2

See also: [fliplr], page 439, [flip], page 439, [rot90], page 440, [rotdim], page 440.
flip (x)
flip (x, dim)
Flip array across dimension dim.
Return a copy of x flipped about the dimension dim. dim defaults to the first non-
singleton dimension. For example:

flip ([1 2 3 41)
= 4 3 2 1

flip ([1; 2; 3; 4D
= 4

=N W

flip ([1 2; 3 4])
= 3 4
12

flip ([1 2; 3 4], 2)
= 2 1
4 3

See also: [fliplr], page 439, [flipud], page 439, [rot90], page 440, [rotdim], page 440,
[permute|, page 441, [transpose], page 145.

440 GNU Octave

rot90 (4)
rot90 (4, k)
Rotate array by 90 degree increments.

Return a copy of A with the elements rotated counterclockwise in 90-degree incre-
ments.

The second argument is optional, and specifies how many 90-degree rotations are
to be applied (the default value is 1). Negative values of k rotate the matrix in a
clockwise direction. For example,

rot90 ([1, 2; 3, 41, -1)
= 3 1
4 2

rotates the given matrix clockwise by 90 degrees. The following are all equivalent
statements:

rot90 ([1, 2; 3, 4], -1)
rot90 ([1, 2; 3, 4], 3)
rot90 ([1, 2; 3, 41, 7)

The rotation is always performed on the plane of the first two dimensions, i.e., rows
and columns. To perform a rotation on any other plane, use rotdim.

See also: [rotdim]|, page 440, [fliplr], page 439, [flipud], page 439, [flip], page 439.

rotdim (x)

rotdim (x, n)

rotdim (x, n, plane)
Return a copy of x with the elements rotated counterclockwise in 90-degree incre-
ments.

The second argument n is optional, and specifies how many 90-degree rotations are
to be applied (the default value is 1). Negative values of n rotate the matrix in a
clockwise direction.

The third argument is also optional and defines the plane of the rotation. If present,
plane is a two element vector containing two different valid dimensions of the matrix.
When plane is not given the first two non-singleton dimensions are used.

For example,

rotdim ([1, 2; 3, 4], -1, [1, 21)
= 3 1
4 2

rotates the given matrix clockwise by 90 degrees. The following are all equivalent
statements:

rotdim ([1, 2; 3, 4], -1, [1, 2])
rotdim ([1, 2; 3, 4], 3, [1, 2]1)
rotdim ([1, 2; 3, 4], 7, [1, 2])

See also: [rot90], page 440, [fliplr], page 439, [flipud], page 439, [flip], page 439.

Chapter 16: Matrix Manipulation 441

cat (dim, arrayl, array2, ..., arrayN)
Return the concatenation of N-D array objects, arrayl, array2, ..., arrayN along
dimension dim.

A = ones (2, 2);

B = zeros (2, 2);
cat (2, A, B)
= 1100
1100

Alternatively, we can concatenate A and B along the second dimension in the following
way:

(A, B]
dim can be larger than the dimensions of the N-D array objects and the result will
thus have dim dimensions as the following example shows:

cat (4, ones (2, 2), zeros (2, 2))
= ans(:,:,1,1) =

= e
=

ans(:,:,1,2) =

00
00

See also: [horzcat|, page 441, [vertcat], page 441.

horzcat (arrayl, array2, ..., arrayN)
Return the horizontal concatenation of N-D array objects, arrayl, array2, .. ., arrayN
along dimension 2.

Arrays may also be concatenated horizontally using the syntax for creating new ma-
trices. For example:

hcat = [arrayl, array2, ...]

See also: [cat], page 441, [vertcat], page 441.

vertcat (arrayl, array2, ..., arrayN)
Return the vertical concatenation of N-D array objects, arrayl, array?2, ..., arrayN
along dimension 1.

Arrays may also be concatenated vertically using the syntax for creating new matrices.
For example:

vcat = [arrayl; array2; ...]
See also: [cat], page 441, [horzcat], page 441.

permute (4, perm)
Return the generalized transpose for an N-D array object A.

442

GNU Octave

The permutation vector perm must contain the elements 1:ndims (A) (in any order,
but each element must appear only once). The Nth dimension of A gets remapped
to dimension PERM(N). For example:

x = zeros ([2, 3, 5, 71);
size (x)
= 2 3 5 7

size (permute (x, [2, 1, 3, 4]1))
= 3 2 5 7

size (permute (x, [1, 3, 4, 2]))
= 2 5 7 3

The identity permutation
size (permute (x, [1, 2, 3, 4]))
= 2 3 5 7

See also: [ipermute], page 442.

ipermute (4, iperm)

The inverse of the permute function.
The expression
ipermute (permute (A, perm), perm)

returns the original array A.

See also: [permute|, page 441.

reshape (4, m, n, ...)
reshape (4, [mn ...
reshape (4, ..., [], -

reshape (4, 51ze)

Return a matrix with the specified dimensions (m, n, ...) whose elements are taken
from the matrix A.

The elements of the matrix are accessed in column-major order (like Fortran arrays
are stored).

The following code demonstrates reshaping a 1x4 row vector into a 2x2 square matrix.
reshape ([1, 2, 3, 4], 2, 2)

= 1 3
2 4
Note that the total number of elements in the original matrix (prod (size (4)))
must match the total number of elements in the new matrix (prod ([mn ...])).

A single dimension of the return matrix may be left unspecified and Octave will
determine its size automatically. An empty matrix ([]) is used to flag the unspecified
dimension.

See also: [resize|, page 443, [vec|, page 447, [postpad], page 448, [cat], page 441,
[squeeze], page 46.

Chapter 16: Matrix Manipulation 443

resize (x, m)
resize (x,m, n, ...)
resize (x, [mn ...])
Resize x cutting off elements as necessary.

In the result, element with certain indices is equal to the corresponding element of x
if the indices are within the bounds of x; otherwise, the element is set to zero.

In other words, the statement
y = resize (x, dv)

is equivalent to the following code:
y = zeros (dv, class (x));
sz = min (dv, size (x));
for i = 1:length (sz)

idx{i} = 1:sz(1);

endfor
y(idx{:}) = x(@dx{:});

but is performed more efficiently.

If only m is supplied, and it is a scalar, the dimension of the result is m-by-m. If m,

n, ... are all scalars, then the dimensions of the result are m-by-n-by-. ... If given a
vector as input, then the dimensions of the result are given by the elements of that
vector.

An object can be resized to more dimensions than it has; in such case the missing
dimensions are assumed to be 1. Resizing an object to fewer dimensions is not possible.

See also: [reshape], page 442, [postpad], page 448, [prepad], page 447, [cat], page 441.
y = circshift (x, n)

circshift (x, n, dim)
Circularly shift the values of the array x.

<
I

n must be a vector of integers no longer than the number of dimensions in x. The
values of n can be either positive or negative, which determines the direction in which
the values of x are shifted. If an element of n is zero, then the corresponding dimension
of x will not be shifted.

If a scalar dim is given then operate along the specified dimension. In this case n
must be a scalar as well.

Examples:

444 GNU Octave
x=1[1, 2, 3; 4, 5, 6; 7, 8, 9];
circshift (x, 1)
= 7, 8, 9
1, 2, 3
4, 5, 6
circshift (x, -2)
= 7, 8, 9
1, 2, 3
4, 5, 6
circshift (x, [0,1])
= 3,1, 2
6, 4, 5
9, 7, 8
See also: [permute|, page 441, [ipermute|, page 442, [shiftdim], page 444.
shift (x, b)

shift (x, b, dim)

If x is a vector, perform a circular shift of length b of the elements of x.
If x is a matrix, do the same for each column of x.

If the optional dim argument is given, operate along this dimension.

y = shiftdim (x, n)
[y, ns] = shiftdim (x)

[s,
(s,
[s,
[s,

Shift the dimensions of x by n, where n must be an integer scalar.

When n is positive, the dimensions of x are shifted to the left, with the leading
dimensions circulated to the end. If n is negative, then the dimensions of x are
shifted to the right, with n leading singleton dimensions added.

Called with a single argument, shiftdim, removes the leading singleton dimensions,
returning the number of dimensions removed in the second output argument ns.
For example:
x = ones (1, 2, 3);
size (shiftdim (x, -1))
= [1, 1, 2, 3]
size (shiftdim (x, 1))
= [2, 3]
[b, ns] shiftdim (x)
= Db (1, 1, 1; 1, 1, 1]
= ns =1

See also: [reshape|, page 442, [permute], page 441, [ipermute], page 442, [circshift],
page 443, [squeeze], page 46.

i] = sort (x)

i] = sort (x, dim)

i] = sort (x, mode)

i] = sort (x, dim, mode)

Return a copy of x with the elements arranged in increasing order.

Chapter 16: Matrix Manipulation 445

For matrices, sort orders the elements within columns
For example:

sort ([1, 2; 2, 3; 3, 11)

= 1 1
2 2
3 3

If the optional argument dim is given, then the matrix is sorted along the dimension
defined by dim. The optional argument mode defines the order in which the values
will be sorted. Valid values of mode are "ascend" or "descend".

The sort function may also be used to produce a matrix containing the original row
indices of the elements in the sorted matrix. For example:

[s, i] = sort ([1, 2; 2, 3; 3, 11)

= s=1 1
2 2
3 3
= i=1 3
2 1
3 2

For equal elements, the indices are such that equal elements are listed in the order in
which they appeared in the original list.

Sorting of complex entries is done first by magnitude (abs (z)) and for any ties by
phase angle (angle (z)). For example:

sort ([1+i; 1; 1-il)
= 1+ 01
1 - 11
1+ 1i
NaN values are treated as being greater than any other value and are sorted to the
end of the list.

The sort function may also be used to sort strings and cell arrays of strings, in which
case ASCII dictionary order (uppercase 'A’ precedes lowercase ’a’) of the strings is
used.

The algorithm used in sort is optimized for the sorting of partially ordered lists.
See also: [sortrows], page 445, [issorted], page 446.
[s, i] = sortrows (4)

[s, il sortrows (4, ¢)
Sort the rows of the matrix A according to the order of the columns specified in c.

By default (¢ omitted, or a particular column unspecified in ¢) an ascending sort
order is used. However, if elements of ¢ are negative then the corresponding column
is sorted in descending order. If the elements of A are strings then a lexicographical
sort is used.

Example: sort by column 2 in descending order, then 3 in ascending order

446

GNU Octave

x=[7,1, 4;
8, 3, 5;
9, 3, 6 1;
sortrows (x, [-2, 3])
=8 3 5
9 3 6
7 1 4

See also: [sort], page 444.

issorted (a)
issorted (a, mode)
issorted (a, "rows", mode)

Return true if the array is sorted according to mode, which may be either
"ascending", "descending", or "either".

By default, mode is "ascending". NaNs are treated in the same manner as sort.

If the optional argument "rows" is supplied, check whether the array is sorted by
rows as output by the function sortrows (with no options).

This function does not support sparse matrices.

See also: [sort], page 444, [sortrows], page 445.

nth_element (x, n)
nth_element (x, n, dim)

tril
tril
tril
triu
triu
triu

Select the n-th smallest element of a vector, using the ordering defined by sort.
The result is equivalent to sort(x) (n).

n can also be a contiguous range, either ascending 1:u or descending u:-1:1, in which
case a range of elements is returned.

If x is an array, nth_element operates along the dimension defined by dim, or the
first non-singleton dimension if dim is not given.

Programming Note: nth_element encapsulates the C++ standard library algorithms
nth_element and partial_sort. On average, the complexity of the operation is
O(M*log(K)), where M= size (x, dim) and K = length (n). This function is
intended for cases where the ratio K/M is small; otherwise, it may be better to use
sort.

See also: [sort], page 444, [min], page 477, [max]|, page 477.

Return a new matrix formed by extracting the lower (tril) or upper (triu) triangular
part of the matrix A, and setting all other elements to zero.

The second argument is optional, and specifies how many diagonals above or below
the main diagonal should also be set to zero.

Chapter 16: Matrix Manipulation 447

The default value of k is zero, so that triu and tril normally include the main
diagonal as part of the result.

If the value of k is nonzero integer, the selection of elements starts at an offset of
k diagonals above or below the main diagonal; above for positive k and below for
negative k.

The absolute value of k must not be greater than the number of subdiagonals or
superdiagonals.

For example:
tril (ones (3), -1)

= 0 0 O
1 0 O
1 1 0

and
tril (ones (3), 1)

= 1 1 0
1 1 1
1 1 1

If the option "pack" is given as third argument, the extracted elements are not
inserted into a matrix, but rather stacked column-wise one above other.

See also: [diag], page 448.

v = vec (x)

v = vec (x, dim)
Return the vector obtained by stacking the columns of the matrix x one above the
other.
Without dim this is equivalent to x(:).
If dim is supplied, the dimensions of v are set to dim with all elements along the last
dimension. This is equivalent to shiftdim (x(:), 1-dim).
See also: [vech]|, page 447, [resize|, page 443, [cat], page 441.

vech (x)

Return the vector obtained by eliminating all superdiagonal elements of the square
matrix x and stacking the result one column above the other.

This has uses in matrix calculus where the underlying matrix is symmetric and it
would be pointless to keep values above the main diagonal.

See also: [vec|, page 447.

prepad (x, 1)

prepad (x, 1, ¢)

prepad (x, 1, ¢, dim)
Prepend the scalar value ¢ to the vector x until it is of length 1. If ¢ is not given, a
value of 0 is used.

If length (x) > 1, elements from the beginning of x are removed until a vector of
length I is obtained.

448

GNU Octave

If x is a matrix, elements are prepended or removed from each row.
If the optional argument dim is given, operate along this dimension.

If dim is larger than the dimensions of x, the result will have dim dimensions.

See also: [postpad], page 448, [cat], page 441, [resize], page 443.

postpad (x, 1)
postpad (x, 1, ¢)
postpad (x, 1, ¢, dim)

S S 2=

Append the scalar value ¢ to the vector x until it is of length I If ¢ is not given, a
value of 0 is used.

If length (x) > 1, elements from the end of x are removed until a vector of length I
is obtained.

If x is a matrix, elements are appended or removed from each row.
If the optional argument dim is given, operate along this dimension.

If dim is larger than the dimensions of x, the result will have dim dimensions.

See also: [prepad], page 447, [cat], page 441, [resize], page 443.

= diag (v)

diag (v, k)

diag (v, m, n)

diag (M)

diag (M, k)

Return a diagonal matrix with vector v on diagonal k.

The second argument is optional. If it is positive, the vector is placed on the k-th
superdiagonal. If it is negative, it is placed on the -k-th subdiagonal. The default
value of k is 0, and the vector is placed on the main diagonal. For example:

diag ([1, 2, 3], 1

= 0 1 0 O
0 0 2 0
0 0 0 3
0 0 0 O

The 3-input form returns a diagonal matrix with vector v on the main diagonal and
the resulting matrix being of size m rows x n columns.

Given a matrix argument, instead of a vector, diag extracts the k-th diagonal of the
matrix.

blkdiag (4, B, C, ...)

Build a block diagonal matrix from A, B, C, ...

All arguments must be numeric and either two-dimensional matrices or scalars. If
any argument is of type sparse, the output will also be sparse.

See also: [diag|, page 448, [horzcat], page 441, [vertcat], page 441, [sparse], page 562.

Chapter 16: Matrix Manipulation 449

16.3 Special Utility Matrices

eye (n)

eye (m, n)

eye ([m n])

eye (..., class)

Return an identity matrix.
If invoked with a single scalar argument n, return a square NxN identity matrix.

If supplied two scalar arguments (m, n), eye takes them to be the number of rows
and columns. If given a vector with two elements, eye uses the values of the elements
as the number of rows and columns, respectively. For example:

eye (3)
= 1 0 O
0 1 O
0 0 1
The following expressions all produce the same result:
eye (2)
eye (2, 2)

eye (size ([1, 2; 3, 41))
The optional argument class, allows eye to return an array of the specified type, like
val = zeros (n,m, "uint8")

Calling eye with no arguments is equivalent to calling it with an argument of 1. Any
negative dimensions are treated as zero. These odd definitions are for compatibility
with MATLAB.

See also: [speye], page 560, [ones]|, page 449, [zeros], page 450.

ones (n)

ones (m, n)

ones (m, n, k, ...)
ones ([m n])
ones (..., class)

Return a matrix or N-dimensional array whose elements are all 1.
If invoked with a single scalar integer argument n, return a square NxN matrix.

If invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with the given dimensions.

To create a constant matrix whose values are all the same use an expression such as
val_matrix = val * ones (m, n)

The optional argument class specifies the class of the return array and defaults to
double. For example:

val = ones (m,n, "uint8")

See also: [zeros|, page 450.

450 GNU Octave

zeros (n)

zeros (m, n)

zeros (m, n, k, ...)
zeros ([mn ..])
zeros (..., class)

Return a matrix or N-dimensional array whose elements are all 0.
If invoked with a single scalar integer argument, return a square NxN matrix.

If invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with the given dimensions.

The optional argument class specifies the class of the return array and defaults to
double. For example:

val = zeros (m,n, "uint8")

See also: [ones|, page 449.

repmat (4, m)

repmat (4, m, n)
repmat (A, m,n,p...)
repmat ([m n])

repmat A, [mnp...])
Repeat matrix or N-D array.

Form a block matrix of size m by n, with a copy of matrix A as each element.

If n is not specified, form an m by m block matrix. For copying along more than two
dimensions, specify the number of times to copy across each dimension m, n, p, ...,
in a vector in the second argument.

See also: [bsxfun|, page 530, [kron], page 521, [repelems]|, page 450.

repelems (x, r)
Construct a vector of repeated elements from x.
r is a 2xN integer matrix specifying which elements to repeat and how often to
repeat each element. Entries in the first row, r(1,j), select an element to repeat. The
corresponding entry in the second row, r(2,j), specifies the repeat count. If x is a
matrix then the columns of x are imagined to be stacked on top of each other for
purposes of the selection index. A row vector is always returned.

Conceptually the result is calculated as follows:
y = [;
for i = 1:columns (r)

= [y, x(r(1,i)*ones(1l, r(2,i)))];
endfor

See also: [repmat|, page 450, [cat], page 441.

The functions linspace and logspace make it very easy to create vectors with evenly
or logarithmically spaced elements. See Section 4.2 [Ranges|, page 52.

Chapter 16: Matrix Manipulation 451

linspace (base, 1imit)

linspace (base, 1imit, n)
Return a row vector with n linearly spaced elements between base and limit.
If the number of elements is greater than one, then the endpoints base and limit are
always included in the range. If base is greater than limit, the elements are stored in
decreasing order. If the number of points is not specified, a value of 100 is used.

The linspace function returns a row vector when both base and limit are scalars.
If one, or both, inputs are vectors, then linspace transforms them to column
vectors and returns a matrix where each row is an independent sequence between
base(row_n), limit(row_n).

For compatibility with MATLAB, return the second argument (limit) if fewer than two
values are requested.

See also: [logspace|, page 451.

logspace (a, b)

logspace (a, b, n)

logspace (a, pi, n)
Return a row vector with n elements logarithmically spaced from 10¢ to 10°.
If n is unspecified it defaults to 50.

If b is equal to , the points are between 10* and 7, not 10* and 107, in order to be
compatible with the corresponding MATLAB function.

Also for compatibility with MATLAB, return the second argument b if fewer than two
values are requested.

See also: [linspace], page 450.

rand (n)
rand (m, n, ...)
rand ([mn ...])

v = rand ("state")
rand ("state", v)
rand ("state", "reset")
v = rand ("seed")
rand ("seed", v)
rand ("seed", "reset")
rand (..., "single")
rand (..., "double")
Return a matrix with random elements uniformly distributed on the interval (0, 1).

The arguments are handled the same as the arguments for eye.
You can query the state of the random number generator using the form
v = rand ("state")

This returns a column vector v of length 625. Later, you can restore the random
number generator to the state v using the form

rand ("state", v)

452

randi (
randi (imax, n)
randi (
randi (

GNU Octave

You may also initialize the state vector from an arbitrary vector of length < 625 for
v. This new state will be a hash based on the value of v, not v itself.

By default, the generator is initialized from /dev/urandom if it is available, otherwise
from CPU time, wall clock time, and the current fraction of a second. Note that this
differs from MATLAB, which always initializes the state to the same state at startup.
To obtain behavior comparable to MATLAB, initialize with a deterministic state vector
in Octave’s startup files (see Section 2.1.2 [Startup Files|, page 19).

To compute the pseudo-random sequence, rand uses the Mersenne Twister with a
period of 29937 — 1 (See M. Matsumoto and T. Nishimura, Mersenne Twister: A
623-dimensionally equidistributed uniform pseudorandom number generator, ACM
Trans. on Modeling and Computer Simulation Vol. 8, No. 1, pp. 3-30, January
1998, http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/emt .html). Do
not use for cryptography without securely hashing several returned values together,
otherwise the generator state can be learned after reading 624 consecutive values.

Older versions of Octave used a different random number generator. The new genera-
tor is used by default as it is significantly faster than the old generator, and produces
random numbers with a significantly longer cycle time. However, in some circum-
stances it might be desirable to obtain the same random sequences as produced by
the old generators. To do this the keyword "seed" is used to specify that the old
generators should be used, as in

rand ("seed", val)

which sets the seed of the generator to val. The seed of the generator can be queried
with

s = rand ("seed")

However, it should be noted that querying the seed will not cause rand to use the
old generators, only setting the seed will. To cause rand to once again use the new
generators, the keyword "state" should be used to reset the state of the rand.

The state or seed of the generator can be reset to a new random value using the
"reset" keyword.

The class of the value returned can be controlled by a trailing "double" or "single"
argument. These are the only valid classes.

See also: [randn|, page 453, [rande|, page 453, [randg], page 455, [randp], page 454.

imax, m, n, ...)
[imin imax], ...)

randi (..., "class")

Return random integers in the range 1:imax.

Additional arguments determine the shape of the return matrix. When no arguments
are specified a single random integer is returned. If one argument n is specified then
a square matrix (n x n) is returned. Two or more arguments will return a multi-
dimensional matrix (mx nx ...).

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Chapter 16: Matrix Manipulation 453

The integer range may optionally be described by a two element matrix with a
lower and upper bound in which case the returned integers will be on the interval
[imin, imax].
The optional argument class will return a matrix of the requested type. The default
is "double".

The following example returns 150 integers in the range 1-10.
ri = randi (10, 150, 1)

Implementation Note: randi relies internally on rand which uses class "double" to
represent numbers. This limits the maximum integer (imax) and range (imax - imin)
to the value returned by the flintmax function. For IEEE floating point numbers
this value is 2°% — 1.

See also: [rand], page 451.

)

randn (n)

randn (m, n, ...)

randn ([mn ...])

v = randn ("state")

randn ("state", v)

randn ("state", "reset")

v = randn ("seed")

randn ("seed", v)

randn ("seed", "reset")

randn (..., "single")

randn (..., "double")
Return a matrix with normally distributed random elements having zero mean and
variance one.

The arguments are handled the same as the arguments for rand.

By default, randn uses the Marsaglia and Tsang “Ziggurat technique” to tr