COBOL for OS/390 & VM
COBOL Set for AIX
VisualAge COBOL

Language Reference

SC26-9046-01

— Note!

Before using this information and the product it supports, be sure to read the general infor-
mation under “Notices” on page x.

Second Edition (April 1998)

This edition applies to:

IBM COBOL for OS/390 & VM Version 2 Release 1 Modification 1 (Program Number 5648-A25)
IBM COBOL Set for AIX Release 1 (Program Number 5765-548)
IBM VisualAge COBOL Version 2.2 (Program Number 5639-B92)

and to all subsequent releases and modifications until otherwise indicated in new editions.

This edition also applies to:

IBM COBOL for MVS & VM Release 2 Modification 2 (Program Number 5688-197)
When using this edition for IBM COBOL for MVS & VM, treat references to OS/390 as if they were references to MVS.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address given below.

A form for reader's comments appears at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, W92/H3
P.O. Box 49023

San Jose, CA 95161-9023
U.S.A.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices e X
Programming Interface Information X
Trademarks L Xi
About This Book Xii
IBM EXteNsSIONS Xii
Obsolete Language Elements oo Xii
How to Read the Syntax Diagrams Xiii
DBCS Notation XV
Acknowledgment L Xvi
Summary of Changes Xvii
Part 1. COBOL Language Structure 1
Characters 2
Character-Strings 3
Figurative Constants 8
Special Registers 10
Literals 20
Separators L 28
Sections and Paragraphs 30
Statements and Clauses 30
Reference Format 32
Sequence Number Area 32
Indicator Area L 32
Area A L 33
Area B . . 34
Area Aor Area B 37
Scope of Names L 39
Types of Names 39
External and Internal Resources Lo 42
Resolution of Names 43
Referencing Data Names, Copy Libraries, and Procedure Division Names . 44
Uniqueness of Referenceo 44
Transfer of Control 56
Millennium Language Extensions and Date Fields 58
Millennium Language Extensions Syntax 58

© Copyright IBM Corp. 1991, 1998 iii

Terms and Concepts e 59

Part 2. COBOL Source Unit Structure 63
COBOL Program Structureo 64
Nested Programs 66
COBOL Class Definition Structure 69
COBOL Method Definition Structure 71
Part 3. Identification Division 73
Identification Division 74
PROGRAM-ID Paragraph 77
CLASS-ID Paragraph 79
METHOD-ID Paragraph 81
Optional Paragraphs 83
Part 4. Environment Division 85
Configuration Section 86
SOURCE-COMPUTER Paragraph 87
OBJECT-COMPUTER Paragraph 88
SPECIAL-NAMES Paragrapho 89
ALPHABET Clause i 92
SYMBOLIC CHARACTERS Clause 95
CLASS Clause e 95
CURRENCY SIGN Clause e 96
REPOSITORY Paragraph s 97
Input-Output Section L 99
FILE-CONTROL Paragraph o 100
SELECT Clause e 104
ASSIGN Clause e 104
RESERVE Clause 108
ORGANIZATION Clause e 109
PADDING CHARACTER Clause 112
RECORD DELIMITER Clause 112
ACCESS MODE Clause i 113
RECORD KEY Clause e e 115
ALTERNATE RECORD KEY Clause 116
RELATIVE KEY Clause e 117
PASSWORD Clause e 118
LOCK MODE Clause (OS/2 VSAM Files Only) 118
FILE STATUS Clause it e e 120
iV COBOL Language Reference

I-O-CONTROL Paragraph 122

RERUN Clause 123
SAME AREA Clause e 125
SAME RECORD AREA Clause, 125
SAME SORT AREA Clause i 126
SAME SORT-MERGE AREA Clause 127
MULTIPLE FILE TAPE Clause 127
APPLY WRITE-ONLY Clause it i 127
Part 5. Data Division 129
Data Division Overview 130
File Section e 131
Working-Storage Section 131
Local-Storage Section L 133
Linkage Section 133
Data Types e 134
Data Relationships 135
Data Division—File Description Entries 142
File Section 145
EXTERNAL Clause e 146
GLOBAL Clause o o e e 147
BLOCK CONTAINS Clause e 147
RECORD Clause e e 149
LABEL RECORDS Clause o v v ittt e 152
VALUE OF Clause e s e 153
DATARECORDS Clause o it e 153
LINAGE Clause e e 153
RECORDING MODE Clause v v ittt e 155
CODE-SET Clause i e 157
Data Division—Data Description Entry 159
Format 1 e 159
Format 2 e 160
Format 3 e e 160
Level-Numbers e 160
BLANK WHEN ZERO Clause it 162
DATE FORMAT Clause o i e s e e e 162
EXTERNAL Clause 167
GLOBAL Clause 168
JUSTIFIED Clause e 169
OCCURS Clause e 170
PICTURE Clause s 176
REDEFINES Clause 192
RENAMES Clause 196
SIGN Clause 198
SYNCHRONIZED Clause e 200

Contents V

USAGE Clause e e 207

VALUE Clause o e e e e e e e 215
Part 6. Procedure Division 221
Procedure Division Structure L 223
Requirements for a Method Procedure Division 224
The Procedure Division Header 225
Declaratives 228
Procedures 229
Arithmetic Expressions 231
Conditional EXpressions 237
Statement Categories 258
Statement Operations 262
Procedure Division Statements 275
ACCEPT Statement e 275
ADD Statement e 280
ALTER Statement e 283
CALL Statement e 285
CANCEL Statement 292
CLOSE Statement 294
COMPUTE Statement e 298
CONTINUE Statement e 300
DELETE Statement e 301
DISPLAY Statement e 303
DIVIDE Statement e e 306
ENTRY Statement e 309
EVALUATE Statemento 310
EXIT Statement 314
EXIT METHOD Statement e 315
EXIT PROGRAM Statement 316
GOBACK Statement e 317
GO TO Statement e 318
IF Statement 320
INITIALIZE Statement 322
INSPECT Statement e 325
INVOKE Statement e 334
MERGE Statemento 342
MOVE Statement 349
MULTIPLY Statement oo 354
OPEN Statement e 356
PERFORM Statement oo 362
READ Statement 373
RELEASE Statemento 382
RETURN Statement oo 384
REWRITE Statement oo 386
SEARCH Statement 390

Vi COBOL Language Reference

SET Statement 397

SORT Statement e 404
START Statemento 412
STOP Statement e 415
STRING Statement o 417
SUBTRACT Statement e 422
UNSTRING Statement e 425
WRITE Statement e 433
Part 7. Intrinsic Functions 443
Intrinsic Functions L e 445
Specifyinga Function 445
Function Definitions 451
ACOS . . e e 455
ANNUITY . e e 456
ASIN e e e e 457
ATAN L e 458
CHAR . . . 459
COS . . 460
CURRENT-DATE 461
DATE-OF-INTEGER s e s e s e e e 463
DATE-TO-YYYYMMDD e e e e e e 464
DATEVAL e e 465
DAY-OF-INTEGER e 467
DAY-TO-YYYYDDD e 468
FACTORIAL . . . e 469
INTEGER e e e 470
INTEGER-OF-DATE e e e e s s e e s 471
INTEGER-OF-DAY e 472
INTEGER-PART e e e 473
LENGTH . . . e 474
LOG . . . e s 475
LOGI0 . . . e 476
LOWER-CASE s 477
MAX . e 478
MEAN . . e 479
MEDIAN . . s 480
MIDRANGE e 481
MIN e 482
MOD . . s 483
NUMVAL . . e 484
NUMVAL-C . . . e 485
ORD . . 487
ORD-MAX . . 488
ORD-MIN . . . 489
PRESENT-VALUE s 490
RANDOM . . . 491

Contents Vii

REM 493
REVERSE 494
SIN 495
SQRT . . 496
STANDARD-DEVIATION e 497
SUM 498
TAN 499
UNDATE . . . e 500
UPPER-CASE 501
VARIANCE 502
WHEN-COMPILED e 503
YEAR-TO-YYYY . . e 505
YEARWINDOW o e 506
Part 8. Compiler-Directing Statements 507
Compiler-Directing Statement 508
BASIS Statement 508
CBL (PROCESS) Statement 509
*CONTROL (*CBL) Statement i 510
COPY Statement 512
DELETE Statement e 519
EJECT Statement e 520
ENTER Statement 520
INSERT Statement e 521
READY or RESET TRACE Statement 521
REPLACE Statement e 523
SERVICE LABEL Statement 526
SERVICE RELOAD Statement it 527
SKIP1/2/3 Statements L 527
TITLE Statement o e e e e e e e e e 528
USE Statement e 529
Compiler Directives e 535
CALLINTERFACE e e 535
Appendixes 539
Appendix A. Compiler Limits 540
Appendix B. EBCDIC and ASCII Collating Sequences 544
EBCDIC Collating Sequence e 544
US English ASCIl Code Page (ISO 646) 547
Appendix C. Source Language Debugging 551
Coding Debugging Lines 551

viii COBOL Language Reference

Coding Debugging Sections 551

DEBUG-ITEM Special Register 552
Activate Compile-Time Switch, 552
Activate Object-Time Switch 552
Appendix D. Reserved Words 554
Appendix E. ASCII Considerations for 0OS/390 and VM 561
Environment Division Lo 561
Data Division 563
Procedure Divisiono 563
Appendix F. Locale Considerations (Workstation Only) 564

Appendix G. Summary of Language Difference: Host COBOL and

Workstation COBOL 565
Appendix H. Industry Specifications 567
Standard Terminology L 569
Bibliography 570
Glossary . .. e 573
Index . . . 595

Contents iX

Notices

Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any refer-
ence to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Subject to IBM's valid intellectual
property or other legally protectable rights, any functionally equivalent product, program,
or service may be used instead of the IBM product, program, or service. The evalu-
ation and verification of operation in conjunction with other products, except those
expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling (1) the exchange of information between independently created programs and
other programs (including this one) and (2) the mutual use of the information that has
been exchanged, should contact:

IBM Corporation, W92/H3
P.O. Box 49023
San Jose, CA 95161-9023

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Programming Interface Information

This book is intended to help you write programs using COBOL for OS/390 & VM,
COBOL Set for AlX, and VisualAge COBOL compilers. This IBM COBOL Language
Reference documents General-Use Programming Interface and Associated Guidance
Information provided by COBOL for OS/390 & VM, COBOL Set for AlX, and VisualAge
COBOL.

General-Use programming interfaces allow the customer to write programs that obtain
the services of COBOL for OS/390 & VM, COBOL Set for AlX, and VisualAge COBOL.

© Copyright IBM Corp. 1991, 1998

Notices

Trademarks

The following terms are trademarks of the IBM Corporation in the United States and/or

other countries or both:

Advanced Function Printing
AFP

AIX

AIX/6000
BookManager
CICS
DATABASE 2
DB2
DFSMS/MVS
DFSORT

IBM

IMS

Language Environment
MVS

MVS/ESA

Operating System/2
0S/2

0S/390

Print Services Facility
PSF

SOMobjects
VisualAge

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks

of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed exclu-

sively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

Notices Xi

About This Book

This book presents the syntax of COBOL for OS/390 & VM, COBOL Set for AlX, and
VisualAge COBOL (collectively referred to in this book as IBM COBOL). To indicate
platform-specific information, this book use the following methods:

Prefix the text with platform-specific indicators (for example, Under AIX, 0S/2, and
Windows...)

» Add parenthetical qualifications (for example, (Workstation only))
¢ Prefix the text with icons. This book uses the following icons:

Informs you of information specific to COBOL for OS/390 & VM.

Informs you of information specific to COBOL Set for AIX and
VisualAge COBOL (under OS/2 and Windows).

Informs you of information specific to COBOL Set for AlX.

Informs you of information specific to VisualAge COBOL, under OS/2
only.

Note: This book documents extensions for object-oriented COBOL. Object-oriented
COBOL is not supported on VM.

Use this book in conjunction with the IBM COBOL Programming Guide for your plat-
form.

IBM Extensions

IBM extensions generally add to language element rules or restrictions. In the hard-
copy, published book, IBM extensions appear in gray ink. For example:

IBM extensions in text are shown this way.

Extensions are not indicated in the appendixes, glossary, or index.

Obsolete Language Elements

Obsolete language elements are COBOL 85 Standard language elements that will be
deleted from the next revision of the Standard. (This does not imply that these ele-
ments will be eliminated from a future release of an IBM COBOL compiler.)

Xii © Copyright IBM Corp. 1991, 1998

The language elements that will be deleted from the next revision of the COBOL 85
Standard are:

ALTER statement

AUTHOR paragraph

Comment entry

DATA RECORDS clause
DATE-COMPILED paragraph
DATE-WRITTEN paragraph

DEBUG-ITEM special register

Debugging sections

ENTER statement

GO TO without a specified procedure name
INSTALLATION paragraph

LABEL RECORDS clause

MEMORY SIZE clause

MULTIPLE FILE TAPE clause

REVERSED phrase

SECURITY paragraph

SEGMENT-LIMIT

SEGMENTATION

STOP statement

USE FOR DEBUGGING declarative
VALUE OF clause

The figurative constant ALL literal, when associated with a numeric or numeric-
edited item and with a length greater than one

How to Read the Syntax Diagrams

Throughout this book, syntax is described using the structure defined below.

Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

The »—— symbol indicates the beginning of a syntax diagram.
The — symbol indicates that the syntax diagram is continued on the next line.

The »— symbol indicates that the syntax diagram is continued from the previous
line.

The —>< symbol indicates the end of a syntax diagram.

Diagrams of syntactical units other than complete statements start with the »—
symbol and end with the —> symbol.

Required items appear on the horizontal line (the main path).

—— Format
»»>—STATEMENT—required item

\
A

Optional items appear below the main path.

About This Book Xili

Xiv

— Format

»»>—STATEMENT
|—opt1’ona1 1'tem—I

v
A

When you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

—— Format

»—STATEMENT—Er‘equired choice 1
required choice 2J

A\
A

If choosing one of the items is optional, the entire stack appears below the main
path.

—— Format
»>—STATEMENT i:

A\
A

optional choice 1
optional choice 2

An arrow returning to the left above the main line indicates an item that can be
repeated.

—— Format

\4
A

»—STATEMENT—Lr‘epeataMe item |

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

Variables appear in all lowercase letters (for example, parmx). They represent
user-supplied names or values.

If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, they must be entered as part of the syntax.

The following example shows how the syntax is used.

COBOL Language Reference

—— Format

lw

»—STATEMENT—“-)—[identifier-l @ ¥ | ¢T0—identifier-3 >
litergl-1— |—{ item 1 }—@J L rounpeo-!

(5)

1

2

3

A\
A

\—meIZE ERROR—imperative-statemen t—lJ |—END—STATEMENT—@J
ON

item 1:
identifier-2 |
literal-2
arithmetic-expression-1

Notes:

The STATEMENT key word must be specified and coded as shown.
This operand is required. Either identifier-1 or literal-1 must be coded.
The item 1 fragment is optional; it can be coded or not, as required by the application. If item 1

is coded, it can be repeated with each entry separated by one or more COBOL separators.
Entry selections allowed for this fragment are described at the bottom of the diagram.

The operand identifier-3 and associated TO key word are required and can be repeated with
one or more COBOL separators separating each entry. Each entry can be assigned the key
word ROUNDED.

The ON SIZE ERROR phrase with associated imperative-statement-1 are optional. If the ON
SIZE ERROR phrase is coded, the key word ON is optional.

The END-STATEMENT key word can be coded to end the statement. It is not a required
delimiter.

The gray text indicates that arithmetic-expression-1 is an IBM extension. This operand is
optional.

DBCS Notation

Double-Byte Character Strings (DBCS) in literals, comments, and user-
defined words are delimited by shift-out and shift-in characters. In this manual, the

shift-out delimiter is represented pictorially by the < character, and the shift-in character

is represented pictorially by the > character. The EBCDIC codes for the shift-out and
shift-in delimiters are X'OE' and X'OF', respectively.

The <> symbol denotes contiguous shift-out and shift-in characters. The >< symbol
denotes contiguous shift-in and shift-out characters.

Double-byte characters are represented in this form: D1D2D3. EBCDIC characters i
double-byte form are represented in this form:.A.B.C. The dots separating the letters
represent the hexadecimal value X'42'.

Under AIX, OS/2, and Windows, you do not delimit DBCS character
strings by shift-in or shift-out characters.

About This Book

n

XV

Acknowledgment

The following extract from Government Printing Office Form Number 1965-0795689 is
presented for the information and guidance of the user:

Any organization interested in reproducing the COBOL report and specifica-
tions in whole or in part, using ideas taken from this report as the basis for an
instruction manual or for any other purpose is free to do so. However, all such
organizations are requested to reproduce this section as part of the introduc-
tion to the document. Those using a short passage, as in a book review, are
requested to mention COBOL in acknowledgment of the source, but need not
guote this entire section.

COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any contrib-
utor, or by the committee, in connection there with.

Procedures have been established for the maintenance of COBOL. Inquiries
concerning the procedures for proposing changes should be directed to the
Executive Committee of the Conference on Data Systems Languages.

The authors and copyright holders of copyrighted material:

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) | and I, Data

Automation Systems copyrighted 1958, 1959, by

Sperry Rand Corporation; IBM Commercial Translator,

Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell,

have specifically authorized the use of this material in whole or in part, in the

COBOL specifications. Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals or similar publications.

XVi COBOL Language Reference

Summary of Changes

This section lists the major changes that have been made to the COBOL for OS/390 &
VM, COBOL Set for AlX, and VisualAge COBOL languages since the previous edition
of this manual. Technical changes are marked in the text by a change bar in the left
margin.

The millennium language extensions, enabling compiler-assisted date processing
for dates containing 2-digit and 4-digit years.

Requires IBM VisualAge Millennium Language Extensions for OS/390
& VM (program number 5648-MLE) to be installed with your compiler.

For information on the millennium language extensions, see “Millennium Language
Extensions and Date Fields” on page 58.

New language elements in support of the millennium language extensions:

— DATE FORMAT clause in data description entries
— Intrinsic functions:

- DATEVAL

- UNDATE

- YEARWINDOW

New compiler options in support of the millennium language extensions:

— DATEPROC/NODATEPROC
— YEARWINDOW

New compiler option, ANALYZE, to check the syntax of imbedded SQL and CICS
statements.

New date intrinsic functions to cover the recommendation in the Working Draft for
Proposed Revision of ISO 1989:1985 Programming Language COBOL:

— DATE-TO-YYYYMMDD
— DAY-TO-YYYYDDD
— YEAR-TO-YYYY

Extension of the ACCEPT statement to cover the recommendation in the Working
Draft for Proposed Revision of ISO 1989:1985 Programming Language COBOL.:

— ACCEPT FROM DATE YYYYMMDD
— ACCEPT FROM DAY YYYYDDD

© Copyright IBM Corp. 1991, 1998 XVii

Xviii COBOL Language Reference

Part 1. COBOL Language Structure

Characters e 2
Character-Strings e 3
Figurative Constants 8
Special Registers 10
Literals 20
Separators L 28
Sections and Paragraphs 30
Statements and Clauses 30
Reference Format 32
Sequence Number Area 32
Indicator Area 32
Area A L 33
Area B . . L 34
Area Aor Area B 37
Scope of Names L 39
Types of Names L 39
External and Internal Resources 42
Resolution of Names 43
Referencing Data Names, Copy Libraries, and Procedure Division Names . 44
Uniqueness of Reference o 44
Transfer of Control 56
Millennium Language Extensions and Date Fields 58
Millennium Language Extensions Syntax 58
Terms and Concepts 59

© Copyright IBM Corp. 1991, 1998 1

Characters

Characters

The most basic and indivisible unit of the COBOL language is the character . The IBM
COBOL character set includes the letters of the alphabet, digits, and special characters.
The complete set of characters that form the IBM COBOL character set is shown in
Table 1 on page 3.

The basic IBM COBOL language is restricted to the character set shown in Table 1 on
page 3, but the content of nonnumeric literals, comment lines, comment entries, and
data can include any of the characters from the character set of the computer.

In some cases, the basic character set is extended with the national character set. The
national character set support includes the Double-Byte Character Set (DBCS) and,
additionally for AlX, the Extended Unix** Code (EUC) code page.

Double-byte characters, as the name implies, occupy two adjacent bytes to represent 1
character. A character string containing DBCS characters is called a DBCS character-
string .

For AIX, characters from the EUC code page can be from one to four bytes
long.

DBCS and EUC characters are valid characters in certain COBOL character-strings.
For details, see “COBOL Words with Multi-Byte Characters” on page 4 and “DBCS
Literals” on page 25.

Individual characters are joined to form character-strings , separators , and text
words .

A character-string is a character or a sequence of contiguous characters that forms a
COBOL word, a literal, a PICTURE character-string, or a comment-entry. A character-
string is delimited by separators.

A separator is a string of one or two contiguous characters used to delimit character
strings. Separators are described in detail under “Separators” on page 28.

A text word is a character or a sequence of contiguous characters between character

positions 8 and 72 inclusive on a line in a COBOL library, source program, or in
pseudo-text. For more information on pseudo-text, see “Pseudo-Text” on page 38.

© Copyright IBM Corp. 1991, 1998

Character-Strings

Table 1. Characters—Meanings

Character

Meaning

Space

Plus sign

Minus sign or Hyphen
Asterisk

Slant, Solidus, Stroke, or Slash
Equal sign

Currency sign

Comma

Semicolon

Decimal point or Period
Quotation mark

Left parenthesis

Right parenthesis
Greater than

Less than

Colon

Apostrophe

Alphabet (uppercase)
Alphabet (lowercase)
Numeric characters

Character-Strings

You can use EBCDIC and/or DBCS characters strings under OS/390 and VM or ASCII
and/or DBCS/EUC character-strings under AlIX, OS/2, and Windows to form the fol-

lowing:

¢ COBOL words
e Literals

¢ PICTURE character-strings (EBCDIC or ASCII character-strings only)

¢ Comment text

COBOL Words with Single-Byte Characters
A COBOL word is a character-string of not more than 30 characters that forms a user-
defined word, a system-name, or a reserved word. Except for arithmetic operators and
relation characters, each character of a COBOL word is selected from the following:

e A through Z
¢ athrough z
e 0 through 9
* - (hyphen)

The hyphen cannot appear as the first or last character in such words. All user-defined
words (except for section-names, paragraph-names, segment-numbers, and level-
numbers) must contain at least one alphabetic character. Segment numbers and level
numbers need not be unique; a given specification of a segment-number or level-
number can be identical to any other segment-number or level-number. Each lower-

Part 1. COBOL Language Structure

3

Character-Strings

case letter is considered to be equivalent to its corresponding uppercase letter, except

in nonnumeric literals.

Within a source program the following rules apply for all COBOL words with single-byte

characters:

e A reserved word cannot be used as a user-defined word or as a system-name.

e The same COBOL word, however, can be used as both a user-defined word and
as a system-name. The classification of a specific occurrence of a COBOL word is
determined by the context of the clause or phrase in which it occurs.

COBOL Words with Multi-Byte Characters
DBCS/EUC characters must conform to the normal COBOL rules for user-defined
words. The following are the rules for forming user-defined words from multi-byte char-

acters:

Table 2 (Page 1 of 2). Rules for Forming Words from Multi-Byte Characters

Rule 0S/390 and VM AlX, OS/2, and Windows
Use of DBCS user-defined words begin with a Not required

Shift-Out shift-out character and end with a shift-in

Shift-In Char- character.

acters

Value Range

DBCS user-defined words can contain charac-
ters whose values range from X'41' to

X'FE' for both bytes, and X'4040' (DBCS
space). In addition, DBCS data items and
literals can include characters that range in
hexadecimal value from X'00' to X'FF' for
both bytes.

Valid value ranges for multi-byte characters
depend on the specific code page being used.

Containing
Characters

DBCS user-defined words can contain only

double-byte characters, and must contain at
least one non-EBCDIC character. (Double-

byte EBCDIC characters are represented by
X'42" in the first byte.) Single-byte charac-
ters are not allowed in a DBCS word.

DBCS user-defined words can contain both
double-byte EBCDIC and double-byte non
EBCDIC characters. The only double-byte
EBCDIC characters allowed are: A-Z, a - z,
0 - 9, and the hyphen (-). The hyphen cannot
appear as the first or last character. The
rules that apply to EBCDIC user-defined
words also apply to DBCS user-defined
words.

A user-defined word can consist of both single-
byte or multiple-byte (including double-byte)
characters. If a character exists in both single-
byte and multiple-byte forms, its single-byte and
multi-byte representations are not equivalent.

Continuation
Rules

Words cannot be continued across lines.

Words cannot be continued across lines.

4 COBOL Language Reference

Character-Strings

Table 2 (Page 2 of 2). Rules for Forming Words from Multi-Byte Characters

0S/390 and VM

AIX, 0OS/2, and Windows

Equivalent

Not equivalent

14 characters

15 characters for a DBCS code page
For AIX only:

e 7 characters for EUC code page
IBM_eucTW

e 10 characters for EUC code pages,
IBM_eucJP, IBM_eucKR, and IBM_eucCN

User-Defined Words

The following sets of user-defined words

¢ alphabet-name

¢ class-name

¢ condition-name

e data-name

¢ file-name

¢ index-name

¢ |evel-numbers: 01-49, 66, 77, 88
¢ library-name

e method-name

* mnemonic-name

e object-oriented class-name
e paragraph-name

e priority-numbers: 00-99

e program-name

e record-name

e section-name

¢ symbolic-character

e text-name

are supported:

Multi-byte characters are valid for user-defined words, except for level numbers, priority
numbers, object-oriented class names, and method names.

For level-numbers and priority numbers, each word must be a 1-digit or 2-digit integer.

Within a given source program or class definition, but excluding any contained program
or method, each user-defined word (except level-numbers and priority-numbers) can
belong to only one of these sets. Each user-defined word within a set must be unique,
except as specified in “Referencing Data Names, Copy Libraries, and Procedure Divi-

sion Names” on page 44.

Part 1. COBOL Language Structure 5

Character-Strings

The following types of user-defined words can be referenced by statements and entries
in that program in which the user-defined word is declared:

e Paragraph-name
e Section-name

The following types of user-defined words can be referenced by any COBOL program,
provided that the compiling system supports the associated library or other system, and
the entities referenced are known to that system:

e Library-name
e Text-name

The following types of names, when they are declared within a Configuration Section,
can be referenced by statements and entries either in that program which contains a
Configuration Section or in any program contained within that program:

e Alphabet-name

¢ Class-name

e Condition-name

¢ Mnemonic-name

e Symbolic-character

The function of each user-defined word is described in the clause or statement in which
it appears.

System-Names

A system-name is a character string that has a specific meaning to the system. There
are three types of system-names:

e Computer-name
e Language-name
¢ Implementor-name
There are three types of implementor-names:

e Environment-name
e External class-name
¢ Assignment-name

The meaning of each system-name is described with the format in which it appears.

Under OS/390 and VM, the only DBCS character string system-name
allowed is computer-name.

Under AIX, OS/2, and Windows, multi-byte characters are allowed for
system-name.

6 COBOL Language Reference

Character-Strings

Function-Names
A function-name specifies the mechanism provided to determine the value of an
intrinsic function. The same word, in a different context, can appear in a program as a
user-defined word or a system-name. For a list of function-names and their definitions,
see Table 52 on page 452.

Reserved Words
A reserved word is a character-string with a predefined meaning in a COBOL source

program. IBM COBOL reserved words are listed in Appendix D, “Reserved Words” on
page 554.

Information on selecting an alternate reserved word table can be found in the IBM
COBOL Programming Guide for your platform.

There are six types of reserved words:

e Keywords

¢ Optional words

¢ Figurative constants

¢ Special character words
e Special object identifiers
e Special registers

Keywords
Keywords are reserved words that are required within a given clause, entry, or
statement. Within each format, such words appear in uppercase on the main path.

Optional Words
Optional words are reserved words that can be included in the format of a clause,
entry, or statement in order to improve readability. They have no effect on the
execution of the program.

Figurative Constants
See “Figurative Constants” on page 8.

Special Character Words
There are two types of special characters , which are only recognized as special
characters when represented in single-byte.

e Arithmetic operators: + - [* **
See “Arithmetic Expressions” on page 231.

e Relational operators : < > = <= >=
See “Conditional Expressions” on page 237.

Special Object Identifiers
COBOL provides two special object identifiers, SELF and SUPER, used in a
method Procedure Division:

Part 1. COBOL Language Structure 7

Figurative Constants

SELF
A special object identifier you can use in the Procedure Division of a method.
SELF refers to the object instance used to invoke the currently-executing
method. You can specify SELF only in source program positions that are
explicitly listed in the syntax diagrams.

SUPER
A special object identifier you can use in the Procedure Division of a method
only as the object identifier in an INVOKE statement. When used in this way,
SUPER refers to the object instance used to invoke the currently-executing
method. The resolution of the method to be invoked ignores any methods
declared in the class definition of the currently-executing method and methods
defined in any class derived from that class. Thus, the method invoked is
inherited from an ancestor class.

Special Registers
See “Special Registers” on page 10.

Figurative Constants

Figurative constants are reserved words that name and refer to specific constant
values. The reserved words for figurative constants and their meanings are:

ZERO/ZEROS/ZEROES
Represents the numeric value zero (0), or one or more occurrences of the nonnu-
meric character zero (0), depending on context.

When the context cannot be determined, a nonnumeric zero is used.

SPACE/SPACES
Represents one or more blanks or spaces. SPACE is treated as a nonnumeric
literal.

HIGH-VALUE/HIGH-VALUES
Represents one or more occurrences of the character that has the highest ordinal
position in the collating sequence used. For the EBCDIC collating sequence, the
character is X'FF'; for other collating sequences, the actual character used
depends on the collating sequence indicated by the locale. For more information
on locale, see Appendix F, “Locale Considerations (Workstation Only)” on
page 564. HIGH-VALUE is treated as a nonnumeric literal.

LOW-VALUE/LOW-VALUES
Represents one or more occurrences of the character that has the lowest ordinal
position in the collating sequence used. For the EBCDIC collating sequence, the
character is X'00'; for other collating sequences, the actual character used
depends on the collating sequence. LOW-VALUE is treated as a nonnumeric
literal.

8 COBOL Language Reference

Figurative Constants

QUOTE/QUOTES
Represents one or more occurrences of the quotation mark character ("). QUOTE
or QUOTES cannot be used in place of a quotation mark to enclose a nonnumeric
literal.

Represents one or more occurrences of a nonnumeric literal delimiter depending
on the QUOTE compiler option.

Represents one or more occurrences of a nonnumeric literal delimiter depending
on the APOST compiler option.

ALL literal
Represents one or more occurrences of the string of characters composing the
literal. The literal must be either a nonnumeric literal or a figurative constant other
than the ALL literal. When a figurative constant, other than the ALL literal is used,
the word ALL is redundant and is used for readability only. The figurative constant
ALL literal must not be used with the CALL, INSPECT, INVOKE, STOP, or
STRING statements.

symbolic-character
Represents one or more of the characters specified as a value of the symbolic-
character in the SYMBOLIC CHARACTERS clause of the SPECIAL-NAMES para-
graph.

Under AIX, OS/2, and Windows, you cannot specify the SYMBOLIC
CHARACTER clause if a DBCS or EUC code page is indicated by the locale
setting. For more information on locale, see Appendix F, “Locale Considerations

(Workstation Only)” on page 564.

NULL/NULLS
Represents a value used to indicate that data items defined with USAGE IS
POINTER, USAGE IS PROCEDURE-POINTER, USAGE IS OBJECT REFERENCE
or the ADDRESS OF special register do not contain a valid address. NULL can be
used only where explicitly allowed in the syntax format. NULL has the value of
zero.

The singular and plural forms of ZERO, SPACE, HIGH-VALUE, LOW-VALUE, and
QUOTE can be used interchangeably. For example, if data-name-1 is a 5-character
data item, each of the following statements will fill data-name-1 with five spaces:

MOVE SPACE TO DATA-NAME-1
MOVE SPACES TO DATA-NAME-1
MOVE ALL SPACES TO DATA-NAME-1

You can use a figurative constant wherever “literal” appears in a syntax diagram,
except where explicitly prohibited. When a numeric literal appears in a syntax diagram,
only the figurative constant ZERO (ZEROS, ZEROES) can be used. Figurative con-
stants are not allowed as function arguments except in an arithmetic expression, where
they are arguments to a function.

Part 1. COBOL Language Structure 9

Special Registers

The length of a figurative constant depends on the context of the program. The fol-
lowing rules apply:

e When a figurative constant is specified in a VALUE clause or associated with a
data item (for example, when it is moved to or compared with another item), the
length of the figurative constant character-string is equal to 1 or the number of
character positions in the associated data item, whichever is greater.

¢ When a figurative constant, other than the ALL literal, is not associated with
another data item (for example, in a CALL, INVOKE, STOP, STRING, or
UNSTRING statement), the length of the character-string is 1 character.

Special Registers

Special registers are reserved words that name storage areas generated by the com-
piler. Their primary use is to store information produced through specific COBOL fea-
tures. Each such storage area has a fixed name, and must not be defined within the
program.

Unless otherwise explicitly restricted, a special register can be used wherever a data-
name or identifier having the same definition as the implicit definition of the special reg-
ister, (which is specified later in this section).

If qualification is allowed, special registers can be qualified as necessary to provide
uniqueness. (For more information, see “Qualification” on page 44.)

For the first CALL to a program or INVOKE of a method, the compiler initializes the
special register fields to their initial values.

In the following cases:

e For subsequent CALLs to a CANCELed program

¢ Programs that possess the INITIAL attribute

¢ Programs that possess the RECURSIVE attribute

e Programs compiled with the THREAD option (Workstation only)

The following special registers are reset to their initial value on each program or
method entry:

e ADDRESS OF (for each record in the Linkage Section)
e RETURN-CODE

e SORT-CONTROL

¢ SORT-CORE-SIZE

e SORT-FILE-SIZE

e SORT-MESSAGE

e SORT-MODE-SIZE

¢ SORT-RETURN

e TALLY

In all other cases, the special registers will not be reset; (they will be unchanged from
the value contained on the previous CALL or INVOKE .)

10 COBOL Language Reference

Special Registers

You can specify an alphanumeric special register in a function wherever an alphanu-
meric argument to a function is allowed, unless specifically prohibited.

ADDRESS OF
The ADDRESS OF special register exists for each record (01 or 77) in the Linkage
Section, except for those records that redefine each other. In such cases, the
ADDRESS OF special register is similarly redefined.

The ADDRESS OF special register is implicitly defined USAGE IS POINTER.

You can specify the ADDRESS OF special register as an argument to the LENGTH
function. If the ADDRESS OF special register is used as the argument to the LENGTH
function, the result will always be 4, independent of the argument specified for
ADDRESS OF.

A function-identifier is not allowed as the operand of the ADDRESS OF special register.

DEBUG-ITEM

The DEBUG-ITEM special register provides information for a debugging declarative pro-
cedure about the conditions causing debugging section execution.

DEBUG-ITEM has the following implicit description:

01 DEBUG-ITEM.
02 DEBUG-LINE PICTURE IS X(6).

02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-NAME PICTURE IS X(30).

02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-1 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-CONTENTS PICTURE IS X(n).

Before each debugging section is executed, DEBUG-ITEM is filled with spaces. The
contents of the DEBUG-ITEM subfields are updated according to the rules for the
MOVE statement, with one exception: DEBUG-CONTENTS is updated as if the move
were an alphanumeric-to-alphanumeric elementary move without conversion of data
from one form of internal representation to another.

After updating, each field contains:

DEBUG-LINE
The source-statement sequence number (or the compiler-generated sequence
number, depending on the compiler option chosen) that caused execution of the
debugging section.

Part 1. COBOL Language Structure 11

Special Registers

LENGTH OF

DEBUG-NAME

The first 30 characters of the name that caused execution of the debugging
section. Any qualifiers are separated by the word “OF.”

DEBUG-SUB-1, DEBUG-SUB-2, DEBUG-SUB-3

If the DEBUG-NAME is subscripted or indexed, the occurrence number of each
level is entered in the respective DEBUG-SUB-n. If the item is not subscripted or
indexed, these fields remain as spaces. You must not reference the DEBUG-ITEM
special register if your program uses more than three levels of subscripting or

indexing.

DEBUG-CONTENTS
Data is moved into DEBUG-CONTENTS, as shown in Table 3.

Table 3. DEBUG-ITEM Subfield Contents

Cause of Debug-
ging Section Exe-
cution

Statement Referred to
in DEBUG-LINE

Contents of
DEBUG-NAME

Contents of
DEBUG-CONTENTS

procedure-name-1
ALTER reference

ALTER statement

procedure-name-1

procedure-name-n
in TO PROCEED
TO phrase

GO TO procedure-
name-n

GO TO statement

procedure-name-n

spaces

procedure-name-n
in SORT/MERGE
input/output proce-
dure

SORT/MERGE statement

procedure-name-n

“SORT INPUT”
“SORT OUTPUT"
“MERGE OUTPUT"
(as applicable)

PERFORM state-
ment transfer of
control

This PERFORM state-
ment

procedure-name-n

“PERFORM LOOP"

procedure-name-n
in a USE procedure

Statement causing USE
procedure execution

procedure-name-n

“USE
PROCEDURE”

Implicit transfer from
previous sequential
procedure

Previous statement exe-
cuted in previous
sequential procedure *

procedure-name-n

“FALL THROUGH”

First execution of
first nondeclarative
procedure

Line number of first non-
declarative procedure-
name

first nondeclar-
ative procedure

“START
PROGRAM”

Note:

* If this procedure is preceded by a section header, and control is passed through the section
header, the statement number refers to the section header.

The LENGTH OF special register contains the number of bytes used by an identifier.

LENGTH OF creates an implicit special register whose content is equal to the current
byte length of the data item referenced by the identifier.

12 COBOL Language Reference

Special Registers

Note: For DBCS data items, each character occupies 2 bytes of storage.

LENGTH OF can be used in the Procedure Division anywhere a numeric data item
having the same definition as the implied definition of the LENGTH OF special register
is used. The LENGTH OF special register has the implicit definition:

USAGE IS BINARY PICTURE 9(9)

If the data item referenced by the identifier contains the GLOBAL clause, the LENGTH
OF special register is a global data item.

The LENGTH OF special register can appear within either the starting character posi-
tion or the length expressions of a reference modification specification. However, the
LENGTH OF special register cannot be applied to any operand that is reference-
modified.

The LENGTH OF operand cannot be a function, but the LENGTH OF special register is
allowed in a function where an integer argument is allowed.

If the LENGTH OF special register is used as the argument to the LENGTH function,
the result is always 4, independent of the argument specified for LENGTH OF.

LENGTH OF can not be either of the following:

e A receiving data item
e A subscript

When the LENGTH OF special register is used as a parameter in a CALL statement,
the parameter must be a BY CONTENT parameter.

When a table element is specified, the LENGTH OF special register contains the
length, in bytes, of one occurrence. When referring to a table element, it need not be
subscripted.

A value is returned for any identifier whose length can be determined, even if the area
referenced by the identifier is currently not available to the program.

A separate LENGTH OF special register exists for each identifier referenced with the
LENGTH OF phrase, for example:

MOVE LENGTH OF A TO B

DISPLAY LENGTH OF A, A

ADD LENGTH OF A TO B

CALL "PROGX" USING BY REFERENCE A BY CONTENT LENGTH OF A

Note: The number of bytes occupied by a COBOL item is also accessible through the
intrinsic function LENGTH (See “LENGTH” on page 474). LENGTH supports nonnu-
meric literals in addition to data names.

Part 1. COBOL Language Structure 13

Special Registers

LINAGE-COUNTER

A separate LINAGE-COUNTER special register is generated for each FD entry con-
taining a LINAGE clause. When more than one is generated, you must qualify each
reference to a LINAGE-COUNTER with its related file-name.

The implicit description of the LINAGE-COUNTER special register is one of the fol-
lowing:
¢ If the LINAGE clause specifies a data-name, LINAGE-COUNTER has the same
PICTURE and USAGE as that data-name.

e If the LINAGE clause specifies an integer, LINAGE-COUNTER is a binary item with
the same number of digits as that integer.

For more information, see “LINAGE Clause” on page 153.

The value in LINAGE-COUNTER at any given time is the line number at which the
device is positioned within the current page. LINAGE-COUNTER can be referred to in
Procedure Division statements; it must not be modified by them.

LINAGE-COUNTER is initialized to 1 when an OPEN statement for its associated file is
executed.

LINAGE-COUNTER is automatically modified by any WRITE statement for this file.
(See “WRITE Statement” on page 433.)

If the file description entry for a sequential file contains the LINAGE clause and the
EXTERNAL clause, the LINAGE-COUNTER data item is an external data item. If the
file description entry for a sequential file contains the LINAGE clause and the GLOBAL
clause, the LINAGE-COUNTER data item is a global data item.

You can specify the LINAGE-COUNTER special register wherever an integer argument
to a function is allowed.

RETURN-CODE

The RETURN-CODE special register can be used to pass information between
separately-compiled programs.

You can set the RETURN-CODE special register to pass a return code to the program
or the system before executing a STOP RUN statement. It has the implicit definition:

01 RETURN-CODE GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO

The following are examples of how to set the RETURN-CODE special register:
COMPUTE RETURN-CODE = 8

or

MOVE 8 to RETURN-CODE.

14 COBOL Language Reference

Special Registers

When control returns to the operating system, the special register contents are returned
as a user return code. When used in nested programs, this special register is implicitly
defined in the outermost program.

Under AIX only, when your program is compiled and linked with the non-
threaded support and the program ends in an abend, the return code is set to 128 plus
the signal number. When your program is compiled and linked with the threaded
support and your program ends in an abend, the return code is not set. AIX

Note: The RETURN-CODE special register does not return a value from an invoked
method or from a program that uses CALL...RETURNING. For more information, see
“INVOKE Statement” on page 334 or “CALL Statement” on page 285.

You can specify the RETURN-CODE special register in a function wherever an integer
argument is allowed.

The RETURN-CODE special register will not contain return code information:

¢ On the host, from a service call for a Language Environment callable service. For
more information, see the IBM COBOL for OS/390 & VM Programming Guide and
Language Environment Programming Guide.

* On the workstation, from a date/time callable service. For more information, see
the IBM COBOL Programming Guide for your platform.

SHIFT-OUT and SHIFT-IN

The SHIFT-OUT and SHIFT-IN special registers are supported; however,
the code pages for AlX, OS/2, and Windows do not recognize them as delimiters for

double-byte characters.

The SHIFT-OUT and SHIFT-IN special registers are implicitly defined as alphanumeric
data items of the format:

01 SHIFT-OUT GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"OE"
01 SHIFT-IN GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"OF"

These special registers represent shift-out and shift-in control characters without the
use of unprintable characters.

You can specify the SHIFT-OUT and SHIFT-IN special registers in a function wherever
an alphanumeric argument is allowed.

These special registers cannot be receiving items. SHIFT-OUT and SHIFT-IN cannot
be used in place of the keyboard control characters when defining DBCS user-defined
words and when specifying DBCS literals.

Following is an example of how SHIFT-OUT and SHIFT-IN might be used:

Part 1. COBOL Language Structure 15

Special Registers

DATA DIVISION.
WORKING-STORAGE.

01 DBCSGRP.
05 SO PIC X.
05 DBCSITEM PIC G(3) USAGE DISPLAY-1
05 SI PIC X.

PROCEDURE DIVISION.

MOVE SHIFT-OUT TO SO

MOVE G"<D1D2D3>" TO DBCSITEM
MOVE SHIFT-IN TO SI

DISPLAY DBCSGRP

When used in nested programs, this special register is implicitly defined in the outer-
most program.

SORT-CONTROL
The SORT-CONTROL special register is the name of an alphanumeric data item.

Under AIX, OS/2, and Windows, it is implicitly defined as:
01 SORT-CONTROL GLOBAL PICTURE X(160) VALUE "file name".

Where "file name" is the file name used by SMARTSort as the source for additional
sort/merge options.

Under OS/390 and VM it is implicitly defined as:
01 SORT-CONTROL GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "IGZSRTCD"

This register contains the ddname of the data set that holds the control statements
used to improve the performance of a sorting or merging operation.

Under OS/390, you can provide a DD statement for the data set identified by the
SORT-CONTROL special register, and COBOL for OS/390 & VM will attempt to open
the data set at execution time. Any error will be diagnosed with an informational

message.

You can specify the SORT-CONTROL special register in a function wherever an alpha-
numeric argument is allowed.

The SORT-CONTROL special register is not necessary for a successful sorting or
merging operation.

Note that the sort control file takes precedence over the SORT special registers.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

16 COBOL Language Reference

Special Registers

For further information, see the IBM COBOL Programming Guide for your platform.

SORT-CORE-SIZE

The SORT-CORE-SIZE special register is the name of a binary data item that you can
use to specify the number of bytes of storage available to the sort utility. It has the
implicit definition:

01 SORT-CORE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO

Under AIX, OS/2, and Windows, the amount of storage indicated in the
SORT-CORE-SIZE special register does not include memory areas required by COBOL
library functions not related to the SORT or MERGE function. It also does not include
fixed amount of memory areas (modules, control blocks, fixed size work areas) required

for the sort and merge implementation. Workstation

Under OS/390 and CMS, SORT-CORE-SIZE can be used in place of the
MAINSIZE or RESINV control statements in the sort control file.

The '"MAINSIZE=" option control statement key word is equivalent to
SORT-CORE-SIZE with a positive value.

The 'RESINV=" option control statement key word is equivalent to
SORT-CORE-SIZE with a negative value.

The 'MAINSIZE=MAX" option control statement key word is equivalent to
SORT-CORE-SIZE with a value of +999999 or +99999999.

You can specify the SORT-CORE-SIZE special register in a function wherever an
integer argument is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

SORT-FILE-SIZE

The SORT-FILE-SIZE special register is the name of a binary data item that you can
use to specify the estimated number of records in the sort input file, file-name-1. It has
the implicit definition:

01 SORT-FILE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO
Under AIX, OS/2, and Windows, references to the SORT-FILE-SIZE

special register are resolved by the compiler; however, the value in the special register
has no impact for the execution of a SORT or MERGE statement.

Under OS/390 and CMS, SORT-FILE-SIZE is equivalent to the
'FILSZ=Ennn' control statement in the sort control file.

You can specify the SORT-FILE-SIZE special register in a function wherever an integer
argument is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

Part 1. COBOL Language Structure 17

Special Registers

SORT-MESSAGE

The SORT-MESSAGE special register is the name of an alphanumeric data item that is
available to both sort and merge programs.

Under AIX, OS/2, and Windows, references to the SORT-MESSAGE
special register are resolved by the compiler; however, the value in the special register
has no impact for the execution of a SORT or MERGE statement.

Under OS/390 and CMS, it has the implicit definition:
01 SORT-MESSAGE GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "SYSOUT"

You can use the SORT-MESSAGE special register to specify the ddname of a data set
that the sort utility should use in place of the SYSOUT data set.

The ddname specified in SORT-MESSAGE is equivalent to the name specified on the
'"MSGDDN=" control statement in the sort control file.

You can specify the SORT-MESSAGE special register in a function wherever an alpha-
numeric argument is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

SORT-MODE-SIZE
The SORT-MODE-SIZE special register is the name of a binary data item that you can
use to specify the length of variable-length records that occur most frequently. It has
the implicit definition:

01 SORT-MODE-SIZE GLOBAL PICTURE S9(5) USAGE BINARY VALUE ZERO
Under AIX, OS/2, and Windows, references to the SORT-MODE-SIZE

special register are resolved by the compiler; however, the value in the special register
has no impact for the execution of a SORT or MERGE statement.

SORT-MODE-SIZE is equivalent to the 'SMS=" control statement in the
sort control file.

You can specify the SORT-MODE-SIZE special register in a function wherever an
integer argument is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

SORT-RETURN

The SORT-RETURN special register is the name of a binary data item and is available
to both sort and merge programs.

The SORT-RETURN special register has the implicit definition:
01 SORT-RETURN GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO

18 COBOL Language Reference

Special Registers

It contains a return code of 0 (successful) or 16 (unsuccessful) at the completion of a
sort/merge operation. If the sort/merge is unsuccessful and there is no reference to this
special register anywhere in the program, a message is displayed on the terminal.

You can set the SORT-RETURN special register to 16 in an error declarative or
input/output procedure to terminate a sort/merge operation before all records are proc-
essed. The operation is terminated on the next input or output function for the SORT
or MERGE operation.

You can specify the SORT-RETURN special register in a function wherever an integer
argument is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

TALLY

The TALLY special register is the name of a binary data item with the following defi-
nition:
01 TALLY GLOBAL PICTURE 9(5) USAGE BINARY VALUE ZERO

You can refer to or modify the contents of TALLY.

You can specify the TALLY special register in a function wherever an integer argument
is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

WHEN-COMPILED

The WHEN-COMPILED special register contains the date at the start of the compila-
tion. WHEN-COMPILED is an alphanumeric data item with the implicit definition:

01 WHEN-COMPILED GLOBAL PICTURE X(16) USAGE DISPLAY

The WHEN-COMPILED special register has the format:
MM/DD/YYhh.mm.ss (MONTH/DAY/YEARhour.minute.second)

For example, if compilation began at 2:04 PM on 27 April 1995, WHEN-COMPILED
would contain the value 04/27/9514.04.00.

WHEN-COMPILED can only be used as the sending field in a MOVE statement.
WHEN-COMPILED special register data cannot be reference-modified.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

Part 1. COBOL Language Structure 19

Literals

Note: The compilation date and time is also accessible via the date/time intrinsic func-
tion WHEN-COMPILED (See “WHEN-COMPILED” on page 503). That function sup-
ports 4-digit year values, and provides additional information.

Literals

A literal is a character-string whose value is specified either by the characters of which
it is composed, or by the use of a figurative constant. (See “Figurative Constants” on
page 8.) The literal types are nonnumeric , DBCS, and numeric .

Nonnumeric Literals

A nonnumeric literal is a character string enclosed in quotation marks ("), and can
contain any allowable character from the character set of the computer. The maximum
length of a nonnumeric literal is 160 characters.

The enclosing quotation marks are excluded from the literal when the program is com-
piled. An embedded quotation mark must be represented by a pair of quotation marks
(""). For example,

"THIS ISN""T WRONG"

As an IBM extension, you can use apostrophes as the literal delimiters instead of
guotes (independent of the APOST/QUOTE compiler option). An embedded apos-
trophe must be represented by a pair of apostrophes (''). For example,

'THIS ISN''T WRONG'

The delimiter character used as the opening delimiter for a literal must be used as the
closing delimiter for that literal. For example,

'THIS IS RIGHT
"THIS IS RIGHT"
'THIS IS WRONG"

Any punctuation characters included within a nonnumeric literal are part of the value of
the literal.

Every nonnumeric literal is in the alphanumeric data category. (Data categories are
described in “Classes and Categories of Data” on page 138.)

Table 4 on page 21 lists when nonnumeric literals with double-byte or multiple-byte
characters cannot be used.

20 COBOL Language Reference

Literals

Table 4. When Multi-Byte Characters are not Allowed in Nonnumeric Literals

0S/390 and VM

AIX, OS/2, and Windows

As a literal in the following:

ALPHABET clause
ASSIGN clause

CALL statement program-id
CANCEL statement
CLASS clause
CURRENCY SIGN clause
END METHOD header
END PROGRAM header
ENTRY statement
METHOD-ID paragraph
PADDING CHARACTER clause
PROGRAM-ID paragraph
RERUN clause

STOP statement

As a literal in the following:

ALPHABET clause

ASSIGN clause

CLASS clause

CURRENCY SIGN clause

END METHOD header
METHOD-ID paragraph
PADDING CHARACTER clause
RERUN clause

STOP statement

BASIS statement (basis-name)

COPY statement (text-name)

COPY statement (library-name)

Under AIX, OS/2, and Windows, you can include multi-byte as well as
single-byte DBCS or EUC characters as alphanumeric literals (such as to initialize
display fields). However, COBOL semantics applied to literals that contain both multi-
byte and single-byte characters are not sensitive to the length (in bytes) of the indi-

vidual characters.

The rule of formation for mixed literals are as follows:

¢ A nonnumeric literal (whether it contains any multi-byte characters or not) is delim-
ited by either an opening and closing " or an opening and closing '. The " or '
must be represented as a single-byte character.

e Nonnumeric literals containing a multi-byte character cannot be continued. The
maximum length of a nonnumeric literal with multi-byte characters is limited only by
the available positions in Area B on a single source line.

Under OS/390 and VM, with the DBCS compiler option, the characters
X'OE'" and X'OF' in a nonnumeric literal will be recognized as shift codes for DBCS

characters. That is, the characters between paired shift codes will be recognized as
DBCS characters. Unlike a nonnumeric literal compiled under the NODBCS option,
additional syntax rules apply to DBCS characters in a nonnumeric literal.

Part 1. COBOL Language Structure 21

Literals

These nonnumeric literals with double-byte characters have the following format:

—— Nonnumeric Literals with Double-Byte Characters
"EBCDIC-data<D1D2>EBCDIC-data"

" The opening and closing delimiter (Alternatively, you can use apostrophes (') as
delimiters.)

< Represents the shift-out control character (X'0E")

> Represents the shift-in control character (X'0F")

Shift-out and shift-in control characters are part of the literal and must be paired with
zero or an even number of intervening bytes.

Nested shift codes are not allowed in the DBCS portion of the literal.

The syntax rules for EBCDIC parts of the literal follow the rules for nonnumeric literals.
The syntax rules for DBCS parts of the literal follow the rules for DBCS literals. The
move and comparison rules for nonnumeric literals with double-byte characters are the
same as those for any nonnumeric literal.

The length of a nonnumeric literal with double-byte characters is its byte length,
including the shift control characters. The maximum length is limited by the available
space on one line in Area B. A nonnumeric literal with double-byte characters cannot
be continued.

A nonnumeric literal with double-byte characters is of the alphanumeric category.

Under COBOL for OS/390 & VM, COBOL statements process nonnumeric literals with
double-byte characters without sensitivity to the shift codes and character codes. The
use of statements that operate on a byte-to-byte basis (for example, STRING and
UNSTRING) can result in strings that are not valid mixtures of EBCDIC and double-byte
characters. You must be certain that the statements use DBCS characters. See IBM
COBOL for 0S/390 & VM Programming Guide for more information on using nonnu-
meric literals and data items with double-byte characters in statements that operate on
a byte-by-byte basis.

Hexadecimal notation can be used for nonnumeric literals. This hexadecimal notation
has the following format:

— Hexadecimal Notation Format for Nonnumeric Literals

X"hexadecimal-digits"

X" The opening delimiter for hexadecimal notation of a nonnumeric literal. (Alterna-
tively, you can use apostrophes (') as delimiters.)

22 COBOL Language Reference

Literals

" The closing delimiter for the hexadecimal notation of a nonnumeric literal. (Alterna-
tively, you can use apostrophes (') as delimiters.)

Hexadecimal digits can be characters in the range '0' to '9', 'a' to 'f', and 'A' to
'F', inclusive. Two hexadecimal digits represent a single character in the
EBCDIC/ASCII character set. An even number of hexadecimal digits must be specified.
The maximum length of a hexadecimal literal is 320 hexadecimal digits.

The continuation rules are the same as those for any nonnumeric literal. The opening
delimiter (X" or X') cannot be split across lines.

The DBCS compiler option has no effect on the processing of hexadecimal notation of
nonnumeric literals.

The compiler will convert the hexadecimal literal into a normal nonnumeric literal.
Hexadecimal notation for nonnumeric literals can be used anywhere nonnumeric literals
can appear.

The padding character for hexadecimal notation of nonnumeric literals is the blank
(X'40"' for OS/390 and VM) or (X'20' for AlX, OS/2, and Windows).

Nonnumeric literals can be null-terminated, with the following format:

— Format for Null-Terminated Nonnumeric Literals
Z"ddddd"

Z" The opening delimiter for null-terminated notation of a nonnumeric literal. (Alterna-
tively, you can use apostrophes (') as delimiters.)

" The closing delimiter for a null-terminated notation of a nonnumeric literal. (Alter-
natively, you can use apostrophes (') as delimiters.)

Null-terminated nonnumeric literals can be from 0 to 159 characters. You can specify
any character except X'00', which is the null string automatically appended to the end
of the literal. The length of the literal includes the terminating null character.

Null-terminated literals can be used anywhere a nonnumeric literal can be specified and
have the normal semantics of nonnumeric literals.

Both characters of the opening delimiter for null-terminated literals (Z" or Z') must be on
the same source line.

The LENGTH intrinsic function, when applied to a null-terminated literal, returns the
number of characters in the literal prior to but not including the terminating null. (The
LENGTH special register does not support literal operands.)

Null-terminated literals are not supported in “ALL literal” constructions.

Part 1. COBOL Language Structure 23

Literals

Numeric Literals
A numeric literal is a character-string whose characters are selected from the digits O
through 9, a sign character (+ or -), and the decimal point. If the literal contains no
decimal point, it is an integer. (In this manual, the word integer appearing in a format
represents a numeric literal of nonzero value that contains no sign and no decimal
point; any other restrictions are included with the description of the format.) The fol-
lowing rules apply:

e One through 18 digits are allowed.

e Only one sign character is allowed. If included, it must be the leftmost character of
the literal. If the literal is unsigned, it is a positive value.

¢ Only one decimal point is allowed. If a decimal point is included, it is treated as an
assumed decimal point (that is, as not taking up a character position in the literal).
The decimal point can appear anywhere within the literal except as the rightmost
character.

The value of a numeric literal is the algebraic quantity expressed by the characters in
the literal. The size of a numeric literal in standard data format characters is equal to
the number of digits specified by the user.

Numeric literals can be fixed-point or floating-point numbers.

Rules for Floating-point Literal Values:
e A floating-point literal is written in the form:

> mantissa E exponent—»<

+
+

e The sign is optional before the mantissa and the exponent; if you omit the sign,
the compiler assumes a positive number.

¢ The mantissa can contain between 1 and 16 digits. A decimal point must be
included in the mantissa.

e The exponent is represented by an E followed by an optional sign and 1 or 2 digits.

. Under OS/390 and VM, the magnitude of a floating-point literal value
must fall between 0.54E-78 and 0.72E+76. For values outside of this range, an
E-level diagnostic will be produced and the value will be replaced by either O or
0.72E+76, respectively.

J Under AIX, OS/2, and Windows, the magnitude of a floating-point
literal value must fall between:

— 32-bit representation—1.175(10-38) to 3.403(1038)
— 64-bit representation—2.225(10-308) to 1.798(10308)

Every numeric literal is in the numeric data category. (Data categories are described
under “Classes and Categories of Data” on page 138.)

24 COBOL Language Reference

Literals

DBCS Literals
Table 5 lists the formats and rules for DBCS literals. You can use either quotes or
apostrophes for the opening and closing delimiters.

Table 5. Format and Rules for Forming DBCS Literals

Rules

0S/390 and VM

AIX, OS/2, and Windows

Format

G"<D1D2D3>"
N"<D1D2D3>"

G"D1D2D3"
N"D1D2D3"

G" N"

Opening delimiters. They must be followed
immediately by a shift-out control character.

For N-literals, when embedded
quotes/apostrophes are specified as part of
DBCS characters in a DBCS literal, a single
embedded DBCS quote/apostrophe is repres-
ented by 2 DBCS quotes/apostrophes. If a
single embedded DBCS quote/apostrophe is
found, an E-level compiler message will be
issued and a second embedded DBCS
quote/apostrophe will be assumed.

Opening delimiters.

Represents the shift-out control character
(X'OE")

N/A

Represents the shift-in control character
(X'OF")

N/A

The closing delimiter. They must appear
immediately after the shift-in control char-
acter.

Single-byte quotation marks or apostrophes
can appear as part of DBCS characters in a
DBCS literal between the shift-out and shift-in
control characters.

The closing delimiter.

Character
Range

X'00' to X'FF' for both bytes, except for
X'OF7F' (or X'OF7D" if using apostrophes
as the opening and closing delimiters).

Any double-byte character in a DBCS code
page.

Maximum
Length

28 Characters

N/A

Continuation
Rules

Cannot be continued across lines.

Cannot be continued across lines.

Part 1. COBOL Language Structure 25

Literals

When DBCS Literals are Allowed

DBCS literals are allowed in the following:
e Data Division

— In the VALUE clause of DBCS data description entries. If you specify a DBCS
literal in a VALUE clause for a data item, the length of the literal must not
exceed the size indicated by the data item's PICTURE clause. Explicitly or
implicitly defining a DBCS data item as USAGE DISPLAY-1 specifies that the
data item is to be stored in character form, one character to each 2 bytes.

— In the VALUE OF clause of file description entries.

e Procedure Division
— As the sending item when a DBCS or group item is the receiving item.
— In a relation condition when the comparand is a DBCS or group item.

— As the figurative constants SPACE/SPACES, ALL SPACE/SPACES, or ALL
DBCS literal. These are the only figurative constants that can be DBCS
literals.

When DBCS Literals are Not Allowed
DBCS literals are not allowed in the following:

¢ Non-Procedure Division

— ALPHABET clause

— ASSIGN clause

— CLASS clause

— CURRENCY SIGN clause

— END METHOD header

— END PROGRAM header

— METHOD-ID paragraph

— PADDING CHARACTER clause
— PROGRAM-ID paragraph

— RERUN clause

e Procedure Division

— CALL statement (program-name)

— CANCEL statement

— ENTRY statement

— INVOKE statement

— SET procedure-pointer to ENTRY literal
— STOP statement

¢ As a file assignment name
¢ As a function argument
¢ As a basis-name in a BASIS statement

e As a text-name or library-name in a COPY statement

26 COBOL Language Reference

Literals

PICTURE Character-Strings

Comments

A PICTURE character-string is composed of the currency symbol and certain combi-
nations of characters in the COBOL character set. PICTURE character-strings are
delimited only by the separator space, separator comma, separator semicolon, or sepa-
rator period.

A chart of PICTURE clause symbols appears in Table 12 on page 178.

A comment is a character-string that can contain any combination of characters from
the character set of the computer. It has no effect on the execution of the program.
There are two forms of comments:

Comment entry (Identification Division)
This form is described under “Optional Paragraphs” on page 83.

Comment line (Any division)
This form is described under “Comment Lines” on page 37.

Character-strings that form comments can contain:

. Under OS/390 and VM, DBCS characters or a combination of DBCS
and EBCDIC characters.

J Under AIX, OS/2, and Windows any character from the code page
in effect.

Multiple comment lines containing DBCS/EUC strings are allowed. The embedding of
DBCS/EUC characters in a comment line must be done on a line-by-line basis.
DBCS/EUC words cannot be continued to a following line. No syntax checking for valid
DBCS/EUC strings is provided in comment lines.

Part 1. COBOL Language Structure 27

Separators

Separators

A separator is a string of one or more contiguous characters as shown in Table 6.

Table 6. Separator Characters

Separator Meaning
b Space
b Comma
b Period
b Semicolon
(Left parenthesis
) Right parenthesis
Colon
"b Quotation marks
‘b Apostrophe
X" Opening delimiter for a nonnumeric literal
z" Opening delimiter for a null-terminated nonnumeric literal
N*" Opening delimiter for a DBCS literal
G" Opening delimiter for a DBCS literal

== Pseudo-text delimiter

Rules for Separators

28

In the following description, {} enclose each separator. Anywhere a space is used as a
separator, or as part of a separator, more than one space can be used.

Space {b}
A space can immediately precede or follow any separator except:

e The opening pseudo-text delimiter, where the preceding space is required.

e Within quotation marks. Spaces between quotation marks are considered part
of the nonnumeric literal; they are not considered separators.

Period {. b}, Comma {, b}, Semicolon {; b}
A separator comma is composed of a comma followed by a space; a separator
period is composed of a period followed by a space; a separator semicolon is com-
posed of a semicolon followed by a space.

The separator period must be used only to indicate the end of a sentence, or as
shown in formats. The separator comma and separator semicolon can be used
anywhere the separator space is used.

¢ In the Identification Division , each paragraph must end with a separator
period.

¢ |n the Environment Division , the SOURCE-COMPUTER,
OBJECT-COMPUTER, SPECIAL-NAMES, and I-O-CONTROL paragraphs
must each end with a separator period. In the FILE-CONTROL paragraph,
each File-Control entry must end with a separator period.

¢ In the Data Division , File (FD), Sort/Merge file (SD), and data description
entries must each end with a separator period.

COBOL Language Reference

Separators

¢ |n the Procedure Division , separator commas or separator semicolons can
separate statements within a sentence, and operands within a statement.
Each sentence and each procedure must end with a separator period.

Parentheses { (} ... {) }
Except in pseudo-text, parentheses can appear only in balanced pairs of left and
right parentheses. They delimit subscripts, a list of function arguments, reference-
modifiers, arithmetic expressions, or conditions.

Colon {:}
The colon is a separator and is required when shown in general formats.

Quotation marks { "}...{"}
An opening quotation mark must be immediately preceded by a space or a left
parenthesis. A closing quotation mark must be immediately followed by a sepa-
rator (space, comma, semicolon, period, right parenthesis, or pseudo-text delim-
iter). Quotation marks must appear as balanced pairs. They delimit nonnumeric
literals, except when the literal is continued (see “Continuation Lines” on page 35).

Apostrophes { '} ... {'}
An opening apostrophe must be immediately preceded by a space or a left paren-
thesis. A closing apostrophe must be immediately followed by a separator (space,
comma, semicolon, period, or right parenthesis). Apostrophes must appear as bal-
anced pairs. They delimit nonnumeric literals, except when the literal is continued
(see “Continuation Lines” on page 35).

Pseudo-text delimiters { b==}. .. {==b}
An opening pseudo-text delimiter must be immediately preceded by a space. A
closing pseudo-text delimiter must be immediately followed by a separator (space,
comma, semicolon, or period). Pseudo-text delimiters must appear as balanced
pairs. They delimit pseudo-text. (See “COPY Statement” on page 512.)

Note: Any punctuation character included in a PICTURE character-string, a comment
character-string, or a nonnumeric literal is not considered as a punctuation character,
but rather as part of the character-string or literal.

Part 1. COBOL Language Structure 29

Statement and Clauses

Sections and Paragraphs

Sections and paragraphs define a program. They are subdivided into clauses and
statements. For more information on sections, paragraphs, and statements, see
“Procedures” on page 229.

Statements and Clauses

Unless the associated rules explicitly state otherwise, each required clause or state-
ment must be written in the sequence shown in its format. If optional clauses or state-
ments are used, they must be written in the sequence shown in their formats. These
rules are true even for clauses and statements treated as comments.

The grammatical hierarchy follows this form:

¢ |dentification Division
Paragraphs
Entries
Clauses

¢ Environment Division
Sections
Paragraphs
Entries
Clauses
Phrases

e Data Division
Sections
Entries
Clauses
Phrases

¢ Procedure Division
Sections
Paragraphs
Sentences
Statements
Phrases

Entries

An entry is a series of clauses ending with a separator period. Entries are constructed
in the ldentification, Environment, and Data Divisions.

Clauses

A clause is an ordered set of consecutive COBOL character-strings that specifies an
attribute of an entry. Clauses are constructed in the Identification, Environment, and
Data Divisions.

30 © Copyright IBM Corp. 1991, 1998

Statement and Clauses

Sentences

A sentence is a sequence of one or more statements, ending with a separator period.
Sentences are constructed in the Procedure Division.

Statements
A statement is a valid combination of a COBOL verb and its operands. It specifies an
action to be taken by the object program. Statements are constructed in the Procedure
Division. For descriptions of the different types of statements, see:

¢ “Imperative Statements” on page 258

¢ “Conditional Statements” on page 260

e “Scope of Names” on page 39

e “Compiler-Directing Statement” on page 508

Phrases

Each clause or statement in the program can be subdivided into smaller units called
phrases .

Part 1. COBOL Language Structure 31

Indicator Area

Reference Format

COBOL programs must be written in the COBOL reference format. Figure 1 shows
the reference format for a COBOL source line.

1|23 4|5|6|7|8]9]10|11]12]|13]...]71]72

Sequence Number Area Area A Area B
Indicator Area

Figure 1. Reference Format for COBOL Source Line

The following areas are described below in terms of a 72-character line:

Sequence Number Area
Columns 1 through 6

Indicator Area
Column 7

Area A
Columns 8 through 11

Area B
Columns 12 through 72

Sequence Number Area

The sequence number area may be used to label a source statement line. The content
of this area may consist of any character in the character set of the computer.

Indicator Area
Use the indicator area to specify:

e The continuation of words or nonnumeric literals from the previous line onto the
current line

¢ The treatment of text as documentation

¢ Debugging lines

See “Continuation Lines” on page 35, “Comment Lines” on page 37, and “Debugging
Lines” on page 38.

The indicator area can be used for source listing formatting. A slash (/") placed in the
indicator column will cause the compiler to start a new page for the source listing, and
the corresponding source record to be treated as a comment. The effect may be
dependent on the LINECOUNT compiler option. See the “LINECOUNT” compiler
option in the IBM COBOL Programming Guide for your platform.

32 © Copyright IBM Corp. 1991, 1998

Area A

Area A
The following items must begin in Area A:

¢ Division header

¢ Section header

e Paragraph header or paragraph name

¢ Level indicator or level-number (01 and 77)

¢ DECLARATIVES and END DECLARATIVES

¢ End program, end class, and end method header

Division Header
A division header is a combination of words, followed by a separator period, that indi-
cates the beginning of a division:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
A division header (except when a USING phrase is specified with a Procedure Division

header) must be immediately followed by a separator period. Except for the USING
phrase, no text may appear on the same line.

Section Header
In the Environment and Procedure Divisions, a section header indicates the beginning
of a series of paragraphs; for example:

INPUT-OUTPUT SECTION.

In the Data Division, a section header indicates the beginning of an entry; for example:
FILE SECTION.
LINKAGE SECTION.
WORKING-STORAGE SECTION.

A section header must be immediately followed by a separator period.

Paragraph Header or Paragraph Name
A paragraph header or paragraph name indicates the beginning of a paragraph.

In the Environment Division, a paragraph consists of a paragraph header followed by
one or more entries. For example:

OBJECT-COMPUTER. computer-name

In the Procedure Division, a paragraph consists of a paragraph-name followed by one
or more sentences.

Part 1. COBOL Language Structure 33

Area B

Level Indicator (FD and SD) or Level-Number (01 and 77)
A level indicator can be either FD or SD. It must begin in Area A and be followed by a
space. (See “File Section” on page 145.) A level-number that must begin in Area A is
a 1- or 2-digit integer with a value of 01 or 77. It must be followed by a space or
separator period.

DECLARATIVES and END DECLARATIVES
DECLARATIVES and END DECLARATIVES are key words that begin and end the
declaratives part of the source program.

In the Procedure Division, each of the key words DECLARATIVES and END DECLAR-
ATIVES must begin in Area A and be followed immediately by a separator period; no
other text may appear on the same line. After the key words END DECLARATIVES, no
text may appear before the following section header. (See “Declaratives” on

page 228.)

End Program, End Class, and End Method Headers
The “end” headers are a combination of words, followed by a separator period, that
indicate the end of a COBOL source program, class definition, or method definition.
For example:

END PROGRAM PROGRAM-NAME.
END CLASS CLASS-NAME.
END METHOD METHOD-NAME.

For Programs
Program-name must be identical to the program-name of the corresponding
PROGRAM-ID paragraph. Every COBOL program, except an outermost program
that contains no nested programs and is not followed by another batch program,
must end with an END PROGRAM header.

For Classes
Class-name must be identical to the class-name of the corresponding CLASS-ID
paragraph.

For Methods
Method-name must be identical to the method-name of the corresponding
METHOD-ID paragraph.

Area B
The following items must begin in Area B:

* Entries, sentences, statements, clauses
e Continuation lines

34 COBOL Language Reference

Area B

Entries, Sentences, Statements, Clauses
The first entry, sentence, statement, or clause begins on either the same line as the
header or paragraph-name it follows, or in Area B of the next nonblank line that is not a
comment line. Successive sentences or entries either begin in Area B of the same line
as the preceding sentence or entry or in Area B of the next nonblank line that is not a
comment line.

Within an entry or sentence, successive lines in Area B may have the same format, or
may be indented to clarify program logic. The output listing is indented only if the input
statements are indented. Indentation does not affect the meaning of the program. The
programmer can choose the amount of indentation, subject only to the restrictions on
the width of Area B. See also “Sections and Paragraphs” on page 30.

Continuation Lines
Any sentence, entry, clause, or phrase that requires more than one line can be con-
tinued in Area B of the next line that is neither a comment line nor a blank line. The
line being continued is a continued line ; the succeeding lines are continuation lines
Area A of a continuation line must be blank.

If there is no hyphen (-) in the indicator area (column 7) of a line, the last character of
the preceding line is assumed to be followed by a space.

DBCS literals and user-defined words containing multi-byte characters cannot be con-
tinued.

Both characters making up the opening delimiter must be on the same line for the:

e Hexadecimal notation of a nonnumeric literal (X" or X')
e Hexadecimal notation of a null-terminated nonnumeric literal (Z" or Z")

If there is a hyphen in the indicator area of a line, the first nonblank character of this
continuation line immediately follows the last nonblank character of the continued line
without an intervening space.

If the continued line contains a nonnumeric literal without a closing quotation mark, all
spaces at the end of the continued line (through column 72) are considered to be part
of the literal. The continuation line must contain a hyphen in the indicator area, and the
first nonblank character must be a quotation mark. The continuation of the literal
begins with the character immediately following the quotation mark.

If the last character on the continued line of a nonnumeric literal is a single quotation
mark in column 72, the continuation line must start with two consecutive quotation
marks. This will result in a single quotation mark as part of the value of the nonnumeric
literal.

If the last character on the continued line of a nonnumeric literal is a single quotation
mark in Area B, the continuation line may start with a single quotation mark. This will
result in two consecutive nonnumeric literals instead of one continued nonnumeric
literal.

Part 1. COBOL Language Structure 35

Area B

Both characters making up the pseudo-text delimiter separator “==" must be on the
same line.

To continue a literal such that the continued lines and the continuation lines are part of
one literal:

Code a hyphen in the indicator area of each continuation line.

Do not terminate the continued lines with a single quotation mark followed by a
space.

Code the literal value using all columns of the continued lines, up to and including
column 72.

Code a quotation mark before the first character of the literal on each continuation
line.

Terminate the last continuation line with a single quotation mark followed by a
space.

Given the following examples, the number and size of literals created are as follows:

Literal 000001 is interpreted as one literal that is 120 bytes long. Each character
between the starting quotation mark and up to and including column 72 of con-
tinued lines are counted as part of the literal.

Literal 000005 is interpreted as one literal that is 140 bytes long. The blanks at the
end of each continued line are counted as part of the literal because the continued
lines do not end with a quotation mark.

Literal 000010 is interpreted as three separate literals, each having a length of 50,
50, and 20, respectively. The quotation mark with the following space terminates
the continued line. Only the characters within the quotation marks are counted as
part of the literals. Literal 000010 is not valid as a VALUE clause literal for non-
level 88 data items.

36 COBOL Language Reference

Area A or Area B

Example
P A AR S S SRS FUNU SO SO SO SUNNU NN ; SRS S S
000001 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE
- "GGGGGGGGGGHHHHHHHHHHITTITIIT11JJJJJJJJIIIKKKKKKKKKK
- "LLLLLLLLLLMMMMMMMMMM"
000005 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE
- "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJIIIIIIIKKKKKKKKKK
- "LLLLLLLLLLMMMMMMMMMM®
000010 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE"
- "GGGGGGGGGGHHHHHHHHHHITITIITIITIJJJJIIIIIIIKKKKKKKKKK"
- "LLLLLLLLLLMMMMMMMMMM®

Note: To code a continued literal where the length of each continued segment of the
literal is less than the length of Area-B, adjust the starting column such that the last
character of the continued segment is in column 72.

Area A or Area B
The following items may begin in either Area A or Area B:

e Level-numbers

e Comment lines

e Compiler-directing statements
¢ Debugging lines

¢ Pseudo-text

Level-Numbers
A level-number that may begin in Area A or B is a 1- or 2-digit integer with a value of
02 through 49; 66, or 88. A level-number that must begin in Area A is a 1- or 2-digit
integer with a value of 01 or 77. It must be followed by a space or a separator period.
For more information, see “Level-Numbers” on page 160.

Comment Lines
A comment line is any line with an asterisk (*) or slash (/) in the indicator area (column
7) of the line. The comment may be written anywhere in Area A and Area B of that
line, and may consist of any combination of characters from the character set of the
computer. A comment line may be placed anywhere in the program following the Iden-
tification Division header.

Comment lines are permitted to appear before the Identification Division, but they must
follow any control cards (for example, PROCESS or CBL).

Note: Comments intermixed with control cards could nullify some of the control cards
and cause them to be diagnosed as errors.

Multiple comment lines are allowed. Each must begin with either an asterisk (*) or a
slash (/) in the indicator area.

Part 1. COBOL Language Structure 37

Area A or Area B

An asterisk (*) comment line is printed on the next available line in the output listing.
The effect may be dependent on the LINECOUNT compiler option. See “LINECOUNT”
compiler option in the IBM COBOL Programming Guide for your platform. A slash (/)
comment line is printed on the first line of the next page, and the current page of the
output listing is ejected.

The compiler treats a comment line as documentation, and does not check it syntac-
tically.

Compiler-Directing Statements

Most compiler-directing statements may start in either Area A or Area B, including
COPY and REPLACE.

As an IBM extension BASIS, CBL (PROCESS), *CBL (*CONTROL), DELETE, EJECT,
INSERT, SKIP/2/3, and TITLE can also start in Area A or Area B.

Compiler Directives (Workstation Only)

Compiler directives can start only in Area B. Currently, the only compiler directive is
CALLINTERFACE.

Debugging Lines

Pseudo-Text

Blank Lines

A debugging line is any line with a 'D' (or 'd') in the indicator area of the line.
Debugging lines can be written in the Environment Division (after the
OBJECT-COMPUTER paragraph), the Data Division, and the Procedure Division. If a
debugging line contains only spaces in Area A and Area B, it is considered a blank line.

See “WITH DEBUGGING MODE” on page 87.

The character-strings and separators comprising pseudo-text may start in either Area
A or Area B. If, however, there is a hyphen in the indicator area (column 7) of a line
which follows the opening pseudo-text delimiter, Area A of the line must be blank, and
the rules for continuation lines apply to the formation of text words.

A blank line contains nothing but spaces from column 7 through column 72. A blank
line may appear anywhere in a program.

38 COBOL Language Reference

Scope of Names

Scope of Names

A COBOL resource is any resource in a COBOL program that is referenced via a user-
defined word. You can use names to identify COBOL resources. This section
describes COBOL names and their scope. It explains the range of where the names
can be referenced and the range of their usability and accessibility.

Types of Names

In addition to identifying a resource, a hame can have global or local attributes. Some
names are always global, some names are always local, and some names are either
local or global depending on specifications in the program in which the names are
declared.

For Programs
A global name can be used to refer to the resource with which it is associated
both:

e From within the program in which the global name is declared

¢ From within any other program that is contained in the program that declares
the global name

You use the GLOBAL clause in the data description entry to indicate that a name
is global. For more information on using the GLOBAL clause, see “GLOBAL
Clause” on page 168.

A local name can be used only to refer to the resource with which it is associated
from within the program in which the local name is declared.

By default, if a data-name, a file-name, a record-name, or a condition-name decla-
ration in a data description entry does not include the GLOBAL clause, the name is
local.

For Classes and Methods
Names declared in a class definition are global to all the methods contained in that
class definition. All names declared in methods are implicitly local.

Note: Specific rules sometimes prohibit specifying the GLOBAL clause for certain data
description, file description, or record description entries.

The following list indicates the names you can use and whether the name can be local
or global:

data-name
Data-name assigns a name to a data item.

A data-name is global if the GLOBAL clause is specified either in the data
description entry that declares the data-name, or in another entry to which that data
description entry is subordinate.

© Copyright IBM Corp. 1991, 1998 39

Scope of Names

file-name
File-name assigns a name to a file connector.

A file-name is global if the GLOBAL clause is specified in the file description entry
for that file-name.

record-name
Record-name assigns a name to a record.

A record-name is global if the GLOBAL clause is specified in the record description
that declares the record-name, or in the case of record description entries in the
File Section, if the GLOBAL clause is specified in the file description entry for the
file name associated with the record description entry.

condition-name
Condition-name associates a value with a conditional variable.

A condition-name that is declared in a data description entry is global if that entry is
subordinate to another entry that specifies the GLOBAL clause.

A condition-name that is declared within the Configuration Section is always global.

program-name
Program-name assigns a name to a program, either external or internal (nested).
For more information, see “Conventions for Program-Names” on page 66.

A program-name is neither local nor global. For more information, see “Con-
ventions for Program-Names” on page 66.

method-name
Method-name assigns a name to a method. A method-name is neither local nor
global.

section-name
Section-name assigns a name to a section in the Procedure Division.

A section-name is always local.

paragraph-name
Paragraph-name assigns a name to a paragraph in the Procedure Division.

A paragraph-name is always local.

basis-name
Basis-names are treated consistently as defined for text-names without the library-
name qualification.

library-name
Under OS/390 and VM, library-name specifies the COBOL library that
the compiler uses for a given source program compilation.

A library-name is external to the program and can be referenced by any COBOL
program if the compiler system supports the associated library and the entities ref-
erenced are known to that system.

Under AIX, OS/2, and Windows, a library-name is used to identify the
path for the library text.

40 COBOL Language Reference

Scope of Names

If you specify library-name with a literal, it is treated as the actual path name. If you
specify library-name with a user-defined word, the name is used as an environment
variable and the value of the environment variable is used for the path names(s) to

locate the COPY text. For details on path names, see “COPY Statement” on

page 512.

text-name

Under OS/390 and VM, text-name assigns a name to library text. A
text-name is external to the program and can be referenced by any COBOL
program if the compiler system supports the associated library and the entities ref-
erenced are known to that system.

Under AIX, OS/2, and Windows, a text-name is used to identify the
file for the COPY text. For details, see “COPY Statement” on page 512.

Workstation

alphabet-name
Alphabet-name assigns a name to a specific character set and/or collating
sequence in the SPECIAL-NAMES paragraph of the Environment Division.

An alphabet-name is always global.

class-name

Class-name assigns a name to the proposition in the SPECIAL-NAMES paragraph
of the Environment Division for which a truth value can be defined.

A class-name is always global.

object-oriented class-name
Object-oriented class-name assigns a hame to a class, subclass, or metaclass. An
object-oriented class-name is always global.

object-oriented class Working-Storage
Object-oriented class Working-Storage data items are always global to the methods
contained in the class definition. They are accessible from any contained method.

mnemonic-name
Mnemonic-name assigns a user-defined word to an implementer-name.

A mnemonic-name is always global.

symbolic-character
Symbolic-character specifies a user-defined figurative constant.

A symbolic-name is always global.

index-name
Index-name assigns a name to an index associated with a specific table.

If a data item possessing the GLOBAL attribute includes a table accessed with an
index, that index also possesses the GLOBAL attribute. In addition, the scope of
that index-name is identical to the scope of the data-name that includes the table.

Scope of Names 41

External and Internal Resources

External and Internal Resources

Accessible data items usually require that certain representations of data be stored.
File connectors usually require that certain information concerning files be stored. The
storage associated with a data item or a file connector can be external or internal to
the program or method in which the resource is declared.

A data item or file connector is external if the storage associated with that resource is
associated with the run unit rather than with any particular program or method within
the run unit. An external resource can be referenced by any program or method in the
run unit that describes the resource. References to an external resource from different
programs or methods using separate descriptions of the resource are always to the
same resource. In a run unit, there is only one representation of an external resource.

A resource is internal if the storage associated with that resource is associated only
with the program or method that describes the resource.

External and internal resources can have either global or local names.

A data record described in the Working-Storage Section is given the external attribute
by the presence of the EXTERNAL clause in its data description entry. Any data item
described by a data description entry subordinate to an entry describing an external
record also attains the external attribute. If a record or data item does not have the
external attribute, it is part of the internal data of the program or method in which it is
described.

Two programs or methods in a run unit can reference the same file connector in the
following circumstances:

e An external file connector can be referenced from any program or method that
describes that file connector.

e If a program is contained within another program, both programs can refer to a
global file connector by referring to an associated global file-name either in the
containing program, or in any program that directly or indirectly contains the con-
taining program.

Two programs or methods in a run unit can reference common data in the following
circumstances:

e The data content of an external data record can be referenced from any program
or method provided that program or method has described that data record.

e |If a program is contained within another program, both programs can refer to data
possessing the global attribute either in the program or in any program that directly
or indirectly contains the containing program.

The data records described as subordinate to a file description entry that does not
contain the EXTERNAL clause or a sort-merge file description entry, as well as any
data items described subordinate to the data description entries for such records, are
always internal to the program or method describing the file-name. If the EXTERNAL

42 COBOL Language Reference

Resolution of Names

clause is included in the file description entry, the data records and the data items
attain the external attribute.

Resolution of Names

When a program, program B, is directly contained within another program, program A,
both programs can define a condition-name, a data-name, a file-name, or a record-
name using the same user-defined word. When such a duplicated name is referenced
in program B, the following steps determine the referenced resource (note, these rules
also apply to classes and contained methods):

1. The referenced resource is identified from the set of all names which are defined in
program B and all global names defined in program A and in any programs which
directly or indirectly contain program A. Using this set of names, the normal rules
for qualification and any other rules for uniqueness of reference are applied until
one or more resource is identified.

2. If only one resource is identified, it is the referenced resource.

3. If more than one resource is identified, no more than one of them can have a
name local to program B. If zero or one of the resources has a name local to
program B, the following applies:

¢ If the name is declared in program B, the resource in program B is the refer-
enced resource.

¢ |f the name is not declared in program B, the referenced resource is:
— The resource in program A if the name is declared in program A.

— The resource in the containing program if the name is declared in the
program containing program A.

This rule is applied to further containing programs until a valid resource is
found.

Scope of Names 43

Uniqueness of Reference

Referencing Data Names, Copy Libraries, and Procedure Division

Names

References can be made to external and internal resources. References to data and
procedures can be either explicit or implicit. This section contains the rules for quali-
fication and for explicit and implicit data references.

Uniqueness of Reference

Qualification

44

Every user-defined name in a COBOL program is assigned by the user to name a
resource for solving a data processing problem. To use a resource, a statement in a
COBOL program must contain a reference which uniquely identifies that resource. To
ensure uniqueness of reference, a user-defined name can be qualified, subscripted, or
reference-modified.

When the same name has been assigned in separate programs to two or more occur-
rences of a resource of a given type, and when qualification by itself does not allow the
references in one of those programs to differentiate between the identically named
resources, then certain conventions that limit the scope of nhames apply. The con-
ventions ensure that the resource identified is that described in the program containing
the reference. For more information on resolving program-names, see “Resolution of
Names” on page 43.

Unless otherwise specified by the rules for a statement, any subscripts and reference
modification are evaluated only once as the first step in executing that statement.

A name can be made unique if it exists within a hierarchy of names by specifying one
or more higher-level names in the hierarchy. The higher-level names are called qual-
ifiers , and the process by which such names are made unique is called qualification .

Qualification is specified by placing one or more phrases after a user-specified name,
with each phrase made up of the word IN or OF followed by a qualifier (IN and OF are
logically equivalent).

In any hierarchy, the data hame associated with the highest level must be unique if it is
referenced, and cannot be qualified.

You must specify enough qualification to make the name unique; however, it is not
always necessary to specify all the levels of the hierarchy. For example, if there is
more than one file whose records contain the field EMPLOYEE-NO, but only one of the
files has a record named MASTER-RECORD:

e EMPLOYEE-NO OF MASTER-RECORD sufficiently qualifies EMPLOYEE-NO
e EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid but unnecessary.

© Copyright IBM Corp. 1991, 1998

Data Attribute

Uniqueness of Reference

Quialification Rules
The rules for qualifying a hame are:

¢ A name can be qualified even though it does not need qualification except in a
REDEFINES clause, in which case it must not be qualified.

¢ Each qualifier must be of a higher level than the name it qualifies, and must be
within the same hierarchy.

¢ |f there is more than one combination of qualifiers that ensures uniqueness, then
any of these combinations can be used.

Specification
Explicit data attributes are those you specify in actual COBOL coding.

Implicit data attributes are default values. If you do not explicitly code a data attri-
bute, the compiler assumes a default value.

For example, you need not specify the USAGE of a data item. If it is omitted and the
symbol N is not specified in the PICTURE clause, the default is USAGE DISPLAY,
which is the implicit data attribute.

When PICTURE clause symbol N is used, USAGE DISPLAY-1 is assumed (for DBCS
items). If, however, you specify USAGE DISPLAY in COBOL coding, it becomes an
explicit data attribute.

Identical Names

When programs are directly or indirectly contained within other programs, each program
can use identical user-defined words to name resources. With identically-named
resources, a program will reference the resource which that program describes rather
than the same-named resource described in another program, even when it is a dif-
ferent type of user-defined word.

These same rules apply to classes and their contained methods.

References to COPY Libraries

—— Format

»>—text-name-1

\4
A

IN:,—Z ibrary—name-lJ
OF:

If more than one COBOL library is available to the compiler during compilation, as an
IBM extension, text-name-1 need not be qualified each time it is referenced; a qualifica-
tion of SYSLIB is assumed.

For rules on referencing COPY libraries, see “COPY Statement” on page 512.

Part 1. COBOL Language Structure 45

Uniqueness of Reference

References to Procedure Division Names

— Format 1

\4
A

»»>—paragraph-name-1

IN section-name—]J
LEOF]_

— Format 2

\4
A

»»>—section-name-1

Procedure Division names that are explicitly referenced in a program must be unique
within a section. A section-name, described under “Procedures” on page 229, is the
highest and only qualifier available for a paragraph-name and must be unique if refer-
enced.

If explicitly referenced, a paragraph-name must not be duplicated within a section.
When a paragraph-name is qualified by a section-name, the word SECTION must not
appear. A paragraph-name need not be qualified when referred to within the section in
which it appears. A paragraph-name or section-name appearing in a program cannot
be referenced from any other program.

References to Data Division Names

Simple Data Reference

The most basic method of referencing data items in a COBOL program is simple data
reference , which is data-name-1 without qualification, subscripting, or reference modifi-
cation. Simple data reference is used to reference a single elementary or group item.

— Format

»»—data-name-1

A\
A

data-name-1
Can be any data description entry.

Data-name-1 must be unique in a program.

Identifier

When used in a syntax diagram in this manual, the term identifier refers to a valid
combination of a data-name or function-identifier with its qualifiers, subscripts, and
reference-modifiers as required for uniqueness of reference. Rules for identifiers asso-
ciated with a format can, however, specifically prohibit qualification, subscripting, or
reference-modification.

The term data-name refers to a name that must not be qualified, subscripted, or refer-
ence modified, unless specifically permitted by the rules for the format.

e For a description of qualification, see “Qualification” on page 44.

46 COBOL Language Reference

Uniqueness of Reference

e For a description of subscripting, see “Subscripting” on page 49.
¢ For a description of reference modification, see “Reference Modification” on
page 52.

—— Format 1

»»—data-name-1 v

v

|
INj——dat‘a—name—ZJ INj——file—name—lJ
OF OF

v |
|—(—subscripi.‘—)J

\ 4

v

A

v
A

|—(—Zeftmost—character-pos ition :—L—_l—)J
length

data-name-1, data-name-2
Can be a record-name.

file-name-1
Must be identified by an FD or SD entry in the Data Division.

File-name-1 must be unique within this program.

—— Format 1

»—Econdi tion-name-1
duta—name—]—J

v - |
IN:,—data—name—Z
OF

v

A

v
A

INj—fi Ze-ncrrne—lJ
OF

—— Format 2
»»>—L INAGE-COUNTER

v
A

IN fi Ze—name-ZJ
EOFj

data-name-1, data-name-2
Can be a record-name.

condition-name-1
Can be referenced by statements and entries either in that program containing the
Configuration Section or in a program contained within that program.

file-name-1
Must be identified by an FD or SD entry in the Data Division.

Must be unique within this program.

Part 1. COBOL Language Structure 47

Uniqueness of Reference

LINAGE-COUNTER
Must be qualified each time it is referenced if more than one file description entry
containing a LINAGE clause has been specified in the source program.

file-name-2
Must be identified by the FD or SD entry in the Data Division. File-name-2 must
be unique within this program.

Duplication of data-names must not occur in those places where the data-name cannot
be made unique by qualification.

In the same program, the data-name specified as the subject of the entry whose level-
number is 01 that includes the EXTERNAL clause must not be the same data-name
specified for any other data description entry that includes the EXTERNAL clause.

In the same Data Division, the data description entries for any two data items for which
the same data-name is specified must not include the GLOBAL clause.

Data Division names that are explicitly referenced must either be uniquely defined or
made unique through qualification. Unreferenced data items need not be uniquely
defined. The highest level in a data hierarchy must be uniquely named, if referenced.
This is a data item associated with a level indicator (FD or SD in the File Section) or
with a level-number 01. Data items associated with level-numbers 02 through 49 are
successively lower levels of the hierarchy.

Condition-name

—— Format 1 (Data Division)
!

»»—condition-name-1

|
IN:,—data—name—l—I IN:,—fi le—name—l—I
OF OF

A\
A

] L(_W_)J

— Format 2 (Special-Names Paragraph)
!

A\
A

»»—condition-name-1

. |
L—[IN]——mnemonic-name—l
OF

condition-name-1
Can be referenced by statements and entries either in the program containing the
definition of condition-name-1, or in a program contained within that program.

If explicitly referenced, a condition-name must be unique or be made unique
through qualification and/or subscripting except when the scope of names con-
ventions by themselves ensure uniqueness of reference.

48 COBOL Language Reference

Subscripting

Uniqueness of Reference

If qualification is used to make a condition-name unique, the associated conditional
variable may be used as the first qualifier. If qualification is used, the hierarchy of
names associated with the conditional variable itself must be used to make the
condition-name unique.

If references to a conditional variable require subscripting, reference to any of its
condition-names also requires the same combination of subscripting.

In the general format of the chapters that follow, "condition-name" refers to a
condition-name qualified or subscripted, as necessary.

data-name-1
Can be a record-name.

file-name-1
Must be identified by an FD or SD entry in the Data Division.

File-name-1 must be unique within this program.

mnemonic-name-1
For information on acceptable values for mnemonic-name-1, see
“SPECIAL-NAMES Paragraph” on page 89.

Subscripting is a method of providing table references through the use of subscripts.
A subscript is a positive integer whose value specifies the occurrence number of a
table element.

—— Format
»—Econdition-name—l ' | >
data-name-]é IN:’—data-name-ZJ
OF
> N (v integer-1 |)—>e
IN:I—file-narne—l ALL
OF- data-name-3 .
+ integer-2
Trintes
index-name-1 .
+ integer-3
orintes

condition-name-1
The conditional variable for condition-name-1 must contain an OCCURS clause or
must be subordinate to a data description entry which contains an OCCURS
clause.

data-name-1
Must contain an OCCURS clause or must be subordinate to a data description
entry which contains an OCCURS clause.

Part 1. COBOL Language Structure 49

Uniqueness of Reference

data-name-2, file-name-1
Must name data items or records that contain data-name-1.

integer-1
Can be signed. If signed, it must be positive.

data-name-3
Must be a numeric elementary item representing an integer.

Data-name-3 can be qualified. Data-name-3 cannot be a windowed date field.

index-name-1
Corresponds to a data description entry in the hierarchy of the table being refer-
enced which contains an INDEXED BY phrase specifying that name.

integer-2, integer-3
Cannot be signed.

The subscripts, enclosed in parentheses, are written immediately following any quali-
fication for the name of the table element. The number of subscripts in such a refer-
ence must equal the number of dimensions in the table whose element is being
referenced. That is, there must be a subscript for each OCCURS clause in the hier-
archy containing the data-name including the data-name itself.

When more than one subscript is required, they are written in the order of successively
less inclusive dimensions of the data organization. If a multi-dimensional table is
thought of as a series of nested tables and the most inclusive or outermost table in the
nest is considered to be the major table with the innermost or least inclusive table being
the minor table, the subscripts are written from left to right in the order major, interme-
diate, and minor.

For example, if TABLE-THREE is defined as:

01 TABLE-THREE.
05 ELEMENT-ONE OCCURS 3 TIMES.
10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-THREE OCCURS 2 TIMES PIC X(8).

a valid subscripted reference to TABLE-THREE is:
ELEMENT-THREE (2 2 1)

Subscripted references may also be reference modified. See the third example on
page 54. A reference to an item must not be subscripted unless the item is a table
element or an item or condition-name associated with a table element.

Each table element reference must be subscripted except when such reference
appears:

* In a USE FOR DEBUGGING statement

¢ As the subject of a SEARCH statement

¢ In a REDEFINES clause

¢ In the KEY is phrase of an OCCURS clause

50 COBOL Language Reference

Uniqueness of Reference

The lowest permissible occurrence number represented by a subscript is 1. The
highest permissible occurrence number in any particular case is the maximum number
of occurrences of the item as specified in the OCCURS clause.

Subscripting Using Data-Names

When a data-name is used to represent a subscript, it can be used to reference items
within different tables. These tables need not have elements of the same size. The
same data-name can appear as the only subscript with one item and as one of two or
more subscripts with another item. A data-name subscript can be qualified; it cannot
be subscripted or indexed. For example, valid subscripted references to TABLE-THREE
— assuming that SUB1, SUB2, and SUB3 are all items subordinate to SUBSCRIPT-ITEM —
include:

ELEMENT-THREE (SUB1 SUB2 SUB3)

ELEMENT-THREE IN TABLE-THREE (SUB1 OF SUBSCRIPT-ITEM,
SUB2 OF SUBSCRIPT-ITEM, SUB3 OF SUBSCRIPT-ITEM)

Subscripting Using Index-Names (Indexing)

Indexing allows such operations as table searching and manipulating specific items. To
use indexing you associate one or more index-names with an item whose data
description entry contains an OCCURS clause. An index associated with an index-
name acts as a subscript, and its value corresponds to an occurrence number for the
item to which the index-name is associated.

The INDEXED BY phrase, by which the index-name is identified and associated with its
table, is an optional part of the OCCURS clause. There is no separate entry to
describe the index associated with index-name. At run time, the contents of the index
corresponds to an occurrence number for that specific dimension of the table with
which the index is associated.

The initial value of an index at run time is undefined, and the index must be initialized
before it is used as a subscript. An initial value is assigned to an index with one of the
following:

¢ The PERFORM statement with the VARYING phrase
¢ The SEARCH statement with the ALL phrase
e The SET statement

The use of an integer or data-name as a subscript referencing a table element or an
item within a table element does not cause the alteration of any index associated with
that table.

As an IBM extension, an index-name can be used to reference any table. However,
the table element length of the table being referenced and of the table that the index-
name is associated with should match. Otherwise, the reference will not be to the
same table element in each table, and you might get run-time errors.

Part 1. COBOL Language Structure 51

Uniqueness of Reference

Data that is arranged in the form of a table is often searched. The SEARCH statement
provides facilities for producing serial and non-serial searches. It is used to search for a
table element that satisfies a specific condition and to adjust the value of the associated
index to indicate that table element.

To be valid during execution, an index value must correspond to a table element occur-
rence of neither less than one, nor greater than the highest permissible occurrence
number.

For more information on index-names, see “INDEXED BY Phrase” on page 173.

Relative Subscripting

In relative subscripting , the name of a table element is followed by a subscript of the
form data-name or index-name followed by the operator + or -, and an unsigned integer
literal.

As an IBM extension, the integer can be positively signed.

The operators + and - must be preceded and followed by a space. The value of the
subscript used is the same as if the index-name or data-name had been set up or down
by the value of the integer. The use of relative indexing does not cause the program to
alter the value of the index.

Reference Modification

52

Reference modification defines a data item by specifying a leftmost character and
optional length for the data item.

—— Format

data-name-1 [>

FUNCTION—function-name-1 L J
(—¥-argunent-1-1—)

»—(—leftmost-character-position: B n
length

A\
A

data-name-1
Must reference a data item whose usage is DISPLAY.

Data-name-1 can be qualified or subscripted. Data-name-1 cannot be a windowed
date field.

leftmost-character-position
Must be an arithmetic expression. The evaluation of leftmost-character-position
must result in a positive nonzero integer that is less than or equal to the number of
characters in the data item referenced by data-name-1.

The evaluation of leftmost-character-position must not result in a windowed date
field.

COBOL Language Reference

Uniqueness of Reference

length
Must be an arithmetic expression.

The sum of leftmost-character-position and length minus the value one must be
less than or equal to the number of characters in data-name-1. If length is omitted,
than the length used will be equal to the number of characters in data-name-1 plus
one minus leftmost-character-position. \WWhen data-name-1 is a DISPLAY-1 data
item, reference modification refers to the starting position and length of the data
item being referenced in characters, not bytes. The evaluation of /length must
result in a positive nonzero integer.

The evaluation of /length must not result in a windowed date field.

Unless otherwise specified, reference modification is allowed anywhere an identifier ref-
erencing an alphanumeric data item is permitted.

Each character of data-name-1 is assigned an ordinal number incrementing by one
from the leftmost position to the rightmost position. The leftmost position is assigned
the ordinal number one. If the data description entry for data-name-1 contains a SIGN
IS SEPARATE clause, the sign position is assigned an ordinal number within that data
item.

If data-name-1 is described as numeric, numeric-edited, alphabetic, or alphanumeric-
edited, it is operated upon for purposes of reference modification as if it were redefined
as an alphanumeric data item of the same size as the data item referenced by
data-name-1.

If data-name-1 is an expanded date field, then the result of reference modification is a
non-date.

Reference modification creates a unique data item which is a subset of data-name-1 or
by function-name-1 and its arguments, if any. This unique data item is considered an
elementary data item without the JUSTIFIED clause.

When a function is reference-modified, the unique data item has the class and category
of alphanumeric. When data-name-1 is reference-modified, the unique data item has
the same class and category as that defined for the data item referenced by
data-name-1; however, if the category of data-name-1 is numeric, numeric-edited, or
alphanumeric-edited, the unique data item has the class and category alphanumeric.

If the category of data-name-1 is external floating-point, the unique data item has the
class and category alphanumeric.

If length is not specified, the unique data item created extends from and includes the

character identified by leftmost-character-position up to and including the rightmost
character of the data item referenced by data-name-1.

Part 1. COBOL Language Structure 53

Uniqueness of Reference

Evaluation of Operands
Reference modification for an operand is evaluated as follows:

e If subscripting is specified for the operand, the reference modification is evaluated
immediately after evaluation of the subscript.

e If subscripting is not specified for the operand, the reference modification is evalu-
ated at the time subscripting would be evaluated if subscripts had been specified.

Reference Modification Examples
The following statement transfers the first 10 characters of the data-item referenced by
WHOLE-NAME to the data-item referenced by FIRST-NAME.

77 WHOLE-NAME PIC X(25).
77 FIRST-NAME PIC X(10).
MOVE WHOLE-NAME(1:10) TO FIRST-NAME.

The following statement transfers the last 15 characters of the data-item referenced by
WHOLE-NAME to the data-item referenced by LAST-NAME.

77 WHOLE-NAME PIC X(25).
77 LAST-NAME PIC X(15).
MOVE WHOLE-NAME(11:) TO LAST-NAME.

The following statement transfers the fourth and fifth characters of the third occurrence
of TAB to the variable SUFFIX.

01 TABLE-1.
02 TAB OCCURS 10 TIMES PICTURE X(5).

77 SUFFIX PICTURE X(2).

MOVE TAB OF TABLE-1 (3) (4:2) TO SUFFIX.

Function-Identifier
A function-identifier is a syntactically correct sequence of character strings and separa-
tors that uniquely references the data item resulting from the evaluation of a function.

— Format
»»—FUNCTION—function-name-1

L(—W‘—)J

\ 4
A

|—reference—madifier‘J

54 COBOL Language Reference

Uniqueness of Reference

argument-1
Must be an identifier, literal (other than a figurative constant), or arithmetic
expression.

For more information, see “Intrinsic Functions” on page 445.

function-name-1
Function-name-1 must be one of the Intrinsic Function names.

reference-modifier
May be specified only for functions of the category alphanumeric

A function-identifier that makes reference to an alphanumeric function may be specified
anywhere that an identifier is permitted and where references to functions are not spe-
cifically prohibited, except as follows:

¢ As a receiving operand of any statement

¢ Where a data item is required to have particular characteristics (such as class and
category, size, sign, and permissible values) and the evaluation of the function
according to its definition and the particular arguments specified would not have
these characteristics.

A function-identifier that makes reference to an integer or numeric function may be
used wherever an arithmetic expression is allowed.

Part 1. COBOL Language Structure 55

Transfer of Control

Transfer of Control

56

In the Procedure Division, unless there is an explicit control transfer or there is no next
executable statement, program flow transfers control from statement to statement in the
order in which the statements are written. (See Note below.) This normal program flow
is an implicit transfer of control.

In addition to the implicit transfers of control between consecutive statements, implicit
transfer of control also occurs when the normal flow is altered without the execution of
a procedure branching statement. The following examples show implicit transfers of
control, overriding statement-to-statement transfer of control:

e After execution of the last statement of a procedure being executed under control
of another COBOL statement, control implicitly transfers. (COBOL statements that
control procedure execution are, for example: MERGE, PERFORM, SORT, and
USE.) Further, if a paragraph is being executed under the control of a PERFORM
statement which causes iterative execution, and that paragraph is the first para-
graph in the range of that PERFORM statement, an implicit transfer of control
occurs between the control mechanism associated with that PERFORM statement
and the first statement in that paragraph for each iterative execution of the para-
graph.

e During SORT or MERGE statement execution, control is implicitly transferred to an
input or output procedure.

e During execution of any COBOL statement that causes execution of a declarative
procedure, control is implicitly transferred to that procedure.

e At the end of execution of any declarative procedure, control is implicitly transferred
back to the control mechanism associated with the statement that caused its exe-
cution.

COBOL also provides explicit control transfers through the execution of any procedure
branching, program call, or conditional statement. (Lists of procedure branching and
conditional statements are contained in “Statement Categories” on page 258.)

Note: The term “next executable statement” refers to the next COBOL statement to
which control is transferred, according to the rules given above. There is no next exe-
cutable statement under these circumstances:

¢ When the program contains no Procedure Division

¢ Following the last statement in a declarative section when the paragraph in which it
appears is not being executed under the control of some other COBOL statement

¢ Following the last statement in a program or method when the paragraph in which
it appears is not being executed under the control of some other COBOL statement
in that program

¢ Following the last statement in a declarative section when the statement is in the
range of an active PERFORM statement executed in a different section and this

© Copyright IBM Corp. 1991, 1998

Transfer of Control

last statement of the declarative section is not also the last statement of the proce-
dure that is the exit of the active PERFORM statement

¢ Following a STOP RUN statement or EXIT PROGRAM statement that transfers
control outside the COBOL program

e Following a GOBACK statement that transfers control outside the COBOL program

¢ Following an EXIT METHOD statement that transfers control outside the COBOL
method.

e The end program or end method header
When there is no next executable statement and control is not transferred outside the
COBOL program, the program flow of control is undefined unless the program exe-

cution is in the nondeclarative procedures portion of a program under control of a CALL
statement, in which case an implicit EXIT PROGRAM statement is executed.

Similarly, if control reaches the end of the Procedure Division of a method, and there is
no next executable statement, an implicit EXIT METHOD statement is executed.

Part 1. COBOL Language Structure 57

Millennium Language Extensions and Date Fields

| Millennium Language Extensions and Date Fields

Many applications use 2 digits rather than 4 digits to represent the year in date fields,
and assume that these values represent years from 1900 to 1999. This compact date
format works well for the 1900s, but it does not work for the year 2000 and beyond
because these applications interpret “00” as 1900 rather than 2000, producing incorrect
results.

The millennium language extensions are designed to allow applications that use 2-digit
years to continue performing correctly in the year 2000 and beyond, with minimal mod-
ification to existing code. This is achieved using a technique known as windowing,
which removes the assumption that all 2-digit year fields represent years from 1900 to
1999. Instead, windowing enables 2-digit year fields to represent years within any
100-year range, known as a century window .

For example, if a 2-digit year field contains the value 15, many applications would inter-
pret the year as 1915. However, with a century window of 1960-2059, the year would
be interpreted as 2015.

The millennium language extensions provide support for the most common operations
on date fields: comparisons, moving and storing, incrementing and decrementing. This
support is limited to date fields of certain formats; for details, see “DATE FORMAT
Clause” on page 162.

For information on supported operations and restrictions when using date fields, see
“Restrictions On Using Date Fields” on page 164.

Millennium Language Extensions Syntax

58

The millennium language extensions introduce the following language elements to IBM
COBOL:

e The DATE FORMAT clause in data description entries, which defines data items
as date fields.

e The following intrinsic functions:

DATEVAL Converts a non-date to a date field.
UNDATE Converts a date field to a non-date.
YEARWINDOW Returns the first year of the century window specified by the

YEARWINDOW compiler option.
For details on using the millennium language extensions in applications, see the IBM

COBOL Programming Guide for your platform, or the IBM COBOL Millennium Lan-
guage Extensions Guide.

© Copyright IBM Corp. 1991, 1998

Millennium Language Extensions and Date Fields

Note: The millennium language extensions have no effect unless:

. IBM VisualAge Millennium Language Extensions for OS/390 &
VM (program number 5648-MLE) is installed with your compiler.

e Your COBOL program is compiled using the DATEPROC compiler option
(with the century window specified by the YEARWINDOW compiler option).

Terms and Concepts

This book uses the following terms when referring to the millennium language exten-
sions.

Date Field

A date field can be any of the following:
¢ A data item whose data description entry includes a DATE FORMAT clause.
e A value returned by one of the following intrinsic functions:

DATE-OF-INTEGER
DATE-TO-YYYYMMDD
DATEVAL
DAY-OF-INTEGER
DAY-TO-YYYYDDD
YEAR-TO-YYYY
YEARWINDOW

e The conceptual data items DATE, DATE YYYYMMDD, DAY, and DAY YYYYDDD
of the ACCEPT statement.

¢ The result of certain arithmetic operations (for details, see “Arithmetic with Date
Fields” on page 233).

The term date field refers to both expanded date fields and windowed date fields

Windowed Date Field
A windowed date field is a date field that contains a windowed year . A windowed year
consists of 2 digits, representing a year within the century window.

Part 1. COBOL Language Structure 59

Millennium Language Extensions and Date Fields

Expanded Date Field
An expanded date field is a date field that contains an expanded year . An expanded
year consists of 4 digits.

Note: The main use of expanded date fields is to provide correct results when these
are used in combination with windowed date fields; for example, where migration to
4-digit year dates is not complete. If all the dates in an application use 4-digit years,
there is no need to use the millennium language extensions.

Date Format
Date format refers to the date pattern of a date field, specified either:

e Explicitly, by the DATE FORMAT clause or DATEVAL intrinsic function argument-2
or

¢ Implicitly, by statements and intrinsic functions that return date fields (for details,
see “Date Field” on page 59)

Compatible Date Field
The meaning of the term compatible , when applied to date fields, depends on the
COBOL division in which the usage occurs:

Data Division
Two date fields are compatible if they have identical USAGE and meet at
least one of the following conditions:

e They have the same date format

e Both are windowed date fields, where one consists only of a windowed
year, DATE FORMAT YY

e Both are expanded date fields, where one consists only of an
expanded year, DATE FORMAT YYYY

e One has DATE FORMAT YYXXXX, the other, YYXX
¢ One has DATE FORMAT YYYYXXXX, the other, YYYYXX

Procedure Division
Two date fields are compatible if they have the same date format except
for the year part, which may be windowed or expanded. For example, a
windowed date field with DATE FORMAT YYXXX is compatible with:

e Another windowed date field with DATE FORMAT YYXXX
¢ An expanded date field with DATE FORMAT YYYYXXX

60 COBOL Language Reference

Millennium Language Extensions and Date Fields

Non-Date
A non-date can be any of the following:

¢ A data item whose date description entry does not include the DATE FORMAT
clause

¢ A date field that has been converted using the UNDATE function
e A literal
¢ A reference-modified date field

¢ The result of certain arithmetic operations that may include date field operands; for
example, the difference between two compatible date fields

Century Window
A century window is a 100-year interval within which any 2-digit year is unique. There
are several types of century window available to COBOL programmers:

1. For windowed date fields, it is specified by the YEARWINDOW compiler option

2. For windowing intrinsic functions DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and
YEAR-TO-YYYY, it is specified by argument-2

3. For Language Environment callable services, it is specified in CEESCEN

Part 1. COBOL Language Structure 61

Millennium Language Extensions and Date Fields

62 COBOL Language Reference

Part 2. COBOL Source Unit Structure

COBOL Program Structure 64
Nested Programs 66
COBOL Class Definition Structureo 69
COBOL Method Definition Structure 71

© Copyright IBM Corp. 1991, 1998 63

COBOL Program Structure

COBOL Program Structure

A COBOL source program is a syntactically correct set of COBOL statements.

Nested Programs
A nested program is a program that is contained in another program. These con-
tained programs can reference some of the resources of the programs that contain
them. If program B is contained in program A, it is directly contained if there is no
program contained in program A that also contains program B. Program B is indi-
rectly contained in program A if there exists a program contained in program A
that also contains program contained and containing programs, see B. For more
information on nested programs, see “Nested Programs” on page 66 and the /IBM
COBOL Programming Guide for your platform.

Object Program
An object program is a set or group of executable machine language instructions
and other material designed to interact with data to provide problem solutions. An
object program is generally the machine language result of the operation of a
COBOL compiler on a source program.

Run Unit
A Run unit is one or more object programs that interact with one another and that
function at object time as an entity to provide problem solutions.

Sibling program
Sibling programs are programs that are directly contained by the same program.

With the exception of the COPY and REPLACE statements and the end program
header, the statements, entries, paragraphs, and sections of a COBOL source program
are grouped into the following four divisions:

¢ |dentification Division
¢ Environment Division
¢ Data Division

¢ Procedure Division

The end of a COBOL source program is indicated by the END PROGRAM header. If
there are no nested programs, the absence of additional source program lines also indi-
cates the end of a COBOL program.

Following is the format for the entries and statements that constitute a separately-
compiled COBOL source program.

64 © Copyright IBM Corp. 1991, 1998

COBOL Program Structure

—— Format—COBOL Source Program

> IDENTIFICATIONj—DIVISION.—PROGRAM-ID.—w—prograrn—name-l >
1D
- T] >
RECURSIVE identification-division-content
|—ISJ I—INITIALJ I—PROGRAMJ

A\
\4

|—ENVIRONMENT DIVISION.—environment-divis ion—contentJ

\ 4
v

I—DATA DIVISION.—data—division—content—J

\ 4

v

|—PROCEDURE DIVISION.—proz:edure-division-contentJ

END PROGRAM—progrcrrn-name-l.J
LL{ nested source program }JJ

nested source program:

IDENTI FICATION]——DIVISION .—PROGRAM-1D.—B—program-name-2 >
1D

A

1)

\ 4

v

| c " Lidentirication-divie N
COMMON identification-division-content
|—ISJ L |—INITIALJ |—PROGRAMJ
INITIAL
COMMON

|—ENVIRONMENT DIVISION.—environment-divis ion—contentJ

\
\4

|—DATA DIVISION.—data—division—conz?enz?J

A\
\4

|—PROCEDURE DIVISION.—pmcedure—division—contentJ
| nested source program |

»—END PROGRAM—program-name-2. I

Note:
1 This separator period is optional as an IBM extension.

A sequence of separate COBOL programs can also be input to the compiler. Following
is the format for the entries and statements that constitute a sequence of source pro-
grams (batch compile).

—— Format—Sequence of COBOL Source Programs

»—LCOBOL—source—program |

A\
A

END PROGRAM program-name
An end program header separates each program in the sequence of programs.
The program-name must conform to the rules for forming a user-defined word. It
must be identical to a program-name declared in a preceding PROGRAM-ID para-
graph.

Program-name can be a nonnumeric literal, but cannot be a figurative constant.
The content of the literal must follow the rules for formation of program names.
Any lowercase letters in this literal will be folded to uppercase.

Part 2. COBOL Source Unit Structure 65

COBOL Program Structure

An end program header is optional for the last program in the sequence only if that
program does not contain any nested-source-programs.

Nested Programs

A COBOL program can contain other COBOL programs, which in turn can contain still
other COBOL programs. These contained programs are called nested programs.
Nested programs can be directly or indirectly contained in the containing program.

A COBOL program may contain other COBOL programs. The contained (or nested)
programs may themselves contain yet other programs. A contained program may be
directly or indirectly contained within another program. Figure 2 describes a nested
program structure with directly and indirectly contained programs.

Id Division.

X is the outermost program Program-Id. X.
and directly contains X1 and ——— Procedure Division.
X2, and indirectly contains Display "I'm in X"
X11 and X12 Call "X1"
Call "x2"
Stop Run.
Id Division.
X1 is directly contained Program-Id. XI1.
in X and directly e b Procedure Division.
contains X11 and X12 Display "I'm in X1"
Call "X11"
Call "Xx12"

Exit Program.
—Id Division.

X11 1is directly Program-Id. X11.
contained in X1 —|—|—> Procedure Division.

and indirectly Display "I'm in X11"
contained in X Exit Program.

—End Program X11.
—Id Division.

X12 is directly Program-Id. X12.
contained in X1 —[—|—> Procedure Division.

and indirectly Display "I'm in X12"
contained in X Exit Program.

“—End Program X12.

End Program X1.

Id Division.

Program-Id. X2.

X2 is directly - Procedure Division.

contained in X Display "I'm in X2"
Exit Program.

End Program X2.

End Program X.

Figure 2. Nested program structure with directly and indirectly contained programs

Conventions for Program-Names
The program-name of a program is specified in the PROGRAM-ID paragraph of the
program's Identification Division. A program-name can be referenced only by the CALL
statement, the CANCEL statement, the SET statement, or the END PROGRAM header.

66 COBOL Language Reference

COBOL Program Structure

Names of programs constituting a run unit are not necessarily unique, but when two
programs in a run unit are identically named, at least one of the programs must be
directly or indirectly contained within another separately compiled program that does not
contain the other of those two programs.

A separately compiled program and all of its directly and indirectly contained programs
must have unigue program-names within that separately compiled program.

Rules for Program-Names
The following rules regulate the scope of a program-name:

¢ |f the program-name is that of a program which does not possess the COMMON
attribute, and which is directly contained within another program, that program-
name can be referenced only by statements included in that containing program.

¢ |f the program-name is that of a program which does possess the COMMON attri-
bute, and which is directly contained within another program, that program-name
can be referenced only by statements included in that containing program and any
programs directly or indirectly contained within that containing program, except that
program possessing the COMMON attribute and any programs contained within it.

e If the program-name is that of a program which is separately compiled, that
program-name can be referenced by statements included in any other program in
the run unit, except programs it directly or indirectly contains.

The mechanism used to determine which program to call is as follows:

— If one of two programs having the same name as that specified in the CALL
statement is directly contained within the program that includes the CALL
statement, that program is called.

— If one of two programs having the same name as that specified in the CALL
statement possesses the COMMON attribute and is directly contained within
another program that directly or indirectly contains the program that includes
the CALL statement, that common program is called unless the calling
program is contained within that common program.

— Otherwise, the separately compiled program is called.
The following rules apply to referencing a program-name of a program that is contained
within another program. For this discussion, we will say that Program-A contains

Program-B and Program-C, Program-C contains Program-D and Program-F, and
Program-D contains Program-E.

Part 2. COBOL Source Unit Structure 67

COBOL Program Structure

Program-A

Program-B

Program-C

Program-D

Program-E

Program-F

If Program-D does not possess the COMMON attribute, then Program-D can only be
referenced by the program that directly contains Program-D, that is, Program-C.

If Program-D does possess the COMMON attribute, then Program-D can be referenced
by Program-C since it contains Program-D and by any programs contained in
Program-C except for programs contained in Program-D. In other words, if Program-D
possesses the COMMON attribute, Program-D can be referenced in Program-C and
Program-F but not by statements in Program-E, Program-A or Program-B.

68 COBOL Language Reference

COBOL Class Definition

COBOL Class Definition Structure

A COBOL class definition describes a class or a metaclass. A class definition consti-
tutes a compilation unit.

Class
The entity that defines common behavior and implementation for zero, one, or
more objects. The objects that share the same implementation are considered to
be objects of the same class.

Method
Procedural code that defines one of the operations supported by an object, and
that is executed by an INVOKE statement on that object.

Instance Data
Data defining the state of an object. The instance data introduced by a class is
defined in the Working-Storage Section of the Data Division of the class definition.
The state of an object also includes the state of the instance variables introduced
by bases classes that are inherited by the current class. A separate copy of the
instance data is created for each object instance.

Subclass
A class that inherits methods and instance data from another class. When two
classes in an inheritance relationship are considered together, the subclass is the
inheritor or inheriting class; the super-class is the inheritee or inherited class.

Metaclass
A special type of class whose instances are called class-objects. Class-objects are
the run-time objects that represent SOM classes. Any class descended from
SOMClass is a metaclass.

With the exception of the COPY and REPLACE statements and the END CLASS
header, the statements, entries, paragraphs, and sections of a COBOL class definition
are grouped into the following four divisions:

¢ Identification Division

¢ Environment Division (Configuration Section only)
e Data Division

e Procedure Division

The end of a COBOL class definition is indicated by the END CLASS header.

Following is the format for the entries and statements that constitute a separately-
compiled COBOL class definition.

© Copyright IBM Corp. 1991, 1998 69

COBOL Class Definition

—— Format—COBOL Class Definition
»—[IDENTIFICATION DIVISION.:,—CLASS—ID.—class-name—]—.
ID DIVISION.

|—identification—division—cont‘ent‘—l

»——ENVIRONMENT DIVISION.—class-environment-division-content

I—DATA DIVISION.—class-data—divisz’on—content—I

>

|—PROCEDURE DIVISION.
LLmethod-definition

»——END CLASS—class-name-1.

v
A

END CLASS
Specifies the end of a class definition.

70 COBOL Language Reference

COBOL Method Definition

COBOL Method Definition Structure

A COBOL method definition describes a method. You can only specify a method defi-
nition within a class definition.

With the exception of the COPY and REPLACE statements and the END METHOD
header, the statements, entries, paragraphs, and sections of a COBOL method defi-
nition are grouped into the following four divisions:

¢ |dentification Division

e Environment Division (Input-Output section only)
e Data Division

e Procedure Division

The end of a COBOL method definition is indicated by the END METHOD header.

Following is the format for the entries and statements that constitute a separately-
compiled COBOL method definition.

— Format—COBOL Method Definition

v

IDENTIFICATION DIVISION. T]
ID DIVISION. identification-division-content

>

v

I—ENVIRONMENT DIVISION.—method-environment-division-contentJ

I—DATA DIVISION.—meifhod—dat,‘a-divisz’on-contfentfJ

v

|—PROCEDURE DIVISION.method-procedure-division-conten tJ
»——END METHOD—method-name-1.

A\
A

END METHOD
Specifies the end of a method definition.

Methods defined in a class can access instance data (class Working-Storage Section
data items) introduced in the same class but not instance data introduced by a parent
class or metaclass. Therefore, instance data is always private to the class that intro-
duces it.

Methods introduced in class-name-1 must have unique names within the class defi-
nition.

© Copyright IBM Corp. 1991, 1998 71

COBOL Method Definition

72 COBOL Language Reference

Part 3. Identification Division

Identification Division 74
PROGRAM-ID Paragraph 77
CLASS-ID Paragraph 79
METHOD-ID Paragraph e 81
Optional Paragraphs 83

© Copyright IBM Corp. 1991, 1998 73

Identification Division

Identification Division

74

The Identification Division must be the first division in every COBOL source program,
class definition, and method definition. It names the program, class, or method, and
can include the date the program, class, or method was written, the date of compilation,
and other such documentary information. The Identification Division must begin with
the words IDENTIFICATION DIVISION or ID DIVISION followed by a separator period.

Program IDENTIFICATION DIVISION
For a program, the first paragraph of the Identification Division must be the
PROGRAM-ID paragraph.

The other paragraphs are optional, and as an IBM extension, can appear in any
order.

Class IDENTIFICATION DIVISION
For a class, the first paragraph of the Identification Division must be the CLASS-ID
paragraph.

The other paragraphs are optional, and can appear in any order.

Method IDENTIFICATION DIVISION
For a method, the first paragraph of the Identification Division must be the
METHOD-ID paragraph.

The other paragraphs are optional, and can appear in any order.

© Copyright IBM Corp. 1991, 1998

Identification Division

—— Format—Program ldentification Division

> IDENTIFICATIONj—DIVISION.—PROGRAM-ID.—w—prograrn—namc >
ID
~— — @ >
RECURSIVE
|—ISJ COMMON—L—_|— |—PROG.RAMJ
INITIAL
INITIAL—m—
COMMON

L auThoR.
comment-entry-
L insTALLATION. @
comment-entry:
L pATE-WRITTEN. @
comment-entry-
L pATe-compILED. -
comment-entry:
Lsecuriy.—@ |
comment-entry

Note:
1 This separator period is optional as an IBM extension.

4
v

| >

i >

A

Part 3. Identification Division 75

Identification Division

— Format—Class ldentification Division

»—INH ERITS—[cZass—name—Z

»»—EIDENTIFICATION DIVISIONj—CLASS—ID.—CZass—name-]
ID DIVISION

L]
METACLASS—L—_]—CZass-name—3
IS

|—AUTHOR.
comment-entry

|—INSTALLATION.
comment-entry-

|—DATE-WRITTEN.
comment-entry

|—DATE-COMPILED.
comment-entry

Lsecurtry. |
comment-entry-

\4
A

— Format—Method Identification Division

»»—EIDENTIFICATION DIVISION
ID DIVISION

v

»—METHOD-1D.—method-name-1

()VERRIDE—I
l—I S—I |—METHOD—I

v

|—AUTHOR.
comment-entry

|—INSTALLATION.
comment-entry-

|—DATE-WRITTEN.
comment-entry

v

|—DATE-COMPILED.
comment-entry

Lsecurtry. |
comment-entry-

\4
A

76 COBOL Language Reference

PROGRAM-ID Paragraph

PROGRAM-ID Paragraph

The PROGRAM-ID paragraph specifies the name by which the program is known and
assigns selected program attributes to that program. It is required and must be the first
paragraph in the Identification Division.

program-name
A user-defined word or nonnumeric literal that identifies your program. It must
follow the following rules of formation, depending on the setting of the PGMNAME
compiler option:

Table 7. Formation Rules for Program Names Based on PGMNAME Compiler Option

PGMNAME Formation Rules
Setting 0S/390 and VM AlX, OS/2, and Windows
PGMNAME The name can be up to 30 characters in Flagged with a warning message and
(COMPAT) length. treated as PGMNAME(UPPER).
Only the hyphen, digit, and alphabetic char-
acters are allowed in the name.
At least one character must alphabetic.
The hyphen cannot be used as the first or
last character.
If program-name is a nonnumeric literal,
(other than a figurative constant), it can
include the extension characters $, #, and
@ in the outermost program only.
PGMNAME If program-name is a user-defined word, it can be up to 30 characters in length.
(LONGUPPER)
If program-name is a nonnumeric literal, it can be up to 160 characters in length. It cannot be
a figurative constant.
Only the hyphen, digit, and alphabetic characters are allowed in the name.
At least one character must alphabetic.
The hyphen cannot be used as the first or last character.
PGMNAME Program-name must be specified as a Program-name must be specified as a
(LONGMIXED) literal. It cannot be a figurative constant. literal. It cannot be a figurative constant.
The name can be up to 160 characters in The name can be up to 160 characters in
length. length.
Program-name can consist of any character Wherever alphabetic characters are allowed,
in the range X'41' to X'FE'". you can use multi-byte characters.

For information on the PGMNAME compiler option and how the compiler processes the
names, see the IBM COBOL Programming Guide for your platform.

RECURSIVE
An optional clause that allows COBOL programs to be recursively reentered.

You can specify the RECURSIVE clause only on the outermost program of a com-
pilation unit. Recursive programs cannot contain nested subprograms.

Part 3. Identification Division 77

PROGRAM-ID Paragraph

If the RECURSIVE clause is specified, program-name-1 can be recursively reen-
tered while a previous invocation is still active. If the RECURSIVE clause is not
specified, an active program cannot be recursively reentered.

The Working-Storage Section of a recursive program defines storage that is stat-
ically allocated and initialized on the first entry to a program, and is available in a
last-used state to any of the recursive invocations.

The Local-Storage Section of a recursive program (as well as a non-recursive
program) defines storage that is automatically allocated, initialized, and deallocated
on a per-invocation basis.

Internal file connectors corresponding to FDs in the File Section of a recursive
program are statically allocated. The status of internal file connectors is part of the
last-used state of a program that persists across invocations.

The following language elements are not supported in a recursive program:

e ALTER

e GO TO without a specified procedure name
¢ RERUN

¢ SEGMENTATION

¢ USE FOR DEBUGGING

Note: Methods are always recursive by default. The RECURSIVE clause cannot
be specified on the METHOD-ID statement.

COMMON
Specifies that the program named by program-name is contained within another
program, and it can be called from siblings of the common program and programs
contained within them. The COMMON clause can be used only in nested pro-
grams. For more information on conventions for program names, see the IBM
COBOL Programming Guide for your platform.

INITIAL
Specifies that when program-name is called, program-name and any programs
contained within it are placed in their initial state.

A program is in the initial state:

e The first time the program is called in a run unit
e Every time the program is called, if it possesses the initial attribute

¢ The first time the program is called after the execution of a CANCEL statement
referencing the program or a CANCEL statement referencing a program that
directly or indirectly contains the program

e The first time the program is called after the execution of a CALL statement
referencing a program that possesses the initial attribute, and that directly or
indirectly contains the program.

When a program is in the initial state, the following occur:

e The program's internal data contained in the Working-Storage Section are ini-
tialized. If a VALUE clause is used in the description of the data item, the

78 COBOL Language Reference

CLASS-ID Paragraph

data item is initialized to the defined value. If a VALUE clause is not associ-
ated with a data item, the initial value of the data item is undefined.

¢ Files with internal file connectors associated with the program are not in the
open mode.

¢ The control mechanisms for all PERFORM statements contained in the
program are set to their initial states.

¢ An altered GO TO statement contained in the program is set to its initial state.

For the rules governing non-unique program names, see “Rules for Program-Names”
on page 67.

CLASS-ID Paragraph

The CLASS-ID paragraph specifies the name by which the class is known and assigns
selected attributes to that class. It is required and must be the first paragraph in a
class Identification Division.

class-name-1
A user-defined word that identifies the class.

If you want to use more flexible naming conventions for class-name-1, specify
class-name-1 in the REPOSITORY paragraph of the class definition. (This defines
an external class name to identify the class outside of this class definition.)

INHERITS
A clause that defines class-name-1 to be a subclass (or derived class) of
class-name-2 (the parent class). Class-name-1 cannot directly or indirectly inherit
from class-name-1. A class name can only appear once in the INHERITS clause.

class-name-2
The name of a class inherited by class-name-1. If class-name-2 is repeated, mul-
tiple inheritance is present. You must specify class-name-2 in the REPOSITORY
paragraph of the Configuration Section of the class definition.

METACLASS
A clause that identifies the metaclass for class-name-1. A metaclass is a special
class whose instances are class objects. For more information on metaclasses,
see the IBM COBOL Programming Guide for your platform.

Do not specify the METACLASS clause when defining a metaclass.

Note: The INHERITS and METACLASS clauses can appear in either order in the
CLASS-ID paragraph.

class-name-3
The name of a metaclass that is responsible for creating and/or managing objects
of the class being defined. You must specify class-name-3 in the REPOSITORY
paragraph of the Configuration Section of the class definition.

Part 3. Identification Division 79

CLASS-ID Paragraph

General Rules
Class-name-1, class-name-2, and class-name-3 must conform to the normal rules of
formation for a COBOL user-defined word, as described in “COBOL Words with Single-
Byte Characters” on page 3.

See “REPOSITORY Paragraph” on page 97 for details on:

¢ Class names mapping to CORBA compliant names
¢ Specification of external class-names with more flexible rules of formation

You can specify a sequence of class definitions and program definitions in a single
COBOL source file, forming a batch compile.

Inheritance
Every method available on instances of a class is also available on instances of any
subclass directly or indirectly derived from it. A subclass can introduce new methods
that do not exist in the parent (or ancestor) class or can override a method from the
parent class. When a subclass overrides an existing method from the parent class, it
defines a new implementation for that method, which replaces the inherited implemen-
tation.

The instance data of class-name-1 is a copy of the instance data from class-name-2
together with the data declared in the Working-Storage Section of class-name-1. Note
however, instance data is always private to the class that introduces it.

The semantics of inheritance are defined by the IBM SOM. All classes must be derived
directly or indirectly from the SOMObject class. All metaclasses must be derived
directly or indirectly from SOMClass.

Multiple Inheritance
Multiple inheritance is when more than one class name is specified on the INHERITS
phrase. With multiple inheritance, a class might inherit the same methods and instance
data from different parents (if each of these parents have a common ancestor). In this
situation, (“diamond inheritance”) the subclass inherits only one set of method imple-
mentations and one copy of the instance data.

When a subclass inherits two methods with the same name, the two methods must
comply to the following conformance rules:

e The number of formal parameters on the Procedure Division USING phrase must
be the same for both methods.

e The presence or absence of the Procedure Division RETURNING phrase must be
consistent for the two methods.

e Corresponding parameters in the Procedure Division USING and RETURNING
phrases must satisfy the following:

— If a formal parameter is a COBOL elementary data item not described with
USAGE IS OBJECT REFERENCE, the corresponding parameter must have
the same PICTURE, USAGE, SIGN, SYNCHRONIZED, JUSTIFIED, and

80 COBOL Language Reference

METHOD-ID Paragraph

BLANK WHEN ZERO clauses. Note that periods and commas can be inter-
changed if using the DECIMAL POINT IS COMMA clause, and the currency
signs can differ.

— If a formal parameter is a COBOL elementary data item described with
USAGE IS OBJECT REFERENCE, the corresponding parameter must be
defined with an identical USAGE clause or USAGE IS OBJECT REFERENCE
clause.

— For the purpose of conformance checking, a fixed-length group data item is
considered to be equivalent to an elementary alphanumeric data item of the
same length.

A variable-length group conforms only to other variable-length groups that
have the same maximum length.

METHOD-ID Paragraph

The METHOD-ID paragraph specifies the name by which a method is known and
assigns selected attributes to that method. It is required and must be the first para-
graph in a method Identification Division.

method-name-1
A user-defined word or a nonnumeric literal that identifies the method.

The rules of formation for method-name-1 are as follows:

¢ If the method name is specified in the user-defined word format, then normal
COBOL rules for a user-defined word apply.

¢ If the method name is specified as a nonnumeric literal, then:
— The name can be up to 160 characters in length.

— The characters used in the name must be uppercase or lowercase alpha-
betic, digit, hyphen, or underscore.

— At least one character must be alphabetic.

— Hyphen cannot be used as the first or last character.

OVERRIDE
A clause that allows a subclass to override an existing method implementation
when it inherits a method from a parent class.

You must specify the OVERRIDE clause in the METHOD-ID paragraph, if
method-name-1 is overriding a method with the same name that is inherited from a
parent class.

Do not specify the OVERRIDE clause if the method is not inherited from an
ancestor class, and is being introduced by the current class definition.

Part 3. Identification Division 81

METHOD-ID Paragraph

General Rules
1. Method names that are defined for a class must be unique. (The set of methods
"defined for a class" includes the methods introduced by the class definition and
the methods inherited from parent classes.)

Note: Method names that differ only in case are not considered unique. For
example, naming one method “SAYHELLO” and another method “sayHELLO” is
invalid.

2. Method names are processed by the compiler as follows:

¢ Literal-format methods names are processed in a case-sensitive manner.
However, when processing method resolution as part of INVOKE statements
or method names that are specified as user-defined words, the compiler
ignores any difference in case.

e If necessary, the compiler translates method names to conform to CORBA
requirements:

— Hyphens are translated to zero

— If the first character of the name is a digit, it is converted as follows:
- 1 through 9 are changed to A through |
- 0Ois changedto J

3. If a method in class-name-1 overrides a method in class-name-2, these two
methods must satisfy the following conformance rules:

e The number of formal parameters on the Procedure Division USING phrase
must be the same for both methods.

e The presence or absence of the Procedure Division RETURNING phrase must
be consistent on the two methods.

e Corresponding parameters in the Procedure Division USING phrases must
satisfy the following:

— If a formal parameter is a COBOL elementary data item not described with
USAGE IS OBJECT REFERENCE, then the corresponding parameter
must have the same PICTURE, USAGE, SIGN, SYNCHRONIZED, JUSTI-
FIED, and BLANK WHEN ZERO clauses. Note that periods and commas
can be interchanged if using the DECIMAL POINT IS COMMA clause,
and the currency signs can differ.

— If a formal parameter is a COBOL elementary data item described with
USAGE IS OBJECT REFERENCE, then the corresponding parameter
must be defined with an identical USAGE IS OBJECT REFERENCE
clause.

— BY VALUE and BY REFERENCE specifications must be consistent.

82 COBOL Language Reference

Optional Paragraphs

¢ The identifiers specified on the Procedure Division RETURNING phrases must
satisfy the following:

— If one of the identifiers is a COBOL elementary data item not described
with USAGE IS OBJECT REFERENCE, then the corresponding identifier
must have the same PICTURE, USAGE, SIGN, SYNCHRONIZED, JUSTI-
FIED, and BLANK WHEN ZERO clauses. Note that periods and commas
can be interchanged if using the DECIMAL POINT IS COMMA clause,
and the currency signs can differ.

— If the class-name-2 Procedure Division RETURNING identifier is a uni-
versal object reference, the class-name-1 Procedure Division
RETURNING identifier must be an object reference (either a universal
object reference or an object reference typed to a specific class).

Universal object references are described with USAGE OBJECT REFER-
ENCE and typed object references are described with USAGE OBJECT
REFERENCE class-name.

— If the class-name-2 Procedure Division RETURNING identifier is an object
reference typed to a specific class, the class-name-1 Procedure Division
RETURNING identifier must be an object reference typed to the same
class or a derived class.

e For the purpose of conformance checking, a fixed-length group data item is
considered to be equivalent to an elementary alphanumeric data item of the
same length.

A variable-length group conforms only to other variable-length groups that
have the same maximum length.

Optional Paragraphs

These optional paragraphs in the Identification Division can be omitted:

AUTHOR
Name of the author of the program.

INSTALLATION
Name of the company or location.

DATE-WRITTEN
Date the program was written.

DATE-COMPILED
Date the program was compiled.

SECURITY
Level of confidentiality of the program.

The comment-entry in any of the optional paragraphs can be any combination of char-
acters from the character set of the computer. The comment-entry is written in Area B
on one or more lines.

Part 3. ldentification Division 83

Optional Paragraphs

The paragraph name DATE-COMPILED and any comment-entry associated with it
appear in the output program listing with the current date inserted:

DATE-COMPILED. 04/27/95.

Comment-entries serve only as documentation; they do not affect the meaning of the
program. A hyphen in the indicator area (column 7) is not permitted in comment-
entries.

Under AIX, OS/2, and Windows, you can include multi-byte as well as
single-byte characters in an EUC or DBCS code page in comment entries in the Iden-
tification Division of your program. Multiple lines are allowed in a comment-entry con-
taining multi-byte characters.

Under OS/390 and VM, you can include DBCS character strings as
comment-entries in the Identification Division of your program. Multiple lines are
allowed in a comment-entry containing DBCS strings.

A DBCS string must be preceded by a shift-out control character and followed by a
shift-in control character. For example:

AUTHOR. <.A.U.T.H.0.R.-.N.A.M.E>, XYZ CORPORATION
DATE-WRITTEN. <.D.A.T.E>

When using DBCS characters in a comment-entry contained on multiple lines, shift-out
and shift-in characters must be paired on a line.

DBCS strings are described under “Character-Strings” on page 3.

84 COBOL Language Reference

Part 4. Environment Division

Configuration Section
SOURCE-COMPUTER Paragraph
OBJECT-COMPUTER Paragraph
SPECIAL-NAMES Paragraph
ALPHABET Clause
SYMBOLIC CHARACTERS Clause
CLASSClause
CURRENCY SIGN Clause
REPOSITORY Paragraph

Input-Output Section
FILE-CONTROL Paragraph
SELECT Clause
ASSIGN Clause
RESERVE Clause
ORGANIZATION Clause
PADDING CHARACTER Clause
RECORD DELIMITER Clause
ACCESS MODE Clause
RECORD KEY Clause
ALTERNATE RECORD KEY Clause
RELATIVE KEY Clause
PASSWORD Clause

LOCK MODE Clause (0OS/2 VSAM Files Only)

FILE STATUS Clause
I-O-CONTROL Paragraph
RERUN Clause
SAME AREAClause
SAME RECORD AREA Clause
SAME SORT AREA Clause
SAME SORT-MERGE AREA Clause
MULTIPLE FILE TAPE Clause
APPLY WRITE-ONLY Clause

© Copyright IBM Corp. 1991, 1998

85

Configuration Section

Configuration Section

86

The Configuration Section is an optional section for programs and classes, which can
describe the computer environment on which the program is compiled and executed.

Program Configuration Section
The Configuration Section can be specified only in the ENVIRONMENT DIVISION
of the outermost program of a COBOL source program.

You should not specify the Configuration Section in a program that is contained
within another program. The entries specified in the Configuration Section of a
program apply to any program contained within that program.

Class Configuration Section
Specify the Configuration Section only in the ENVIRONMENT DIVISION of the out-
ermost program of a class definition.

Entries in a class Configuration Section apply to the entire class definition,
including all methods introduced by that class.

Method Configuration Section
The Configuration Section is not valid for method definitions.

—— Format—Programs and Classes
»>—CONFIGURATION SECTION.

v

|—source-computer’-pc:ragmph—J

\ 4

v

|—object-computer-paragraph—] |—spec ial -names-paragraphJ

\ 4

v
A

|—repos i tory-paragraphJ

The Configuration Section can:
¢ Relate IBM-defined environment-names to user-defined mnemonic names
¢ Specify the collating sequence
e Specify a substitution for the currency sign

e Exchange the functions of the comma and the period in PICTURE clauses and
numeric literals

¢ Relate alphabet-names to character sets or collating sequences
e Specify symbolic-characters
¢ Relate class names to sets of characters

¢ Relate object-oriented class names to the class names in the SOM interface repos-
itory

© Copyright IBM Corp. 1991, 1998

SOURCE-COMPUTER Paragraph

SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph describes the computer on which the source
program is to be compiled.

—— Format
»—SOURCE-COMPUTER.

A\
A

-

I—compuz?er—namc]
ﬁDEBUGGING MODE
WITH

computer-name
A system-name. For example:

IBM-390

WITH DEBUGGING MODE
Activates a compile-time switch for debugging lines written in the source program.

A debugging line is a statement that is compiled only when the compile-time switch
is activated. Debugging lines allow you, for example, to check the value of a data-
name at certain points in a procedure.

To specify a debugging line in your program, code a 'D' in column 7 (indicator
area). You can include successive debugging lines, but each must have a 'D' in
column 7 and you cannot break character strings across lines.

All your debugging lines must be written so that the program is syntactically
correct, whether the debugging lines are compiled or treated as comments.

The presence or absence of the DEBUGGING MODE clause is logically deter-
mined after all COPY and REPLACE statements have been processed.

You can code debugging lines in the Environment (after the OBJECT-COMPUTER
paragraph), Data, or Procedure Divisions.

If a debugging line contains only spaces in Area A and in Area B, it is treated the
same as a blank line.

Except for the WITH DEBUGGING MODE clause, the SOURCE-COMPUTER para-
graph is syntax checked, but has no effect on the execution of the program.

Part 4. Environment Division 87

OBJECT-COMPUTER Paragraph

OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph specifies the system for which the object
program is designated.

—— Format
»»>—0BJECT-COMPUTER. >
|—comput‘er—namc | entry 1 }——I
l—MEMORY—L—_]—integer WORDS
SIZE CHARACTERS
MODULES

entry 1:

I . |
SEQUENCE—L—_I—athabet—name

l—PROGRAMJ |—COLLATINGJ IS

computer-name
A system-name. For example:

IBM-390

MEMORY SIZE
The amount of main storage needed to run the object program. The MEMORY
SIZE clause is syntax checked, but it has no effect on the execution of the
program.

integer
Expressed in words, characters, or modules.

PROGRAM COLLATING SEQUENCE IS
The collating sequence used in this program is the collating sequence associated
with the specified alphabet-name.

The collating sequence pertains to this program and any programs it might contain.
alphabet-name
The collating sequence.
PROGRAM COLLATING SEQUENCE determines the truth value of the following non-
numeric comparisons:
¢ Those explicitly specified in relation conditions
e Those explicitly specified in condition-name conditions

The PROGRAM COLLATING SEQUENCE clause also applies to any nonnumeric
merge or sort keys, unless the COLLATING SEQUENCE phrase is specified in the
MERGE or SORT statement.

Under OS/390 and VM, the PROGRAM COLLATING SEQUENCE clause is
not applied to the DBCS character set.

Under AIX, OS/2, and Windows, the PROGRAM COLLATING
SEQUENCE clause is not allowed if the code page in effect is a DBCS or EUC code

page. Workstation

88 COBOL Language Reference

SPECIAL-NAMES Paragraph

When the PROGRAM COLLATING SEQUENCE clause is omitted:

. Under OS/390 and VM, the EBCDIC collating sequence is used. (See
Appendix B, “EBCDIC and ASCII Collating Sequences” on page 544.)

. Under AIX, OS/2, and Windows, the COLLSEQ compiler option
indicates the collating sequence used. For example, if COLLSEQ(EBCDIC) is
specified and the PROGRAM COLLATING SEQUENCE is not specified (or is
NATIVE), the EBCDIC collating sequence is applied.

SEGMENT-LIMIT IS
Certain permanent segments can be overlaid by independent segments while still
retaining the logical properties of fixed portion segments. (Fixed portion segments
are made up of fixed permanent and fixed overlayable segments.)

Priority-number
An integer ranging from 1 through 49.

When SEGMENT-LIMIT is specified:

¢ A fixed permanent segment is one with a priority-number less than the
priority-number specified.

¢ A fixed overlayable segment is one with a priority-number ranging from
that specified through 49, inclusive.

For example, if SEGMENT-LIMIT IS 25 is specified:

e Sections with priority-numbers 0 through 24 are fixed permanent seg-
ments.

e Sections with priority-numbers 25 through 49 are fixed overlayable seg-
ments.

When SEGMENT-LIMIT is omitted, all sections with priority-numbers 0 through
49 are fixed permanent segments.

Except for the PROGRAM COLLATING SEQUENCE clause, the OBJECT-COMPUTER
paragraph is syntax checked, but it has no effect on the execution of the program.

SPECIAL-NAMES Paragraph
The SPECIAL-NAMES paragraph:

¢ Relates IBM-specified environment-names to user-defined mnemonic-names

¢ Relates alphabetic-names to character sets or collating sequences

¢ Specifies symbolic characters

¢ Relates class names to sets of characters

e Specifies a substitute character for the currency sign

¢ Specifies that the functions of the comma and decimal point are to be interchanged
in PICTURE clauses and numeric literals.

Note: The clauses in the SPECIAL-NAMES paragraph can appear in any order.

Part 4. Environment Division 89

SPECIAL-NAMES Paragraph

— Format

»>—SPECIAL-NAMES. ' |:

environment-name-1

nemonic-name-1
IS

environment-name-2- nemonic-name-_2:
IS l—{ entry 1 }—I
entry 1 |

v

\ 4

\—-LALPHABET—athabe t-name-1

IS

STANDARD-1 l l
STANDARD-2
NATIVE
EBCDIC

literal-1—| phrase 1 }—L

I

|

A\ 4

l—SYMBOLIC

l—CHARACTERSJ

| symbolic |

[

l—I N—a thabet—name-ZJ

.

\4

A\

LCLASS—class-name-lﬁJ—literal-4 I ‘
IS THRO i

UGH Zzl‘eml-5J
THRU—_,—

phrase 1:
|

L ; 1L J L]
CURRENCY literal-6 DECIMAL-POINT COMMA .
Csiond Lisd s

A\
A

entry 1:
I ON |_ _J |_ _J condition-1 |_ _J I
STATUS IS OFF: T T T condition-2
STATUS IS
OFF: condition-2
|—STATUS—I |—ISJ |—0N T T . Londition-lJ
STATUS IS

|
THROUGH——TL i teral-2—
THRU——,_
ALSO—ZiteraZ—3—J—

symbolic:

Note:

}—l—Lsymbol ic-character—]J—[AREj—[integer—l ‘
IS

1 This separator period must be used if any of the optional clauses are selected.

90 COBOL Language Reference

SPECIAL-NAMES Paragraph

environment-name-1
System devices or standard system actions taken by the compiler.

Valid specifications for environment-name-1 are:

Table 8. Meanings of Environment Names

Environment Meaning Allowed In

Name-1

SYSIN System logical input unit ACCEPT

SYSIPT

SYSOUT System logical output unit DISPLAY

SYSLIST

SYSLST

SYSPUNCH System punch device DISPLAY

SYSPCH

CONSOLE Console ACCEPT and DISPLAY
C01-C12 Skip to channel 1 through 12, respectively WRITE ADVANCING (On

AIX, OS/2, and Windows,
with C01-C12, one line is

advanced.)
CsP Suppress spacing WRITE ADVANCING
S01-S05 Pocket select 1-5 on punch devices WRITE ADVANCING (On

AIX, OS/2, and Windows,
with S01-S05, one line is
advanced.)

AFP-5A Advanced function printing WRITE ADVANCING

environment-name-2
A 1-byte User Programmable Status Indicator (UPSI) switch. Valid specifications
for environment-name-2 are UPSI-0 through UPSI-7.

mnemonic-name-1, mnemonic-name-2
Mnemonic-name-1 and mnemonic-name-2 follow the rules of formation for user-
defined names. Mnemonic-name-1 can be used in ACCEPT, DISPLAY, and
WRITE statements. Mnemonic-name-2 can be referenced only in the SET state-
ment. Mnemonic-name-2 can qualify cond-1 or cond-2 names.

Mnemonic-names and environment-names need not be unique. If you choose a
mnemonic-name that is also an environment-name, its definition as a mnemonic-
name will take precedence over its definition as an environment-name.

ON STATUS IS, OFF STATUS IS
UPSI switches process special conditions within a program, such as year-beginning
or year-ending processing. For example, at the beginning of the Procedure Divi-
sion, an UPSI switch can be tested; if it is ON, the special branch is taken. (See
“Switch-Status Condition” on page 252.)

Part 4. Environment Division 91

ALPHABET Clause

cond-1, cond-2
Condition-names follow the rules for user-defined names. At least one character
must be alphabetic. The value associated with the condition-name is considered to
be alphanumeric. A condition-name can be associated with the on status and/or
off status of each UPSI switch specified.

In the Procedure Division, the UPSI switch status is tested through the associated
condition-name. Each condition-name is the equivalent of a level-88 item; the
associated mnemonic-name, if specified, is considered the conditional variable and
can be used for qualification.

Condition-names specified in a containing program's SPECIAL-NAMES paragraph
can be referenced from any contained program.

ALPHABET Clause

ALPHABET alphabet-name-1 IS
Provides a means of relating an alphabet-name to a specified character code set
or collating sequence.

It specifies a collating sequence when used in either:

e The PROGRAM COLLATING SEQUENCE clause of the
OBJECT-COMPUTER paragraph
e The COLLATING SEQUENCE phrase of the SORT or MERGE statement

It specifies a character code set when specified in either:

e The FD entry CODE-SET clause
¢ The SYMBOLIC CHARACTERS clause

Under AIX, OS/2, and Windows, you cannot specify the ALPHABET
clause if the code page in effect is a DBCS or EUC code page. For details, see
the IBM COBOL Programming Guide for your platform.

STANDARD-1
Under OS/390 and VM, specifies the ASCII character set.

Under AIX, OS/2, and Windows, specifies that the collating
sequence is based on the binary code values of the characters, ignoring the
locale setting.

STANDARD-2
Under OS/390 and VM, specifies the International Reference

Version of the ISO 7-bit code defined in International Standard 646, 7-bit
Coded Character Set for Information Processing Interchange.

Under AIX, OS/2, and Windows, specifies that the collating
sequence is based on the binary code values of the characters, ignoring the

locale setting. <@ ITSeTay

92 COBOL Language Reference

NATIVE

ALPHABET Clause

Specifies the native character code set. If the alphabet-name clause is
omitted:

Under OS/390 and VM, EBCDIC is assumed.

Under AIX, OS/2, and Windows, the alphabet-name is associ-
ated with the character set (ASCII or EUC) indicated by the locale in effect.

Workstation

EBCDIC

Specifies the EBCDIC character set.

literal-1
literal-2
literal-3

Specifies that the collating sequence is to be determined by the program,
according to the following rules:

The order in which literals appear specifies the ordinal number, in
ascending sequence, of the character(s) in this collating sequence.

Each numeric literal specified must be an unsigned integer.

Each numeric literal must have a value that corresponds to a valid ordinal
position within the collating sequence in effect.

Appendix B, “EBCDIC and ASCII Collating Sequences” on page 544, lists
the ordinal number for characters in the EBCDIC and ASCI!I collating
sequences.

Each character in a nonnumeric literal represents that actual character in
the character set. (If the nonnumeric literal contains more than one char-
acter, each character, starting with the leftmost, is assigned a succes-
sively ascending position within this collating sequence.)

Any characters that are not explicitly specified assume positions in this
collating sequence higher than any of the explicitly specified characters.
The relative order within the set of these unspecified characters within the
character set remains unchanged.

Within one alphabet-name clause, a given character must not be specified
more than once.

Each nonnumeric literal associated with a THROUGH or ALSO phrase
must be 1 character in length.

When the THROUGH phrase is specified, the contiguous characters in the
native character set beginning with the character specified by literal-1 and
ending with the character specified by literal-2 are assigned successively
ascending positions in this collating sequence.

Part 4. Environment Division 93

ALPHABET Clause

This sequence can be either ascending or descending within the original
native character set. That is, if "Z" THROUGH "A" is specified, the
ascending values, left-to-right, for the uppercase letters are:

ZYXWVUTSRQPONMLKJIHGFEDCBA

¢ When the ALSO phrase is specified, the characters specified as literal-1,
literal-3, etc., are assigned to the same position in this collating sequence.
For example, if you specify:

||D|| ALSO ||N|| ALSO ||o/0||

the characters D, N, and % are all considered to be in the same position
in the collating sequence.

¢ When the ALSO phrase is specified and alphabet-name-1 is referenced in
a SYMBOLIC CHARACTERS clause, only literal-1 is used to represent
the character in the character set.

e The character having the highest ordinal position in this collating
sequence is associated with the figurative constant HIGH-VALUE. If more
than one character has the highest position, because of specification of
the ALSO phrase, the last character specified (or defaulted to when any
characters are not explicitly specified) is considered to be the
HIGH-VALUE character for procedural statements such as DISPLAY, or
as the sending field in a MOVE statement. (If all characters and the
ALSO phrase example given above were specified as the high-order char-
acters of this collating sequence, the HIGH-VALUE character would be
%.)

e The character having the lowest ordinal position in this collating sequence
is associated with the figurative constant LOW-VALUE. If more than one
character has the lowest position, because of specification of the ALSO
phrase, the first character specified is the LOW-VALUE character. (If the
ALSO phrase example given above were specified as the low-order char-
acters of the collating sequence, the LOW-VALUE character would be D.)

When literal-1 , literal-2 , or literal-3 is specified, the alphabet-name must not
be referred to in a CODE-SET clause (see “CODE-SET Clause” on page 157).

Literal-1, literal-2 , and literal-3 must not specify a symbolic-character figura-
tive constant.

Floating-point literals cannot be used in a user-specified collating sequence.

DBCS literals cannot be used in a user-specified collating sequence.

94 COBOL Language Reference

CLASS Clause

SYMBOLIC CHARACTERS Clause

SYMBOLIC CHARACTERS symbolic-character-1
Provides a means of specifying one or more symbolic characters.
Symbolic-character-1 is a user-defined word and must contain at least one alpha-
betic character. The same symbolic-character can appear only once in a SYM-
BOLIC CHARACTERS clause.

Under OS/390 and VM, the symbolic character can be a DBCS user-
defined word.

Under AIX, OS/2, and Windows, you cannot use the SYMBOLIC
CHARACTERS clause if the code page is DBCS or EUC.

The internal representation of symbolic-character-1 is the internal representation of
the character that is represented in the specified character set. The following rules

apply:

¢ The relationship between each symbolic-character-1 and the corresponding
integer-1 is by their position in the SYMBOLIC CHARACTERS clause. The
first symbolic-character-1 is paired with the first integer-1; the second
symbolic-character-1 is paired with the second integer-1; and so forth.

¢ There must be a one-to-one correspondence between occurrences of
symbolic-character-1 and occurrences of integer-1 in a SYMBOLIC CHARAC-
TERS clause.

¢ If the IN phrase is specified, integer-1 specifies the ordinal position of the char-
acter that is represented in the character set named by alphabet-name-2. This
ordinal position must exist.

¢ If the IN phrase is not specified, symbolic-character-1 represents the character
whose ordinal position in the native character set is specified by integer-1.

Note: Ordinal positions are numbered starting from 1.

CLASS Clause

Under AIX, OS/2, and Windows, you cannot specify the CLASS clause if
the code page in effect is a DBCS or EUC code page.

CLASS class-name-1 IS
Provides a means for relating a name to the specified set of characters listed in
that clause. Class-name can be referenced only in a class condition. The charac-
ters specified by the values of the literals in this clause define the exclusive set of
characters of which this class-name consists.

Under OS/390 and VM, the class-name in the CLASS clause can be a
DBCS user-defined word.

literal-4, literal-5
If numeric, must be unsigned integers and must have a value that is greater than
or equal to 1 and less than or equal to the number of characters in the alphabet
specified. Each number corresponds to the ordinal position of each character in

Part 4. Environment Division 95

CURRENCY SIGN Clause

the EBCDIC or ASCII collating series. Cannot be specified as floating-point literals
or as DBCS literals.

If nonnumeric, the literal is the actual EBCDIC or ASCII character. Literal-4 and
literal-5 must not specify a symbolic-character figurative constant. If the value of
the nonnumeric literal contains multiple characters, each character in the literal is
included in the set of characters identified by class-name.

If the nonnumeric literal is associated with a THROUGH phrase, it must be one
character in length.

THROUGH, THRU
THROUGH and THRU are equivalent. If THROUGH is specified, class-name
includes those characters beginning with the value of literal-4 and ending with
the value of literal-5. In addition, the characters specified by a THROUGH
phrase can specify characters in either ascending or descending order.

CURRENCY SIGN Clause

CURRENCY SIGN IS
Currency symbol in the PICTURE clause.

literal-6
Must be a 1-character, nonnumeric literal, and must not be any of the following:

¢ Digits zero (0) through nine (9)
e Uppercase alphabetic characters ABCDPRSV X Z
e Lowercase alphabetic characters a through z

e The space

o Special characters * + -/, .; () =
¢ A figurative constant

e The uppercase alphabetic character G. If the COBOL program defines a
DBCS item with the PICTURE symbol G, then the PICTURE clause will be
invalid for that DBCS item because the symbol G is considered to be a cur-
rency symbol in the PICTURE clause

e The uppercase alphabetic character N. If the COBOL program defines a
DBCS with the PICTURE symbol N, then the PICTURE clause will be invalid
for that DBCS item because the symbol N is considered to be a currency
symbol in the PICTURE clause

e The uppercase alphabetic character E. If the COBOL program defines an
external floating-point item, then the PICTURE clause will be invalid for the
external floating-point item because the symbol E is considered to be a cur-
rency symbol in the PICTURE clause

e Under OS/390 and VM, the non-printable characters with hex values of X'20'
and X'21'

96 COBOL Language Reference

REPOSITORY Paragraph

The CURRENCY SIGN clause literal takes precedence over the default currency
sign established by the CURRENCY compiler option.

When the NOCURRENCY option is in effect and the CURRENCY SIGN clause is
omitted, only the dollar sign ($) can be used as the PICTURE symbol for the cur-
rency sign.

For more information about the CURRENCY/NOCURRENCY compiler options see
the IBM COBOL Programming Guide for your platform.

DECIMAL-POINT IS COMMA
Exchanges the functions of the period and the comma in PICTURE character
strings and in numeric literals.

REPOSITORY Paragraph

The REPOSITORY paragraph defines the names of the classes that you can use in a
class definition or program. Optionally, the REPOSITORY paragraph defines associ-
ations between class-names and external class-names.

—— Format
»»—REPOSITORY. >

|—CLASS—CZass-name-l] |
LL—erxtfernal—chrss—name-l
IS

class-name-1
A user-defined word that identifies the class.

external-class-name-1
A name that enables a COBOL program to define or access classes with names
that are defined using CORBA rules of formation. (Class names defined using
CORBA rules of formation might not be expressible as a COBOL user-defined
word, such as the case-sensitive SOM class names (SOMObject for example), or a
class implemented in C with a name containing underscores.)

You must specify external-class-name-1 as a nonnumeric literal, conforming to the
following rules of formation:

¢ The name must not be a figurative constant.
¢ The name can be up to 160 characters in length.

¢ The characters used in the name must be uppercase or lowercase alphabetic,
digit, or underscore.

¢ The leading character must be alphabetic.

Part 4. Environment Division 97

REPOSITORY Paragraph

General Rules

1. All class names (whether referenced in a program, class definition, or method intro-
duced by the class) must have an entry in the REPOSITORY paragraph. (You do
not have to put the name of the class you are defining in the REPOSITORY para-
graph. Note, if you don't, the class name is stored in all uppercase in the SOM
repository.)

You can only specify a class name once in a given REPOSITORY paragraph.

2. Entries in a class REPOSITORY paragraph apply to the entire class definition,
including all methods introduced by that class. Entries in a program REPOSITORY
paragraph apply globally to all nested programs contained within the program.

Identifying and Referencing the Class
The external class-name is used to identify and reference the class outside of the
source file containing the class definition (for example, to identify the entry for the class
in the SOM Interface Repository). The external class-name is determined by using the
contents of either external-class-name-1 or class-name-1 (as specified in the REPOSI-
TORY paragraph of a class), as described below:

1. external-class-name-1—is used directly, without translations. The external class-
names are processed in a case-sensitive manner.

2. class-name-1—is used if external-class-name-1 is not specified. To create a
CORBA-compliant external name that identifies the class, class-name-1 is proc-
essed as follows:

e The name is converted to uppercase.

e Hyphens are translated to zero.

e If the first character of the name is a digit, it is converted as follows:
— 1 though 9 are changed to A through |
— 0 is changed to J

98 COBOL Language Reference

Input-Output Section

Input-Output Section

© Copyright IBM Corp. 1991, 1998

The Input-Output Section of the Environment Division contains two paragraphs:

e FILE-CONTROL paragraph
¢ |-O-CONTROL paragraph

The exact contents of the Input-Output Section depend on the file organization and
access methods used. See “ORGANIZATION Clause” on page 109 and “ACCESS
MODE Clause” on page 113.

Program Input-Output Section
The same rules apply to program and method I-O Sections.

Class Input-Output Section
The Input-Output Section is not valid for class definitions.

Method Input-Output Section
The same rules apply to program and method I-O Sections.

—— Programs and Methods
»»—INPUT-OUTPUT SECTION.—file-control-paragraph

>«

|—i -o-control -par'agr'aphJ

FILE-CONTROL paragraph-name
The key word FILE-CONTROL can appear only once, at the beginning of the
FILE-CONTROL paragraph. It must begin in Area A, and be followed by a sepa-
rator period.

file-control-paragraph
Names the files and associates them with the external data sets.

Must begin in Area B with a SELECT clause. It must end with a separator period.
See “FILE-CONTROL Paragraph” on page 100.

I-O-CONTROL paragraph-name
Specifies information needed for efficient transmission of data between the external
data set and the COBOL program.

input-output-control-paragraph
The series of entries must end with a separator period. See “I-O-CONTROL
Paragraph” on page 122.

99

FILE-CONTROL Paragraph

FILE-CONTROL Paragraph
The FILE-CONTROL paragraph associates each file in the COBOL program with an
external data set, and specifies file organization, access mode, and other information.
The following are the formats for the FILE-CONTROL paragraph:

e Segquential file entries

¢ Indexed file entries

¢ Relative file entries

e Line sequential file entries (Workstation only)

Table 9 lists the different type of files available to mainframe and workstation COBOL

programs.
Table 9. Types of Files
File Access Method File Systems

Organization 0S/390 and VM AIX 0S/2 Windows

Sequential QSAM, VSAM VSAML, STL VSAM, Btrieve, VSAMZ, Btrieve,
STL STL

Relative VSAM VSAML, STL VSAM, Btrieve, VSAMZ, Btrieve,
STL STL

Indexed VSAM VSAML, sTL VSAM, Btrieve, VSAMZ, Btrieve,
STL STL

Line n/a Native Native Native

Sequential

Note:

1 On AIX, you can access the SFS file system through VSAM.

2 On Windows, only remote file access is available.

The FILE-CONTROL paragraph begins with the word "FILE-CONTROL", followed by a
separator period. It must contain one and only one entry for each file described in an
FD or SD entry in the Data Division. Within each entry, the SELECT clause must
appear first. The other clauses can appear in any order.

Under OS/390 and VM, there is one exception to the rule about order. For
indexed files, the PASSWORD clause, if specified, must immediately follow the
RECORD KEY or ALTERNATE RECORD KEY data-name with which it is associated.

100 COBOL Language Reference

FILE-CONTROL Paragraph

—— Format 1—Sequential-File-Control-Entries

v

»—SELECT—L—_'—file—name-]—ASSIGN assignment-name-1 |
OPTIONAL T

USING—data-name-9

|—RESERVE—int‘eger | SEQUENTIALJ
tAREA |—()RGANIZATION—lj—J
IS

AREAS

A\ 4

|—PADDI"”‘ data-nam j—J]
NG - e-5
|—CHARACTERJ |—ISJ |—Ziteral-.?

|—RECORD DELIMITER—L—_I—ESTANDARD-Iﬁ—‘
IS assignment-name-2:

L l
ACCESS SEQUENTIAL
Lwooe] Lys

AUTOMATIC
I—MODEJ '—ISJ |—m——LOCK ON RECORD—|
WITH

|_F ASSWORD—L—_I—data-name-EJ
IS

| >

LLOCK (2)

A

STATUS data-name-1
|—FI LEJ |—ISJ |—data-name—8J

Notes:
1 The USING data-name phrase of the ASSIGN clause clause is only valid under AlX, OS/2,
and Windows.

2 The USING data-name phrase of the ASSIGN clause The LOCK clause is only meaningful for
0S/2 VSAM files. ltis treated as a comment on AlX, Windows, and files other than VSAM on
0OS/2. ltis invalid on OS/390 and VM.

Part 4. Environment Division 101

FILE-CONTROL Paragraph

— Format 2—Indexed-File-Control-Entries

v

»—SELECT—L—_'—fiZe-name—]—ASSIGN assignment-name-1 |
OPTIONAL TO

USING—data-name-9

- » INDEXED >
RESERVE—integerm—‘ ORGANIZATIONﬁ
AREA Is
AREAS
Laccess SEQUENTIAL -
|—MODEJ LIS—] |:RANDO
DYNAMIC.

|

AUTOMATIC

|—MODEJ l—IS—I ﬁLOCK ON RECORDJ
WITH

»—RECORD data- -2
I_KEYJ I_IS_I ata-name

>

v

LLOCK (2)

L]
PASSWORD—[j—data—name—6
IS

\4
A

|
Ldata—name—8—J

o]
entry 1 STATUS data-name-1
LFILEJ LIS—]

entry 1:
F—ALTERNATE RECORD—) data-name-3 >
Lgevd Lisd ﬁDUPLICATES—I
WITH
> |
] |—PASSWORD data-name—7J I
s
Notes:
1 The USING data-name phrase of the ASSIGN clause is only valid under AlX, OS/2, and
Windows.

2 The LOCK clause is only meaningful for OS/2 VSAM files. It is treated as a comment on AlX,
Windows, and files other than VSAM on OS/2. Itis invalid on OS/390 and VM.

3 RECORD is optional as an IBM extension.

102 COBOL Language Reference

FILE-CONTROL Paragraph

—— Format 3—Relative-File-Control-Entries

v

»—SELECT—L—_'—file-name-I—ASSIGN assignment-name-1 |
OPTIONAL T

USING—data-name-9

B B RELATIVE >
RESERVE—integer ORGANIZATION‘E—I
AREA IS

AREAS

A\ 4

L access SEQUENTIAL
Lwooe] Lys

|—RELATIVE data-name-4J
|—KEYJ |—ISJ

RANDO! RELATIVE data-name-4——
DYNAMIC |—KEYJ |—I SJ

AUTOMATIC
I—MODEJ |—ISJ ﬁLOCK ON RECORDJ
WITH

I—PASSWORD—L—_|—d¢Jt(J—n(7me—6J
IS
|

LLOCK (2)

\ 4

\4
A

STATUS data-name-1
|—FI LEJ |—ISJ |—dai,‘a-name-8J

Notes:
1 The USING data-name phrase of the ASSIGN clause is only valid under AlX, OS/2, and
Windows.

2 The LOCK clause is only meaningful for OS/2 VSAM files. It is treated as a comment on AlX,
Windows, and files other than VSAM on OS/2. It is invalid on OS/390 and VM.

— Format 4—Line Sequential 1-O (Workstation Only)

v

»—SELECT—L—J—fi le-name-1—~ASSIGN assignment-name-1 |
OPTIONAL TO

USING—data-name-9

> B LINE SEQUENTIAL C]
ORGANIZATIONﬁ ACCESS B T o] SEQUENTIAL
IS MODE IS

A

STATUS data-name-1
|—FILEJ |—IS—] |—dal‘a-narne—B—]

Part 4. Environment Division

103

ASSIGN Clause

SELECT Clause

The SELECT clause chooses a file in the COBOL program to be associated with an
external data set.

SELECT OPTIONAL
Can be specified only for files opened in the input, I-O, or extend mode. You must
specify SELECT OPTIONAL for such input files that are not necessarily present
each time the object program is executed. For more information, see the IBM
COBOL Programming Guide for your platform.

file-name
Must be identified by an FD or SD entry in the Data Division. A file-name must
conform to the rules for a COBOL user-defined name, must contain at least one
alphabetic character, and must be unique within this program.

When file-name specifies a sort or a merge file, only the ASSIGN clause can follow the
SELECT clause.

If the file connector referenced by file-name-1 is an external file connector, all file
control entries in the run unit that reference this file connector must have the same
specification for the OPTIONAL phrase.

ASSIGN Clause

The ASSIGN clause associates the program's name for a file with the external name for
the actual data file.

0S/390 and VM Syntax
assignment-name-1
Can be specified as a user-defined word or a nonnumeric literal. Any assignment-
name after the first is syntax checked, but it has no effect on the execution of the
program.

Assignment-name-1 has the following formats:

—— Format—QSAM File
> l_labez_ J l_S_ J -name

A\
A

—— Format—VSAM Sequential File

> AS- —name
l—Zabel— J

A\
A

— Format—VSAM Indexed or Relative File

»> name
l—labeZ— il

A\
A

104 COBOL Language Reference

ASSIGN Clause

label-
Documents the device and device class to which a file is assigned. If specified, it
must end with a hyphen.

S- For QSAM files, the S- (organization) field can be omitted.

AS-
For VSAM sequential files, the AS- (organization) field must be specified.

For VSAM indexed and relative files, the organization field must be omitted.

name
A required field that specifies the external name for this file. Under OS/390 it must
be the name specified in the DD statement for this file.

The name must conform to the following rules of formation:

¢ If assignment-name-1 is a user-defined word:

— The name can contain from 1 - 8 characters.
— The name can contain the characters A-Z, a-z, 0-9.
— The leading character must be alphabetic.

e |f assignment-name-1 is a literal:

— The name can contain from 1 - 8 characters.
— The name can contain the characters A-Z, a-z, 0-9, @, #, $.
— The leading character must be alphabetic.

For both user-defined words and literals, the compiler folds name to upper case to
form the DD name for the file.

In a sort or merge file, name is treated as a comment.

If the file connector referenced by file-name-1 in the SELECT clause is an external file
connector, all file control entries in the run unit that reference this file connector must
have a consistent specification for assignment-name-1 in the ASSIGN clause. For
QSAM files and VSAM indexed and relative files, the name specified on the first
assignment-name-1 must be identical. For VSAM sequential files, it must be specified
as AS-name.

AIX, 0OS/2, and Windows Syntax

assignment-name-1
Can be either a user-defined word or a literal.

User-defined word
Assignment-name-1 must follow the rules for a COBOL word. The
name component of the assignment name can be up to 30 characters
in length. A user-defined word is treated as one of the following:

e Environment variable name — At program initialization, the name
is used as an environment variable. If the environment variable
value is set, that value is treated as the system file name
optionally preceded by the file-system ID. See “Assignment Name

Part 4. Environment Division 105

ASSIGN Clause

for Data-Names and Environment Variables” on page 107 for
details.

e System file ID of the platform — If the environment variable indi-
cated by the name is not set, the user-defined word is treated as
the system file name, optionally preceded by the file-system ID
and a comment character string. See “Assignment Name for Non-
Environment Variables and Literals” for details.

Literal
Assignment-name-1 is treated as the actual file ID for the platform.
Assignment-name-1 must follow the rules for a COBOL literal with the
length of one to 160 characters. See “Assignment Name for Non-
Environment Variables and Literals” for details.

All characters specified within the literal delimiters are used without
any mapping.

USING data-name-9
Must be defined as an alphanumeric data item, and must not be subordinate to the
file description for file-name-1. The content is evaluated when OPENed to identify
the assignment name. See “Assignment Name for Data-Names and Environment
Variables” on page 107 for details.

Assignment Name for Non-Environment Variables and Literals
If a literal or non-data-name word is specified for the name, the assignment name is
processed as follows:

— ASSIGNment name format

»>>

v

|—comment—J |—fiZe system ID—J

system file name
l—{ alt_index }J
environment variable name

alt_index:

\4
A

F—(—alt-inx-file-name-1 J’l_ ||) |

|—alt‘—inx-fi Ze—name—Z—I

Comment
All characters to the left of the system-file ID are treated as comments.
Comments can be hyphenated, for example, my-comment or
this-is-my-comment.

File-system ID
The first three characters of the file-system ID are used to determine the
file-system identifier. If the character string for the file-system ID is less
than three characters, then the entire character string (along with any char-
acter strings to the left of it) is treated as a comment. If you include com-

106 COBOL Language Reference

ASSIGN Clause

ments (hyphenated or not), you must include the separating hyphen
between the comment and the file-system ID.

For example, take the following two assignment-name formats:
my-comment-vsam-myfile

In this example, my-comment is the comment, vsam is the file-system ID, and
myfile is the system file or environment variable name.

my-comment-am-myfile

In this example, my-comment-am is the comment, and myfile is the system
file or environment variable name.

System file name / Environment variable name
If the assignment name is not specified in the literal form and the environ-
ment variable matching the character string is found at run time, the envi-
ronment variable value is used to identify the file system and the system
file name. Otherwise, the character string is used as the system file name.

Specifying alternate indexes — The compiler normally assigns default
alternate index file names; however, you must override the default assign-
ment when:

e The file is not a local VSAM file and has different alternate index file
name specification rules. For example, an SFS file where SFS
requires an alternate index file name to start with the base file name
followed by ; followed by a character string of your choice.

¢ The file already exists and has alternate index files with names not
corresponding to the default alternate index file names that are
assigned by the compiler. For example, a remote OS/390 VSAM file
or a local VSAM file create through a different language, such as PL/I.

If specifying alternate index names, they must be specified in the same
order as the alternate record keys are specified in the source program.

You can omit alternate index names, but any other alternate index names
must correspond to the position in the file definition. The following example
shows how to specify the first and third alternate index names:

base-file-name(first-index-file-name,,third-index-file-name)

In the above example, the compiler will assign a default file name for the
second alternate index file.

Alternate index file names are ignored for file systems that do not require
separate alternate index files, such as the STL file system.

Assignment Name for Data-Names and Environment Variables
If the environment variable or data-name is specified for the assignment name, the
data-name value or the environment variable value is processed as follows:

Part 4. Environment Division 107

RESERVE Clause

— Environment variable and data name value format

v

system file name
|—file system ID——I v !

\ 4
A

L(—Gll‘—in)(-fiZe—name-l ¢|_ '|)J

l—alt—inx—fiZe—name-ZJ

file-system ID If the file-system ID is specified explicitly using the environment variable
value or the data-name value, that specification for the file system over-
rides any file system specification made by the ASSIGNment name.

The environment variable value for a file is obtained when the program
containing the file is first invoked (or called) in its initial state. This value is
kept for the file for subsequent calls to the program in the last used state.

The value of the file ID specified with a data-name is obtained when the file
is OPENed. On each subsequent OPEN for the file, the value is reob-
tained.

File declarations for an external file must have the same file-system identi-
fier. If they are not, the error is caught during run time, and the application
is terminated with an error message.

system file name If there is a hyphen in the environment variable or the data name
value, the first three characters to the left of the left-most hyphen are
treated as the file-system identifier. The character string to right of the left
most hyphen is then used as the system file name (possibly including drive
and path names).

If there is no hyphen or the character string to the left of the left-most
hyphen is less than three characters long, the entire character string is
used as the system file name (possibly including drive and path names).

For information on specifying alternate indexes, see page 107.

RESERVE Clause

Under AIX, OS/2, and Windows, the RESERVE clause is not supported
for line sequential files. It is treated as a comment for sequential, relative and indexed

IR \\/orkstation

The RESERVE clause allows the user to specify the number of input/output buffers to
be allocated at run-time for the files.

If the RESERVE clause is omitted, the number of buffers at run time is taken from the

DD statement when running under OS/390. If none is specified, the system default is
taken.

108 COBOL Language Reference

ORGANIZATION Clause

If the file connector referenced by file-name-1 in the SELECT clause is an external file
connector, all file control entries in the run unit that reference this file connector must
have the same value for the integer specified in the RESERVE clause.

ORGANIZATION Clause

The ORGANIZATION clause identifies the logical structure of the file. The logical struc-
ture is established at the time the file is created and cannot subsequently be changed.

You can find a discussion of the different ways in which data can be organized and of
the different access methods that you can use to retrieve the data under “File Organiza-
tion and Access Modes” on page 114.

ORGANIZATION IS SEQUENTIAL (Format 1)
A predecessor-successor relationship among the records in the file is established
by the order in which records are placed in the file when it is created or extended.

ORGANIZATION IS INDEXED (Format 2)
The position of each logical record in the file is determined by indexes created with
the file and maintained by the system. The indexes are based on embedded keys
within the file's records.

ORGANIZATION IS RELATIVE (Format 3)
The position of each logical record in the file is determined by its relative record
number.

ORGANIZATION IS LINE SEQUENTIAL (Format 4) (Workstation Only)
Under AIX, OS/2, and Windows, a predecessor-successor relationship among the
records in the file is established by the order in which records are placed in the file
when it is created or extended. A record in a LINE SEQUENTIAL file can consist
only of printable characters.

If you omit the ORGANIZATION clause, the compiler assumes ORGANIZATION IS
SEQUENTIAL.

If the file connector referenced by file-name-1 in the SELECT clause is an external file
connector, all file control entries in the run unit that reference this file connector must
have the same organization.

File Organization
You establish the organization of the data when you create the file. Once the file has
been created, you can expand the file, but you cannot change the organization.

Sequential Organization

The physical order in which the records are placed in the file determines the sequence
of records. The relationships among records in the file do not change, except that the
file can be extended. Records can be fixed-length or variable-length; there are no
keys.

Part 4. Environment Division 109

ORGANIZATION Clause

Each record in the file, except the first, has a unique predecessor record, and each
record, except the last, also has a unique successor record.

Indexed Organization

Each record in the file has one or more embedded keys (referred to as key data items);
each key is associated with an index. An index provides a logical path to the data
records, according to the contents of the associated embedded record key data items.
Indexed files must be direct-access storage files. Records can be fixed-length or
variable-length.

Each record in an indexed file must have an embedded prime key data item. When
records are inserted, updated, or deleted, they are identified solely by the values of
their prime keys. Thus, the value in each prime key data item must be unique and
must not be changed when the record is updated. You tell COBOL the name of the
prime key data item on the RECORD KEY clause of the FILE-CONTROL paragraph.

In addition, each record in an indexed file can contain one or more embedded alternate
key data items. Each alternate key provides another means of identifying which record
to retrieve. You tell COBOL the name of any alternate key data items on the ALTER-
NATE RECORD KEY clause of the FILE-CONTROL paragraph.

The key used for any specific input-output request is known as the key of reference .

Relative Organization

Think of the file as a string of record areas, each of which contains a single record.
Each record area is identified by a relative record number; the access method stores
and retrieves a record, based on its relative record number. For example, the first
record area is addressed by relative record number 1, and the 10th is addressed by
relative record number 10. The physical sequence in which the records were placed in
the file has no bearing on the record area in which they are stored, and thus on each
record's relative record number. Relative files must be direct-access files. Records can
be fixed-length or variable-length.

Line Sequential Organization (Workstation Only)

In a line sequential file, each record contains a sequence of characters ending with a
record terminator. The terminator is not counted in the length of the record. When
records are written to the file, trailing blanks are removed.

When reading the record, characters are read one at a time into the record area until:

e The first record terminator is encountered. The record terminator is discarded and
the remainder of the record is filled with spaces.

e The entire record area is filled with characters. If the first unread character is the
record terminator, it is discarded. Otherwise, the first unread character becomes
the first character read by the next READ statement.

Records written to line sequential files must consist of USAGE...DISPLAY and/or
DISPLAY-1 data items. If external decimal data is defined with a non-separate sign,

110 COBOL Language Reference

ORGANIZATION Clause

the sign must be in the preferred sign representation (for example, X'39' for +9 or X'79'
for -9).

For line sequential files, the native byte stream file support of the platform is used. Line
sequential files should contain only printable characters and the record terminator.

The following are not supported for line sequential files:

e APPLY WRITE ONLY clause

e BLOCK CONTAINS clause

e CODE-SET clause

¢ DATA RECORDS clause

e FILE STATUS value 39 (fixed file attribute conflict)
e LABEL RECORDS clause

e LINAGE clause

e OPEN I-O option

e PADDING CHARACTER clause

e RECORD CONTAINS 0 clause

e RECORD CONTAINS clause (format 3)

e RECORD DELIMITER clause

e RECORDING MODE clause

e RERUN clause

e RESERVE clause

e REVERSED phrase of OPEN statement
¢ REWRITE statement

e VALUE OF clause of file description entry
e WRITE...AT END-OF-PAGE

e WRITE...BEFORE ADVANCING

For more details on line sequential files, see “Line Sequential Organization (Workstation
Only)” on page 110.

Language Elements Treated as Comments (Workstation Only)
Under AIX, OS/2, and Windows for other files (sequential, relative, and indexed), the
following language elements are treated as comments:

e APPLY WRITE ONLY clause

e BLOCK CONTAINS clause

¢ CLOSE...FOR REMOVAL

¢ CLOSE...WITH NO REWIND

e CODE-SET clause

e DATA RECORDS clause

e LABEL RECORDS clause

e MULTIPLE FILE TAPE clause

¢ OPEN...REVERSE

* PADDING CHARACTER clause
¢ PASSWORD clause

¢ RECORD CONTAINS 0 clause
¢ RECORD DELIMITER clause

e RECORDING MODE clause (for relative and indexed files)

Part 4. Environment Division 111

¢ RERUN clause

¢ RESERVE clause

¢ SAME AREA clause

¢ SAME SORT AREA clause

¢ SAME SORT-MERGE AREA clause

¢ VALUE OF clause of file description entry

No error messages are generated (with the exception of the data name option for the
LABEL RECORDS, USE...AFTER...LABEL PROCEDURE, and GO TO MORE-LABELS
clauses).

PADDING CHARACTER Clause

Under AIX, OS/2, and Windows, the PADDING CHARACTER clause is
not supported for line sequential files. It is treated as a comment for sequential, relative

and indexed files. @ ISETTs

The PADDING CHARACTER clause specifies the character which is to be used for
block padding on sequential files.

data-name-5
Must be defined in the Data Division as an alphanumeric 1-character data item,
and must not be defined in the File Section. Data-name-5 can be qualified.

literal-2
Must be a 1-character nonnumeric literal.

For EXTERNAL files, if data-name-5 is specified, it must reference an external data
item.

The PADDING CHARACTER clause is syntax checked, but no compile-time or run-time
verification checking is done, and the clause has no effect on the execution of the
program.

RECORD DELIMITER Clause

Under AIX, OS/2, and Windows the RECORD DELIMITER clause is not
supported for line sequential files. It is treated as a comment for sequential, relative

and indexed files. <@ ISETTs

The RECORD DELIMITER clause indicates the method of determining the length of a
variable-length record on an external medium. It can be specified only for variable-
length records.

STANDARD-1
If STANDARD-1 is specified, the external medium must be a magnetic tape file.

112 COBOL Language Reference

ACCESS MODE Clause

assignment-name-2
Can be any COBOL word.

The RECORD DELIMITER clause is syntax checked, but no compile-time or run-time
verification checking is done, and the clause has no effect on the execution of the
program.

ACCESS MODE Clause

The ACCESS MODE clause defines the manner in which the records of the file are
made available for processing. If the ACCESS MODE clause is not specified, sequen-
tial access is assumed.

For sequentially accessed relative files, the ACCESS MODE clause does not have to
precede the RELATIVE KEY clause.

ACCESS MODE IS SEQUENTIAL
Can be specified in all four formats.

Format 1—Sequential
Records in the file are accessed in the sequence established when the file is
created or extended. Format 1 supports only sequential access.

Format 2—Indexed
Records in the file are accessed in the sequence of ascending record key
values according to the collating sequence of the file.

Format 3—Relative
Records in the file are accessed in the ascending sequence of relative record
numbers of existing records in the file.

Format 4—Line Sequential (Workstation Only)
Records in the file are accessed in the sequence established
when the file is created or extended. Format 4 supports only sequential

access. Workstation

ACCESS MODE IS RANDOM
Can be specified in Formats 2 and 3 only.

Format 2—Indexed

The value placed in a record key data item specifies the record to be
accessed.

Format 3—Relative

The value placed in a relative key data item specifies the record to be
accessed.

ACCESS MODE IS DYNAMIC
Can be specified in Formats 2 and 3 only.

Part 4. Environment Division 113

ACCESS MODE Clause

Format 2—Indexed
Records in the file can be accessed sequentially or randomly, depending on
the form of the specific input-output statement used.

Format 3—Relative
Records in the file can be accessed sequentially or randomly, depending on
the form of the specific input-output request.

File Organization and Access Modes
File organization is the permanent logical structure of the file. You tell the computer
how to retrieve records from the file by specifying the access mode (sequential,
random, or dynamic). For details on the access methods and data organization, see
Table 9 on page 100.

Note: Sequentially organized data can only be accessed sequentially; however, data
that has indexed or relative organization can be accessed with any of the three access
methods.

Access Modes
Sequential-Access Mode
Allows reading and writing records of a file in a serial manner; the order of refer-
ence is implicitly determined by the position of a record in the file.

Random-Access Mode
Allows reading and writing records in a programmer-specified manner; the control
of successive references to the file is expressed by specifically defined keys sup-
plied by the user.

Dynamic-Access Mode
Allows the specific input-output statement to determine the access mode. There-
fore, records can be processed sequentially and/or randomly.

For EXTERNAL files, every file control entry in the run unit that is associated with that
external file must specify the same access mode. In addition, for relative file entries,
data-name-4 must reference an external data item and the RELATIVE KEY phrase in
each associated file control entry must reference that same external data item in each
case.

Relationship Between Data Organizations and Access Modes
The following lists which access modes are valid for each type of data organization.

Sequential Files
Files with sequential organization can be accessed only sequentially. The
sequence in which records are accessed is the order in which the records were

originally written.

Line Sequential Files
Same as for sequential files (described above).

114 COBOL Language Reference

RECORD KEY Clause

Indexed Files
All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed is the
ascending order (or optionally under AIX, OS/2, and Windows, descending order)
of the record key value. The order of retrieval within a set of records having dupli-
cate alternate record key values is the order in which records were written into the
set.

In the random access mode, you control the sequence in which records are
accessed. The desired record is accessed by placing the value of its key(s) in the
RECORD KEY data item (and the ALTERNATE RECORD KEY data item). If a set
of records has duplicate alternate record key values, only the first record written is
available.

In the dynamic access mode, you can change, as necessary, from sequential
access to random access, using appropriate forms of input-output statements.

Relative Files
All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed is the
ascending order (or optionally under AIX, OS/2, and Windows, descending order)
of the relative record numbers of all records that currently exist within the file.

In the random access mode, you control the sequence in which records are
accessed. The desired record is accessed by placing its relative record number in
the RELATIVE KEY data item; the RELATIVE KEY must not be defined within the
record description entry for this file.

In the dynamic access mode, you can change, as necessary, from sequential
access to random access, using the appropriate forms of input-output statements.

RECORD KEY Clause

The RECORD KEY clause (Format 2) specifies the data item within the record that is
the prime RECORD KEY for an indexed file. The values contained in the prime
RECORD KEY data item must be unique among records in the file.

data-name-2
The prime RECORD KEY data item. It must be described as an alphanumeric item
within a record description entry associated with the file.

As an IBM extension, data-name-2 can be numeric, numeric-edited, alphanumeric-
edited, alphabetic, floating-point (both external and internal), or a DBCS data item.
The key is treated as an alphanumeric item for the input and output statements for
the file named in the SELECT clause. When you specify data-name-2 as a DBCS
data item, a key specified on the READ statement must also be a DBCS data item.

Data-name-2 must not reference a group item that contains a variable occurrence
data item. Data-name-2 can be qualified.

As an IBM extension, if the indexed file contains variable-length records,
data-name-2 need not be contained within the first “x” character positions of the

Part 4. Environment Division 115

ALTERNATE RECORD KEY Clause

record, where “x” equals the minimum record size specified for the file. That is,
data-name-2 can be beyond the first “x” character positions of the record, but this
is not recommended.

Data-name-2 cannot be a windowed date field.

The data description of data-name-2 and its relative location within the record must
be the same as those used when the file was defined.

If the file has more than one record description entry, data-name-2 need only be
described in one of these record description entries. The identical character positions
referenced by data-name-2 in any one record description entry are implicitly referenced
as keys for all other record description entries of that file.

For EXTERNAL files, all file description entries in the run unit that are associated with
the EXTERNAL file must specify the same data description entry for data-name-2 with
the same relative location within the associated record.

The requirement for identical data description entries is not enforced, but the key must
have the same relative location in the records, as well as the same length.

ALTERNATE RECORD KEY Clause

The ALTERNATE RECORD KEY clause (Format 2) specifies a data item within the
record that provides an alternative path to the data in an indexed file.

data-name-3
An ALTERNATE RECORD KEY data item. It must be described as an alphanu-
meric item within a record description entry associated with the file. It must not
reference a group item that contains a variable occurrence data item.
Data-name-3 can be qualified.

Data-name-3 cannot be a windowed date field.

If the indexed file contains variable-length records, data-name-3 must be contained
within the first “x” character positions of the record, where “x” equals the minimum
record size specified for the file.

Data-name-3 can be a numeric, numeric-edited, alphanumeric-edited, alphabetic,
floating-point (both external and internal), or DBCS data item. The key is treated
as an alphanumeric item for the input and output statements for the file named in
the SELECT clause.

If the file has more than one record description entry, data-name-3 need be
described in only one of these record description entries. The identical character
positions referenced by data-name-3 in any one record description entry are implic-
itly referenced as keys for all other record description entries of that file.

The data description of data-name-3 and its relative location within the record must
be the same as those used when the file was defined. The number of alternate
record keys for the file must also be the same as that used when the file was
created.

116 COBOL Language Reference

RELATIVE KEY Clause

The leftmost character position of data-name-3 must not be the same as the left-
most character position of the RECORD KEY or of any other ALTERNATE
RECORD KEY.

If the DUPLICATES phrase is not specified, the values contained in the ALTERNATE
RECORD KEY data item must be unique among records in the file.

If the DUPLICATES phrase is specified, the values contained in the ALTERNATE
RECORD KEY data item can be duplicated within any records in the file. In sequential
access, the records with duplicate keys are retrieved in the order in which they were
placed in the file. In random access, only the first record written of a series of records
with duplicate keys can be retrieved.

For EXTERNAL files, all file description entries in the run unit that are associated with
the EXTERNAL file must specify the same data description entry for data-name-3, the
same relative location within the associated record, the same number of alternate
record keys, and the same DUPLICATES phrase.

The requirement for identical data description entries is not enforced, but the key must
have the same relative location in the records, as well as the same length.

RELATIVE KEY Clause

The RELATIVE KEY clause (Format 3) identifies a data-name that specifies the relative
record number for a specific logical record within a relative file.

data-name-4
Must be defined as an unsigned integer data item whose description does not
contain the PICTURE symbol P. Data-name-4 must not be defined in a record
description entry associated with this relative file. That is, the RELATIVE KEY is
not part of the record. Data-name-4 can be qualified.

Data-name-4 cannot be a windowed date field.

Data-name-4 is required for ACCESS IS SEQUENTIAL only when the START
statement is to be used. It is always required for ACCESS IS RANDOM and
ACCESS IS DYNAMIC. When the START statement is issued, the system uses
the contents of the RELATIVE KEY data item to determine the record at which
sequential processing is to begin.

If a value is placed in data-name-4, and a START statement is not issued, the
value is ignored and processing begins with the first record in the file.

If a relative file is to be referenced by a START statement, you must specify the
RELATIVE KEY clause for that file.

For EXTERNAL files, data-name-4 must reference an external data item and the
RELATIVE KEY phrase in each associated file control entry must reference that
same external data item in each case.

The ACCESS MODE IS RANDOM clause must not be specified for file-names
specified in the USING or GIVING phrase of a SORT or MERGE statement.

Part 4. Environment Division 117

LOCK MODE Clause

PASSWORD Clause

Under AIX, OS/2, and Windows the PASSWORD clause is treated as a
comment.

The PASSWORD clause controls access to files.

data-name-6

data-name-7
Password data items. Each must be defined in the Working-Storage Section (of the
Data Division) as an alphanumeric item. The first 8 characters are used as the
password; a shorter field is padded with blanks to 8 characters. Each password
data item must be equivalent to one that is externally defined.

When the PASSWORD clause is specified, at object time the PASSWORD data item
must contain the valid password for this file before the file can be successfully opened.

Format 1 Considerations
The PASSWORD clause is not valid for QSAM sequential files.
Format 2 and 3 Considerations

When the PASSWORD clause is specified, it must immediately follow the RECORD
KEY or ALTERNATE RECORD KEY data-name with which it is associated.

For indexed files, if the file has been completely predefined to VSAM, only the PASS-
WORD data item for the RECORD KEY need contain the valid password before the file
can be successfully opened at file creation time.

For any other type of file processing (including the processing of dynamic CALLs at file
creation time through a COBOL object-time subroutine), every PASSWORD data item
for this file must contain a valid password before the file can be successfully opened,
whether or not all paths to the data are used in this object program.

For EXTERNAL files, data-name-6 and data-name-7 must reference external data
items. The PASSWORD clauses in each associated file control entry must reference
the same external data items.

LOCK MODE Clause (0S/2 VSAM Files Only)

On 0S/390 and VM, the LOCK MODE IS AUTOMATIC clause is invalid.

The LOCK MODE IS AUTOMATIC clause is only supported by the
VSAM file system running on OS/2.

118 COBOL Language Reference

LOCK MODE Clause

The LOCK MODE IS AUTOMATIC clause is treated as a comment on:

e AIX
e Windows
e OS/2 (with the exception of VSAM)

For OS/2 VSAM files, record locking is not supported for files that reside on an OS/2
LAN server. Files residing on OS/2 LAN servers are opened shared read or exclusive

write. Workstation

The LOCK MODE clause specifies whether a file is in exclusive or shareable mode. A
file in exclusive mode is open to one file connector only. A file in shareable mode is
available to any number of file connectors that do not require exclusive mode.

A file is in exclusive mode if the LOCK MODE clause is omitted (as long as the file is
not opened for input).

A file is in shareable mode when it is opened for input or when the LOCK MODE IS
AUTOMATIC clause is specified and is supported.

Do not specify the LOCK MODE IS AUTOMATIC clause if the file is specified in a
USING or GIVING phrase of a SORT or MERGE statement.

The WITH LOCK ON RECORD phrase is for documentation purposes only.

Other Statements Affecting Record Locking
Table 10 lists the statements that can affect record locking.

Table 10 (Page 1 of 2). Statements Affecting Record Locking

Statement Comments

CLOSE After you successfully CLOSE a file, any record and file locks held by the file
connector on the closed file are released.

DELETE You cannot DELETE a record that any other file connector has LOCKed.

OPEN If you attempt to OPEN a file that another file connector has LOCKed, the

OPEN fails and you receive a ‘file locked' file status (98).

READ For files opened for INPUT, READ statements will not acquire a record lock.

If you attempt to READ a record that another file connector has LOCKed, the
READ fails and you receive a ‘record locked' file status (FS 99). For a
sequential READ, the setting of the file position indicator is unaffected. For a
random READ, the setting of the file position indicator is unspecified.

When you specify the READ statement at the end of the file (when no more
records exist), the AT END condition is returned regardless of any sharing of
the file. This situation can occur if the file is opened in EXTEND mode by
another file connector.

If you OPEN the file for I-O and specify the LOCK MODE IS AUTOMATIC
clause, each record is locked as it is read and released by the next I-O state-
ment accessing the file connector.

Part 4. Environment Division 119

FILE STATUS Clause

Table 10 (Page 2 of 2). Statements Affecting Record Locking

Statement

Comments

REWRITE

You cannot specify the REWRITE statement for a record that another file con-
nector has LOCKed (the file is exclusive).

If LOCK MODE IS AUTOMATIC is specified (the file is shareable), you can
use the REWRITE statement to release a record that is LOCKed.

START

You cannot use the START statement to LOCK a record or to detect if a
record is LOCKed. However, the START statement will release an existing

LOCKed record if you have specified the LOCK MODE IS AUTOMATIC
clause.

WRITE

If two or more file connectors add records to a file by sharing the file after
opening it in EXTEND mode, the following occurs:

e Sequential files: the records are in an unspecified order.

¢ Relative files: the relative key values returned are ascending but not
necessarily consecutive.

¢ Indexed files: the order of the alternate keys allowing for duplicates is
unspecified.

When you specify LOCK MODE IS AUTOMATIC, a successful WRITE state-
ment releases a LOCKed record.

FILE STATUS Clause

The FILE STATUS clause monitors the execution of each input-output operation for the

file.

When the FILE STATUS clause is specified, the system moves a value into the status
key data item after each input-output operation that explicitly or implicitly refers to this
file. The value indicates the status of execution of the statement. (See the “Status
Key” description under “Common Processing Facilities” on page 268.)

data-name-1

The status key data item can be defined in the Working-Storage, Local-Storage, or
Linkage sections as either of the following:

e A 2-character alphanumeric item

e A 2-character numeric data item, with explicit or implicit USAGE IS DISPLAY.
It is treated as an alphanumeric item.

Note:

Data-name-1 must not contain the PICTURE symbol 'P"'.

Data-name-1 can be qualified.

The status key data item must not be variably located; that is, the data item cannot
follow a data item containing an OCCURS DEPENDING ON clause.

data-name-8

Represents information returned from the file system. Since the definitions are
specific to the file systems and platforms, applications that depend on the specific
values in data-name-8 might not be portable across platforms.

120 COBOL Language Reference

FILE STATUS Clause

Under OS/390 and VM, data-name-8 must be defined as a group item
of 6 bytes in the Working-Storage or Linkage Section of the Data Division.

Specify data-name-8 only if the file is a VSAM file (that is, ESDS, KSDS, RRDS).

On 0S/390 and VM, for VSAM Files the 6 byte VSAM return code is comprised of
the following:

e The first 2 bytes of data-name-8 contain the VSAM return code in binary
notation. The value for this code is defined (by VSAM) as 0, 8, or 12.

¢ The next 2 bytes of data-name-8 contain the VSAM function code in binary
notation. The value for this code is defined (by VSAM) as 0, 1, 2, 3, 4, or 5.

e The last 2 bytes of data-name-8 contain the VSAM feedback code in binary
notation. The code value is 0 through 255.

If VSAM returns a nonzero return code, data-name-8 is set.
If FILE STATUS is returned without having called VSAM, data-name-8 is zero.

If data-name-1 is set to zero, the content of data-name-8 is undefined. VSAM
status return code information is available without transformation in the currently
defined COBOL FILE STATUS code. User identification and handling of exception
conditions are allowed at the same level as that defined by VSAM.

Function code and feedback code are set if and only if the return code is set to
nonzero. If they are referenced when the return code is set to zero, the contents
of the fields are not dependable.

Definitions of values in the return code , function code , and feedback code fields
are defined by VSAM. There are no COBOL additions, deletions, or modifications
to the VSAM definitions. For more information, see VSAM Administration: Macro
Instruction Reference.

Under AIX, OS/2, and Windows, how you define data-name-8 is
dependent on the file system you are using.

Btrieve, STL, and Native Platform File Systems
You must define data-name-8 with PICTURE 9(6) and USAGE
DISPLAY attributes. However, you can define an additional field with
PICTURE X(n). The file system defines the feedback values, which
are converted to the six digit external decimal representation with
leading zeros, when the file systems feedback value is less than
100000. If you have defined an additional field using PICTURE X(n),
then X(n) contains additional information describing any non-zero feed-
back code. (For most programs, an 'n' value of 100 should be ade-
guate to show the complete message text. If the file is defined with a
large number of alternate keys then allow 100 bytes plus 20 bytes per
alternate key.)

VSAM File System
You must define data-name-8 with PICTURE X(n) and USAGE
DISPLAY attributes, where 'n' is 6 or greater. The PICTURE string
value represents the first 'n' bytes of the VSAM reply message struc-

Part 4. Environment Division 121

I-O-CONTROL Paragraph

ture (defined by VSAM). If the size of the reply message structure (m)
is shorter than 'n', only the first 'm' bytes contain useful information.

Note: This also applies to SFS files accessed through VSAM on AlX.

For information on VSAM file handling on the workstation, see:
e For AIX: SMARTdata UTILITIES for AIX: VSAM in a Distributed Environment

e For OS/2: SMARTdata UTILITIES for OS/2: VSAM in a Distributed Environ-
ment

¢ For Windows: SMARTdata UTILITIES User's Guide for Windows

I-O-CONTROL Paragraph

The I-O-CONTROL paragraph of the Input-Output Section specifies when checkpoints
are to be taken and the storage areas to be shared by different files. This paragraph is
optional in a COBOL program.

The key word I-O-CONTROL can appear only once, at the beginning of the paragraph.
The word I-O-CONTROL must begin in Area A, and must be followed by a separator
period.

Each clause within the paragraph can be separated from the next by a separator
comma or a separator semicolon. The order in which I-O-CONTROL paragraph
clauses are written is not significant. The 1-O-CONTROL paragraph ends with a sepa-
rator period.

—— Sequential I-O-Control Entries

»»——RERUN—ON assignment-w phrase 1 }
-file-name-1 EVERY
—Efile—name-4 {2)

\4
A

—SAME -file-name-3
|—RECORDJ |—AREA—l |—FOR—I

|

-MULTIPLE FILE—2 J’file—name—&'
Lrared Leontamns l—Posmow—z’nteger-zJ

LAPPLY WRITE—ONLYW
ON

phrase 1:
}—[integer-l—RECORDS file-name-1 |
END—L—_I—[REEL:TJ [OFj
OF UNIT
Notes:

1 ON is optional as an IBM extension.
2 File-name-4 is optional as an IBM extension.

3 The MULTIPLE FILE clause and APPLY WRITE-ONLY clause are not supported for 0S/390
VSAM files and are treated as comments on AlX, OS/2, and Windows.

122 COBOL Language Reference

RERUN Clause

— Relative and Indexed I-O-Control Entries

> RERUN—ON assignment—w phrase 1 |
-file-name-1 EVERY

[File-name-3—Y—file-name-4-@ 1]

\4
A

SAME:
|—RECORDJ |—AREAJ I—FORJ

phrase 1:
I—integer—l—RECORDS—LO—F—'—fiZe—name—] |
Notes:

1 ON is optional as an IBM extension.
2 File-name-4 is optional as an IBM extension.

— Line Sequential I-O-Control Entries (Workstation Only)

fi Ze—name—.?—[fi le-name-4

v
A

»»>——SAME
|—RECORDJ |—AREA—] LFOR—]

— Sort Merge 1-O-Control Entries (O0S/390 and VM Only)
>

RERUN—L—_'—ass ignment-name- 1J
ON

»—¥_SAME——RECORD o T o] | phrase 1 {'
somﬂ AREA FOR

A\
A

SORT-MERGE
phrase 1:
i Ze-name-3—£fi le-name-4-1) |
Note:

1 File-name-4 is optional as an IBM extension.

RERUN Clause

Under AIX, OS/2, and Windows, the RERUN clause is not supported for
line sequential files or for programs compiled with the THREAD compiler option. If you
use NOTHREAD, the RERUN clause is treated as a comment.

The RERUN clause specifies that checkpoint records are to be taken. Subject to the
restrictions given with each phrase, more than one RERUN clause can be specified.

For information regarding the checkpoint data set definition and the checkpoint method
required for complete compliance to the COBOL 85 Standard, see /IBM COBOL for
0S/390 & VM Programming Guide.

Do not use the RERUN clause:

¢ On files with the EXTERNAL attribute
e In programs with the RECURSIVE attribute

Part 4. Environment Division 123

RERUN Clause

e In programs compiled with the THREAD option (Workstation only)
¢ In methods

file-name-1
Must be a sequentially organized file.

assignment-name-1
The external data set for the checkpoint file. It must not be the same assignment-
name as that specified in any ASSIGN clause throughout the entire program,
including contained and containing programs. For QSAM files, it has the format:

—— Format—QSAM File
" igberJ LsJ ™™

\4
A

That is, it must be a QSAM file. It must reside on a tape or direct access device.
See also Appendix E, “ASCII Considerations for 0S/390 and VM” on page 561.

VSAM and QSAM Considerations

The file named in the RERUN clause must be a file defined in the same program
as the I-O-CONTROL paragraph, even if the file is defined as GLOBAL.

SORT/MERGE Considerations :

When the RERUN clause is specified in the I-O-CONTROL paragraph, checkpoint
records are written at logical intervals determined by the sort/merge program during
execution of each SORT or MERGE statement in the program. When it is omitted,
checkpoint records are not written.

There can be only one SORT/MERGE |-O-CONTROL paragraph in a program, and
it cannot be specified in contained programs. It will have a global effect on all
SORT and MERGE statements in the program unit.

EVERY integer-1 RECORDS
A checkpoint record is to be written for every integer-1 record in file-name-1 that is
processed.

When multiple integer-1 RECORDS phrases are specified, no two of them can
specify the same file-name-1.

If you specify the integer-1 RECORDS phrase, you must specify
assignment-name-1.

EVERY END OF REEL/UNIT
A checkpoint record is to be written whenever end-of-volume for file-name-1
occurs. The terms REEL and UNIT are interchangeable.

When multiple END OF REEL/UNIT phrases are specified, no two of them can
specify the same file-name-1.

The END OF REEL/UNIT phrase can only be used if file-name-1 is a sequentially
organized file.

124 COBOL Language Reference

SAME RECORD AREA Clause

SAME AREA Clause

Under AIX, OS/2, and Windows, the SAME AREA clause is treated as a
comment.

The SAME AREA clause specifies that two or more files, that do not represent sort or
merge files, are to use the same main storage area during processing.

The files named in a SAME AREA clause need not have the same organization or
access.

file-name-3

file-name-4
Must be specified in the FILE-CONTROL paragraph of the same program.
File-name-3 and file-name-4 cannot reference an external file connector.

e For QSAM files, the SAME clause is treated as documentation.
e For OS/390 VSAM files, the SAME clause is treated as if equivalent to the SAME
RECORD AREA.

More than one SAME AREA clause can be included in a program. However:
¢ A specific file-name must not appear in more than one SAME AREA clause.

¢ If one or more file-names of a SAME AREA clause appear in a SAME RECORD
AREA clause, all the file-names in that SAME AREA clause must appear in that
SAME RECORD AREA clause. However, the SAME RECORD AREA clause can
contain additional file-names that do not appear in the SAME AREA clause.

¢ The rule that in the SAME AREA clause only one file can be open at one time
takes precedence over the SAME RECORD AREA rule that all the files can be
open at the same time.

SAME RECORD AREA Clause

The SAME RECORD AREA clause specifies that two or more files are to use the same
main storage area for processing the current logical record. All of the files can be open
at the same time. A logical record in the shared storage area is considered to be both

of the following:

¢ A logical record of each opened output file in the SAME RECORD AREA clause
e A logical record of the most recently read input file in the SAME RECORD AREA
clause.
More than one SAME RECORD AREA clause can be included in a program. However:

¢ A specific file-name must not appear in more than one SAME RECORD AREA
clause.

¢ |f one or more file-names of a SAME AREA clause appear in a SAME RECORD
AREA clause, all the file-names in that SAME AREA clause must appear in that

Part 4. Environment Division 125

SAME SORT AREA Clause

SAME RECORD AREA clause. However, the SAME RECORD AREA clause can
contain additional file-names that do not appear in the SAME AREA clause.

The rule that in the SAME AREA clause only one file can be open at one time
takes precedence over the SAME RECORD AREA rule that all the files can be
open at the same time.

If the SAME RECORD AREA clause is specified for several files, the record
description entries or the file description entries for these files must not include the
GLOBAL clause.

The SAME RECORD AREA clause must not be specified when the RECORD
CONTAINS 0 CHARACTERS clause is specified.

The files named in the SAME RECORD AREA clause need not have the same organ-
ization or access.

SAME SORT AREA Clause

Under AIX, OS/2, and Windows, the SAME SORT AREA clause is
treated as a comment.

The SAME SORT AREA clause is syntax checked but has no effect on the execution of
the program.

file-name-3
file-name-4

Must be specified in the FILE-CONTROL paragraph of the same program.
File-name-3 and file-name-4 cannot reference an external file connector.

When the SAME SORT AREA clause is specified, at least one file-name specified must
name a sort file. Files that are not sort files can also be specified. The following rules

apply:

More than one SAME SORT AREA clause can be specified. However, a given
sort file must not be named in more than one such clause.

If a file that is not a sort file is named in both a SAME AREA clause and in one or
more SAME SORT AREA clauses, all the files in the SAME AREA clause must
also appear in that SAME SORT AREA clause.

Files named in a SAME SORT AREA clause need not have the same organization
or access.

Files named in a SAME SORT AREA clause that are not sort files do not share
storage with each other unless the user names them in a SAME AREA or SAME
RECORD AREA clause.

During the execution of a SORT or MERGE statement that refers to a sort or
merge file named in this clause, any nonsort or nonmerge files associated with file-
names named in this clause must not be in the open mode.

126 COBOL Language Reference

APPLY WRITE-ONLY Clause

SAME SORT-MERGE AREA Clause
Under AIX, OS/2, and Windows, the SAME SORT-MERGE AREA clause
is treated as a comment.

The SAME SORT-MERGE AREA clause is equivalent to the SAME SORT AREA
clause.

MULTIPLE FILE TAPE Clause

e Under AlX, OS/2, and Windows, all files are treated as a single volume
file. Any multiple volume files specified are treated as comments.

The MULTIPLE FILE TAPE clause (Format 1) specifies that two or more files share the
same physical reel of tape.

This clause is syntax checked, but it has no effect on the execution of the program.
The function is performed by the system through the LABEL parameter of the DD state-
ment.

APPLY WRITE-ONLY Clause

Under AIX, OS/2, and Windows, the APPLY WRITE-ONLY clause is not
supported for line sequential files. It is treated as a comment for sequential, relative

and indexed files. @ TSET:

The APPLY WRITE-ONLY clause optimizes buffer and device space allocation for files
that have standard sequential organization, have variable-length records, and are
blocked. If you specify this phrase, the buffer is truncated only when the space avail-
able in the buffer is smaller than the size of the next record. Otherwise, the buffer is
truncated when the space remaining in the buffer is smaller than the maximum record
size for the file.

APPLY WRITE-ONLY is effective only for QSAM files.

file-name-2
Each file must have standard sequential organization.

APPLY WRITE-ONLY clauses must agree among corresponding external file
description entries. For an alternate method of achieving the APPLY WRITE-ONLY
results, see the description of the AWO compiler option in the IBM COBOL for OS/390
& VM Programming Guide.

Part 4. Environment Division 127

APPLY WRITE-ONLY Clause

128 COBOL Language Reference

Part 5. Data Division

Data Division Overview 130
File Section 131
Working-Storage Section 131
Local-Storage Section e 133
Linkage Section 133
Data Types 134
Data Relationships 135
Data Division—File Description Entries L. 142
File Section e 145
EXTERNAL Clause e 146
GLOBAL Clause 147
BLOCK CONTAINS Clause i e 147
RECORD Clause e e 149
LABEL RECORDS Clause v v it ittt e 152
VALUE OF Clause e e s e 153
DATARECORDS Clause ittt 153
LINAGE Clause e e 153
RECORDING MODE Clause o v i it it e 155
CODE-SET Clause e e 157
Data Division—Data Description Entry 159
Format 1 e 159
Format 2 e 160
Format 3 e 160
Level-Numbers 160
BLANK WHEN ZERO Clause it 162
DATE FORMAT Clause e e e e e e e e e 162
EXTERNAL Clause 167
GLOBAL Clause e 168
JUSTIFIED Clause e 169
OCCURS Clause e 170
PICTURE Clause s 176
REDEFINES Clause 192
RENAMES Clause e 196
SIGN Clause e 198
SYNCHRONIZED Clause 200
USAGE Clause 207
VALUE Clause 215

© Copyright IBM Corp. 1991, 1998 129

Data Division Overview

Data Division Overview

—— Format—Program and Method Data Division
»>—DATA DIVISION.

This section outlines the structure of the Data Division for programs, classes, and
methods. Each section in the Data Division has a specific logical function within a
COBOL source program or method and can be omitted when that logical function is not
needed. If included, the sections must be written in the order shown. The Data Divi-
sion is optional.

Program Data Division
The Data Division of a COBOL source program describes, in a structured manner,
all the data to be processed by the object program.

Class Data Division
The Class Data Division section contains data description entries for object-
instance data. The Class Data Division contains only the Working-Storage Section.

Method Data Division
A method has two visible Data Divisions: the Class Data Division and the Method
Data Division. If the same data-name is used in both the Class Data Division and
the Method Data Division, when a method references the data-name, the data-
name in the Method Data Division takes precedence.

v

>

>

LFILE SECTION. ' L l ‘

-fi Ze—description—entry—Lrecord—descript ion—entr‘yJ—J

LWORKING-STORAGE SECTION. ' k | l

v

record-description-entry
data-item-description-entry:

LLOC/—\L—STORAGE SECTION. ' t | '

v

record-descript ion-entry—“
data-item-description-entry:

>

LLINKAGE SECTION. ' t | l

A\
A

record-description-entry
data-item-description-entry

Format—Class Data Division

LWORKING-STORAGE SECTION. ¢t | ‘

\
A

record-description-entry-
data-item-description-entry

130

© Copyright IBM Corp. 1991, 1998

Data Division Overview

File Section

The File Section defines the structure of data files. The File Section must begin with
the header FILE SECTION, followed by a separator period.

file-description-entry
Represents the highest level of organization in the File Section. It provides infor-
mation about the physical structure and identification of a file, and gives the record-
name(s) associated with that file. For the format and the clauses required in a file
description entry, see “Data Division—File Description Entries” on page 142.

record-description-entry
A set of data description entries (described in “Data Division—Data Description
Entry” on page 159) that describe the particular record(s) contained within a partic-
ular file.

More than one record description entry can be specified; each is an alternative
description of the same record storage area.

Data areas described in the File Section are not available for processing unless the file
containing the data area is open.

Note: A method File Section can define EXTERNAL files only. A single run-unit level
file connector is shared by all programs and methods containing a declaration of a
given EXTERNAL file.

Working-Storage Section

The Working-Storage Section describes data records that are not part of data files but
are developed and processed by a program or method. It also describes data items
whose values are assigned in the source program or method and do not change during
execution of the object program.

The Working-Storage Section must begin with the section header Working-Storage
Section, followed by a separator period.

Program Working-Storage
The Working-Storage Section for programs (and methods) can also describe
external data records, which are shared by programs and methods throughout the
run-unit. All clauses that are used in record descriptions in the File Section as well
as the VALUE and EXTERNAL clauses (which might not be specified in record
description entries in the File Section) can be used in record descriptions in the
Working-Storage Section.

Method Working-Storage
A single copy of the Working-Storage for a method is statically allocated and per-
sists in a last-used state for the duration of the run-unit. The same single copy is
used whenever the method is invoked, regardless of which object the method is
invoked upon.

If a VALUE clause is specified on a method Working-Storage data item, the data
item is initialized to the VALUE clause value on the first invocation.

Part 5. Data Division 131

Data Division Overview

If the EXTERNAL attribute is specified on a data description entry in a method
Working-Storage Section, a single copy of the storage for that data item is allo-
cated once for the duration of the run-unit. That storage is shared by all programs
and methods in the run-unit containing a definition for the external data item.

Class Working-Storage
A separate copy of the Class Working-Storage data items is allocated for each
object instance and remains until that object is destroyed.

By default, Class Working-Storage data items are global to all of the methods intro-
duced by the class.

To initialize instance data (Class Working-Storage data items), you can write a
somlnit method override. For an example of how to write an override method
using somlnit, see Figure 3. VALUE clauses are not supported for initializing
instance data.

IDENTIFICATION DIVISION.
CLASS-ID. 00CTass INHERITS SOMObject.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
CLASS SOMObject IS "SOMObject"
CLASS 00CTass IS "OOClass".
DATA DIVISION.
Working-Storage Section.
01 instance-data PIC X(3).
PROCEDURE DIVISION.

IDENTIFICATION DIVISION.
METHOD-ID. "somInit" OVERRIDE.
PROCEDURE DIVISION.
MOVE "new" TO instance-data.
EXIT METHOD.
END METHOD "somInit".

IDENTIFICATION DIVISION.
METHOD-ID. "MyMethod".
PROCEDURE DIVISION.
IF instance-data = "new"
CALL "Creating"
MOVE "old" TO instance-data
ELSE
CALL "Existing"
END-IF.
EXIT METHOD.
END METHOD "MyMethod".

END CLASS 00Class.

Figure 3. Example of a sominit Method Override

132 COBOL Language Reference

Data Division Overview

The Working-Storage Section contains record description entries and data description
entries for independent data items, called data item description entries

record-description-entry
Data entries in the Working-Storage Section that bear a definite hierarchic relation-
ship to one another must be grouped into records structured by level number. See
“Data Division—Data Description Entry” on page 159 for description.

data-item-description-entry
Independent items in the Working-Storage Section that bear no hierarchic relation-
ship to one another need not be grouped into records, provided that they do not
need to be further subdivided. Instead, they are classified and defined as inde-
pendent elementary items. Each is defined in a separate data-item description
entry that begins with either the level number 77 or 01. See “Data Division—Data
Description Entry” on page 159 for description.

Note: The data description entries for a class differ from a program and method in
that:

e You cannot specify the EXTERNAL attribute in a data description entry.
e The GLOBAL attribute has no effect.
e You can only specify the VALUE clause on condition names.

Local-Storage Section

The Local-Storage Section defines storage that is allocated and freed on a per-
invocation basis. On each invocation, data items defined in the Local-Storage Section
are reallocated and initialized to the value assigned in their VALUE clauses. Data
items defined in the Local-Storage Section cannot specify the EXTERNAL clause.

The Local-Storage Section must begin with the header LOCAL-STORAGE SECTION
followed by a separator period.

You can specify the Local-Storage Section in recursive programs, in non-recursive pro-
grams, and in methods.

Note: Method Local-Storage content is the same as a program Local-Storage content
except that the GLOBAL attribute has no effect (since methods cannot be nested).

A separate copy of the data defined in a method Local-Storage section is created each
time the method is invoked. The storage allocated for the data is freed when the
method returns.

Linkage Section

The Linkage Section describes data made available from another program or method.

record-description-entry
See “Working-Storage Section” on page 131 for description.

Part 5. Data Division 133

Data Types

data-item-description-entry
See “Working-Storage Section” on page 131 for description.

Record description entries and data item description entries in the Linkage Section
provide names and descriptions, but storage within the program or method is not
reserved because the data area exists elsewhere.

Any data description clause can be used to describe items in the Linkage Section with
the following exceptions:

¢ You cannot specify the VALUE clause for items other than level-88 items.

¢ You cannot specify the EXTERNAL clause in the Linkage Section.

As an IBM extension, you can specify the GLOBAL clause in the Linkage Section.
(Note, the GLOBAL attribute has no effect for methods.)

Data Types

File Data

Two types of data can be processed: file data and program data.

File data is contained in files. (See “File Section” on page 145.) A file is a collection
of data records existing on some input-output device. A file can be considered as a
group of physical records; it can also be considered as a group of logical records. The
Data Division describes the relationship between physical and logical records.

A physical record is a unit of data that is treated as an entity when moved into or out
of storage. The size of a physical record is determined by the particular input-output
device on which it is stored. The size does not necessarily have a direct relationship to
the size or content of the logical information contained in the file.

A logical record is a unit of data whose subdivisions have a logical relationship. A
logical record can itself be a physical record (that is, be contained completely within
one physical unit of data); several logical records can be contained within one physical
record, or one logical record can extend across several physical records.

File description entries specify the physical aspects of the data (such as the size
relationship between physical and logical records, the size and name(s) of the logical
record(s), labeling information, and so forth).

Record description entries describe the logical records in the file, including the cate-
gory and format of data within each field of the logical record, different values the data
might be assigned, and so forth.

After the relationship between physical and logical records has been established, only
logical records are made available to you. For this reason, a reference in this manual
to “records” means logical records, unless the term “physical records” is used.

134 COBOL Language Reference

Data Relationships

Program Data
Program data is created by a program, instead of being read from a file.

The concept of logical records applies to program data as well as to file data. Program
data can thus be grouped into logical records, and be defined by a series of record
description entries. Items that need not be so grouped can be defined in independent
data description entries (called data item description entries).

Data Relationships

The relationships among all data to be used in a program are defined in the Data Divi-
sion, through a system of level indicators and level-numbers.

A level indicator , with its descriptive entry, identifies each file in a program. Level
indicators represent the highest level of any data hierarchy with which they are associ-
ated; FD is the file description level indicator and SD is the sort-merge file description
level indicator.

A level-number , with its descriptive entry, indicates the properties of specific data.
Level-numbers can be used to describe a data hierarchy; they can indicate that this
data has a special purpose, and while they can be associated with (and subordinate to)
level indicators, they can also be used independently to describe internal data or data
common to two or more programs. (See “Level-Numbers” on page 160 for level-
number rules.)

Levels of Data

After a record has been defined, it can be subdivided to provide more detailed data
references.

For example, in a customer file for a department store, one complete record could
contain all data pertaining to one customer. Subdivisions within that record could be:
customer name, customer address, account number, department number of sale, unit
amount of sale, dollar amount of sale, previous balance, plus other pertinent informa-
tion.

The basic subdivisions of a record (that is, those fields not further subdivided) are
called elementary items . Thus, a record can be made up of a series of elementary
items, or it can itself be an elementary item.

It might be necessary to refer to a set of elementary items; thus, elementary items can
be combined into group items . Groups themselves can be combined into a more
inclusive group that contains one or more subgroups. Thus, within one hierarchy of
data items, an elementary item can belong to more than one group item.

A system of level-numbers specifies the organization of elementary and group items

into records. Special level-numbers are also used; they identify data items used for
special purposes.

Part 5. Data Division 135

Data Relationships

Levels of Data in a Record Description Entry
Each group and elementary item in a record requires a separate entry, and each must
be assigned a level-number.

A level-number is a 1- or 2-digit integer between 01 and 49, or one of three special
level-numbers: 66, 77, or 88. The following level-numbers are used to structure
records:

01 This level-number specifies the record itself, and is the most inclusive level-number
possible. A level-01 entry can be either a group item or an elementary item. It
must begin in Area A.

02-49
These level-numbers specify group and elementary items within a record. They
can begin in Area A or Area B. Less inclusive data items are assigned higher (not
necessarily consecutive) level-numbers in this series.

A group item includes all group and elementary items following it, until a level-number
less than or equal to the level-number of this group is encountered.

All elementary or group items immediately subordinate to one group item must be
assigned identical level-numbers higher than the level-number of this group item.

Figure 4 on page 137 illustrates the concept. Note that all groups immediately subor-
dinate to the level-01 entry have the same level-number. Note also that elementary
items from different subgroups do not necessarily have the same level numbers, and
that elementary items can be specified at any level within the hierarchy.

136 COBOL Language Reference

Data Relationships

The COBOL record description entry
written as follows

01 RECORD—ENTRY.

05

10

10

05

05

GROUP-1.
SUBGROUP-1.

15 ELEM-1 PIC...
15 ELEM-2 PIC...

SUBGROUP-2.

15 ELEM-3 PIC...
15 ELEM-4 PIC...

GROUP-2.
15 SUBGROUP-3.

25 ELEM-5 PIC...
25 ELEM-6 PIC...

<«—This entry includes—

<«—This entry includes—

<«—This entry includes

15 SUBGROUP-4 PIC...

ELEM-7 PIC...

is subdivided as indicated below:

<«——This entry includes

<«—This entry includes

<«—This entry includes—

This entry includes itself.

v

v v

v

This entry includes itself.

The storage arrangement of the record description entry is illustrated below:

<

<

<
<

GROUP-1

RECORD—ENTRY

»
»

<+—SUBGROUP—1—» | «—SUBGROUP—2—»

<
<

<«——SUBGROUP-3—> |

GROUP-2 >

ELEM-1

ELEM-2 | ELEM-3

ELEM-4

ELEM-5

ELEM—-6

SUBGROUP-4 | ELEM-7

Figure 4. Levels in a Record Description

Part 5. Data Division

137

Data Relationships

IBM COBOL accepts nonstandard level-numbers that are not identical to others at the
same level. For example, the following two record description entries are equivalent:

01 EMPLOYEE-RECORD.
05 EMPLOYEE-NAME.
10 FIRST-NAME PICTURE X(10).
10 LAST-NAME PICTURE X(10).
05 EMPLOYEE-ADDRESS.
10 STREET PICTURE X(10).
10 CITY PICTURE X(10).
01 EMPLOYEE-RECORD.
05 EMPLOYEE-NAME.
10 FIRST-NAME PICTURE X(10).
10 LAST-NAME PICTURE X(10).
04 EMPLOYEE-ADDRESS.
08 STREET PICTURE X(10).
08 CITY PICTURE X(10).

Special Level-Numbers

Indentation

Special level-numbers identify items that do not structure a record. The special level-
numbers are:

66 Identifies items that must contain a RENAMES clause; such items regroup previ-
ously defined data items.

(For details, see “RENAMES Clause” on page 196.)

77 ldentifies data item description entries — independent Working-Storage or Linkage
Section items that are not subdivisions of other items, and are not subdivided
themselves. Level-77 items must begin in Area A.

88 Identifies any condition-name entry that is associated with a particular value of a
conditional variable. (For details, see “VALUE Clause” on page 215.)

Note: Level-77 and level-01 entries in the Working-Storage and Linkage Sections that
are referenced in the program must be given unique data-names, because neither can
be qualified. Subordinate data-names that are referenced in the program must be
either uniquely defined, or made unique through qualification. Unreferenced data-
names need not be uniquely defined.

Successive data description entries can begin in the same column as preceding entries,
or can be indented. Indentation is useful for documentation, but does not affect the
action of the compiler.

Classes and Categories of Data

All data used in a COBOL program can be divided into classes and categories.

Every group item belongs to the alphanumeric class, even if the subordinate elementary
items belong to another class.

138 COBOL Language Reference

Data Relationships

Every elementary item in a program belongs to one of the classes as well as to one of
the categories. Table 11 shows the relationship among data classes and categories.

Every data item which is a function is an elementary item, and belongs to the category
alphanumeric or numeric, and to the corresponding class; the category of each function
is determined by the definition of the function.

Table 11. Classes and Categories of Data

Level of Item Class Category
Elementary Alphabetic Alphabetic
Numeric Numeric

Internal Floating-point

External Floating-point

Alphanumeric Numeric-Edited

Alphanumeric-Edited

Alphanumeric

DBCS

Group Alphanumeric Alphabetic

Numeric

Internal Floating-point

External Floating-point

Numeric-Edited

Alphanumeric-Edited

Alphanumeric
DBCS

Alignment Rules
The standard alignment rules for positioning data in an elementary item depend on the

category of a receiving item (that is, an item into which the data is moved; see “Ele-
mentary Moves” on page 350).

Numeric
For such receiving items, the following rules apply:

1. The data is aligned on the assumed decimal point and, if necessary,
truncated or padded with zeros. (An assumed decimal point is one
that has logical meaning but that does not exist as an actual character
in the data.)

2. If an assumed decimal point is not explicitly specified, the receiving
item is treated as though an assumed decimal point is specified imme-
diately to the right of the field. The data is then treated according to
the preceding rule.

Part 5. Data Division 139

Data Relationships

Numeric-edited
The data is aligned on the decimal point, and (if necessary) truncated or
padded with zeros at either end, except when editing causes replacement
of leading zeros.

Internal Floating-point
A decimal point is assumed immediately to the left of the field. The data is
aligned then on the leftmost digit position following the decimal point, with
the exponent adjusted accordingly.

External Floating-point
The data is aligned on the leftmost digit position; the exponent is adjusted
accordingly.

Alphanumeric, Alphanumeric-Edited, Alphabetic, DBCS
For these receiving items, the following rules apply:

1. The data is aligned at the leftmost character position, and (if neces-
sary) truncated or padded with spaces at the right.

2. If the JUSTIFIED clause is specified for this receiving item, the above
rule is modified, as described in “JUSTIFIED Clause” on page 169.

Under AIX, 0S/2, and Windows, using control characters
X'00" through X'1F' within an alphanumeric literal can give unpredictable
results, which are not diagnosed by the compiler. Use hex literals instead.

Workstation

Standard Data Format
COBOL makes data description as machine independent as possible. For this reason,
the properties of the data are described in relation to a standard data format rather than
a machine-oriented format.

The standard data format uses the decimal system to represent numbers, no matter
what base is used by the system, and uses all the characters of the character set of the
computer to represent nonnumeric data.

Character-String and Item Size
In your program, the size of an elementary item is determined through the number of
character positions specified in its PICTURE character-string. In storage, however, the
size is determined by the actual number of bytes the item occupies, as determined by
the combination of its PICTURE character-string and its USAGE clause.

For internal floating-point items, the size of the item in storage is determined by its
USAGE clause. USAGE COMPUTATIONAL-1 reserves 4 bytes of storage for the item;
USAGE COMPUTATIONAL-2 reserves 8 bytes of storage.

Normally, when an arithmetic item is moved from a longer field into a shorter one, the

compiler truncates the data to the number of characters represented in the shorter
item's PICTURE character-string.

140 COBOL Language Reference

Signed Data

Data Relationships

For example, if a sending field with PICTURE S99999, and containing the value
+12345, is moved to a BINARY receiving field with PICTURE S99, the data is truncated
to +45. For additional information see “USAGE Clause” on page 207.

The TRUNC compiler option can affect the value of a binary numeric item. For infor-
mation on TRUNC, see the IBM COBOL Programming Guide for your platform.

There are two categories of algebraic signs used in IBM COBOL: operational signs
and editing signs.

Operational Signs

Editing Signs

Operational signs are associated with signed numeric items, and indicate their algebraic
properties. The internal representation of an algebraic sign depends on the item's
USAGE clause, its SIGN clause (if present), and on the operating environment
involved. (For further details about the internal representation see “USAGE Clause” on
page 207.) Zero is considered a unique value, regardless of the operational sign. An
unsigned field is always assumed to be either positive or zero.

Editing signs are associated with numeric-edited items; editing signs are PICTURE
symbols that identify the sign of the item in edited output.

Part 5. Data Division 141

Data Division—File Description Entries

Data Division—File Description Entries

In a COBOL program, the File Description (FD) Entry (or Sort File Description (SD)
Entry for sort/merge files) represents the highest level of organization in the File
Section. The order in which the optional clauses follow the FD or SD entry is not
important.

142 © Copyright IBM Corp. 1991, 1998

Data Division—File Description Entries

—— Format 1—Sequential Files

»»—FD—file-name-1 >
\—meXTERNALJ LL—JfG.LOBALJ
IS IS

\4

L ; j
BLOCK: lnteger—Z—ECHARACTERS
|—CONTAINSJ |—int&‘ger‘—]—TOJ RECORDS

\ 4

L . 3] "
RECORD integer-3
I—CONTAINS—J |-CHARACTERS—J
—,_—_l—integer—4—T0—integer—5—L—_|—
CONTAINS CHARACTERS
L clause 1 | C .
DEPENDING—L—_I—data-name-l
ON
|—LABEL RECORD] STANDARDiJ
L IS —OMITTED
RECORDS

|—data-name—ZJ

LVALUE 0F—Lsys tem-nume-]—l_—_|—Eduta-name-3;,J—‘
IS literal-1

LDATA
_|:

LLINAGE—l_—_I—[thG—nGmE—.‘)-_‘,—'_—‘I—I clause 2 }J
IS integer-8 LINES

|—RECORDI““ J L
NG mode CODE-SET alphabet-name
Lyoped Lrs Crs]

clause 1:

| v N >

VARYING >
I
|—ISJ |—INJ I—SIZEJ \—L—innteger%J |—T0—integer‘—7J

FROM

»

\ 4
v

\ 4
v

A\ 4
v

\ 4
\4
A

]

|—CHARACTERSJ

clause 2:
|
Fl |
FOOTING data-name-6;,—‘ TOP—[data-nameJ;,—‘
|—WITHJ |—ATJ |—integer-9 |—LINESJ |—ATJ integer-10
> |

c 5 '
u()TTOM—Edata-name—B
|—LINESJ I—ATJ integer-11

v

Part 5. Data Division 143

Data Division—File Description Entries

— Format 2—Relative/Indexed Files

»»>—FD—file-name-1 >
\—i,fEXTERNAL—I I—FA'fGLOBALJ
IS IS

>

L ; j "
BLOCK: znteger—Z—ECHARACTERS
|—CONTAINSJ l—integer—]—TOJ RECORDS
g |—RECOR[) T o integer-3 T] | g
CONTAINS CHARACTERS
—,_—_l—integer—4—TO—integer—5—L—_'—
CONTAINS CHARACTERS
L clause 1 |

l—DEPE J
NDING—L—_'—data-name-l
ON

A\

|—LABEL RECORD:] LSTANDARD
L IS OMITTED
RECORDS
ARE
LVALUE OF—}—system—na'me—1—|_—_J—‘:d¢'1ta—namej:’—‘-—|
IS literal-1

>

' LDATA
_l:

\4
A

clause 1:
| VARY ING >
| o

|—IS—J LIN——l |—SIZE—J ’—L—J—integer—6—J |—T0—integer‘—7——l

FROM

> |
> 1

|—CHAR/-\CTERS—I

—— Format 3—Line Sequential Files (Workstation Only)

»>—FD—file-name-1
\—i‘fEXTERNALJ \—i‘fGLOBALJ
IS IS

v

\
A

L .
RECORD integer-3
|—CONTAINSJ |—CHARACTERSJ

—ﬁ—integer%—m—integer% B T
CONTAINS CHARACTERS
L clause 1 }

L J
DEPENDING—ﬁ—data-name—l
ON

clause 1:

| v

ARYING >
| v o
|—ISJ |—INJ |—SIZEJ ﬁintegerﬁJ |—T0—integer—7J

FROM

|—CHARACTERSJ

144 COBOL Language Reference

File Section

—— Format 4—Sort/Merge Files

»»—SD—file-name-1 I I >
RECORD integer-3

|—CONTAINSJ I—CHARACTERSJ

—,_—_I—integer—4—T0—integer—5 T a
CONTAINS CHARACTERS

clause 1 }

|—DEPENDING—D——d i
ata-name-1
ON

\ 4
v

LDATA
_[

L ; j
BLOCK: lnteger—Z—[CHARACTERS
|—CONTAINSJ Linteger-]—TOJ RECORDS:

v

\ 4

|—LABEL RECORD] ST/—\ND/—\RD*J
L IS | |:OMITTED—
RECORDS
|-ARE—J

data-name—Z—J—

LVALUE OF—*—sys tem-name—]—l_—_l—Edata—name-j:,—d
IS literal-1

LLINAGEdetG-HGﬂ?EW clause 2 }J
IS integer-8 LINES
]

\ 4
v

\ 4
A\
A

L
CODE—SET—L—_I—athabet—name
IS

clause 1:
\/

' ARYING >
| v AV
|—ISJ |—INJ |—SIZEJ \—L—innteger-6J |—TO—integer-7J
FROM

|—CHARACTERSJ

clause 2:
|

B j" | j—l
FOOTING data-name-6 TOP: data-name-7
|-WITH—J |—AT—J |-ini.‘eger—9 |-LINES—J |—AT—J integer-10
> |

| 5 !
BOTTOM data-name-8
|—LINESJ |—ATJ |—integer-ll

v

File Section
The File Section must contain a level indicator for each input and output file:

¢ For all files except sort/merge, the File Section must contain an FD entry.
e For each sort or merge file, the File Section must contain an SD entry.

Part 5. Data Division 145

EXTERNAL Clause

file-name
Must follow the level indicator (FD or SD), and must be the same as that specified
in the associated SELECT clause. The file-name must adhere to the rules of for-
mation for a user-defined word; at least one character must be alphabetic. The
file-name must be unique within this program.

One or more record description entries must follow the file-name. When more than
one record description entry is specified, each entry implies a redefinition of the
same storage area.

The clauses that follow file-name are optional; they can appear in any order.

FD (Formats 1, 2, and 3)
The last clause in the FD entry must be immediately followed by a separator
period.

SD (Format 4)
An SD entry must be written for each sort or merge file in the program. The last
clause in the SD entry must be immediately followed by a separator period.

The following example illustrates the File Section entries needed for a sort or
merge file:

SD SORT-FILE.

01 SORT-RECORD PICTURE X(80).

EXTERNAL Clause

The EXTERNAL clause specifies that a file connector is external, and permits commu-
nication between two programs by the sharing of files. A file connector is external if the
storage associated with that file is associated with the run unit rather than with any
particular program within the run unit. An external file can be referenced by any
program in the run unit that describes the file. References to an external file from dif-
ferent programs using separate descriptions of the file are always to the same file. In a
run unit, there is only one representative of an external file.

In the File Section, the EXTERNAL clause can only be specified in file description
entries.

The records appearing in the file description entry need not have the same name in
corresponding external file description entries. In addition, the number of such records
need not be the same in corresponding file description entries.

Use of the EXTERNAL clause does not imply that the associated file-name is a global

name. See the IBM COBOL Programming Guide for your platform for specific informa-
tion on the use of the EXTERNAL clause.

146 COBOL Language Reference

BLOCK CONTAINS Clause

GLOBAL Clause

The GLOBAL clause specifies that the file connector named by a file-name is a global
name. A global file-name is available to the program that declares it and to every
program that is contained directly or indirectly in that program.

A file-name is global if the GLOBAL clause is specified in the file description entry for
that file-name. A record-name is global if the GLOBAL clause is specified in the record
description entry by which the record-name is declared or, in the case of record
description entries in the File Section, if the GLOBAL clause is specified in the file
description entry for the file-name associated with the record description entry. (See
the IBM COBOL Programming Guide for your platform for specific information on the
use of the GLOBAL clause.)

Two programs in a run unit can reference global file connectors in the following circum-
stances:

1. An external file connector can be referenced from any program that describes that
file connector.

2. If a program is contained within another program, both programs can refer to a
global file connector by referring to an associated global file-name either in the
containing program or in any program that directly or indirectly contains the con-
taining program.

BLOCK CONTAINS Clause

Under AIX, OS/2, and Windows, the BLOCK CONTAINS clause is not
supported for line sequential files. It is treated as a comment for sequential, relative

and indexed files.

The BLOCK CONTAINS clause specifies the size of the physical records. The charac-
ters in the BLOCK CONTAINS clause reflect the number of bytes in the record.

For example, if you have a block with 10 DBCS characters, the BLOCK CONTAINS
clause should say BLOCK CONTAINS 20 CHARACTERS.

If the records in the file are not blocked, the BLOCK CONTAINS clause can be omitted.
When it is omitted, the compiler assumes that records are not blocked. Even if each
physical record contains only one complete logical record, coding BLOCK CONTAINS 1
RECORD would result in fixed blocked records.

The BLOCK CONTAINS clause can be omitted when the associated File Control entry
specifies a VSAM file; the concept of blocking has no meaning for VSAM files; the
clause is syntax checked, but it has no effect on the execution of the program.

For EXTERNAL files, the value of all BLOCK CONTAINS clauses of corresponding
EXTERNAL files must match within the run unit. This conformance is in terms of char-
acter positions and does not depend upon whether the value was specified as CHAR-
ACTERS or as RECORDS.

Part 5. Data Division 147

BLOCK CONTAINS Clause

integer-1, integer-2
Must be nonzero unsigned integers. They specify the number of:

CHARACTERS
Specifies the number of character positions required to store the physical
record, no matter what USAGE the characters have within the data record.

If only integer-2 is specified, it specifies the exact character size of the phys-
ical record. When integer-1 and integer-2 are both specified, they represent,
respectively, the minimum and maximum character sizes of the physical
record.

Integer-1 and integer-2 must include any control bytes and padding contained
in the physical record. (Logical records do not include padding.)

The CHARACTERS phrase is the default. CHARACTERS must be specified
when:

e The physical record contains padding.

e Logical records are grouped so that an inaccurate physical record size
could be implied. For example, suppose you describe a variable-length
record of 100 characters, yet each time you write a block of 4, one
50-character record is written followed by three 100-character records. If
the RECORDS phrase were specified, the compiler would calculate the
block size as 420 characters instead of the actual size, 370 characters.
(This calculation includes block and record descriptors.)

RECORDS
Specifies the number of logical records contained in each physical record.

The compiler assumes that the block size must provide for integer-2 records of
maximum size, and provides any additional space needed for control bytes.

When running under OS/390, BLOCK CONTAINS 0 can be specified for QSAM files;
the block size is determined at object time from the DD parameters or the data set
label.

If the RECORD CONTAINS 0 CHARACTERS clause is specified, and the BLOCK
CONTAINS 0 CHARACTERS clause is specified (or omitted), the block size is deter-
mined at object time from the DD parameters or the data set label of the file. For
output data sets, with either of the above conditions, the DCB used by Language Envi-
ronment will have a zero block size value. If you do not specify a block size value, the
operating system might select a System Determined Block Size (SDB). See the oper-
ating system specifications for further information on SDB.

BLOCK CONTAINS can be omitted for SYSIN/SYSOUT files under OS/390. The
blocking is determined by the operating system.

When running under CMS, BLOCK CONTAINS 0 can be specified for QSAM files; the
block size is determined at object time from the FILEDEF parameters or the data set
label. If the RECORD CONTAINS 0 CHARACTERS clause is specified, and the
BLOCK CONTAINS clause is omitted (or if the BLOCK CONTAINS 0 CHARACTERS

148 COBOL Language Reference

RECORD Clause

clause is specified), the block size is determined at object time from the FILEDEF
parameters or the data set label of the file.

Under VM, the BLOCK CONTAINS 0 clause might cause blocked or unblocked records
to be used for an output file, depending on the FILEDEF options specified. The DCB
used by Language Environment will have a zero block size, so the FILEDEF uses the
CMS defaults. The defaults are documented in the CMS Command Reference, under
the FILEDEF command.

The BLOCK CONTAINS clause is treated as a comment under an SD.

The BLOCK CONTAINS clause cannot be used with the RECORDING MODE U
clause.

RECORD Clause

Format 1

When the RECORD clause is used, the record size must be specified as the number of
character positions needed to store the record internally. That is, it must specify the
number of bytes occupied internally by the characters of the record (not the number of
characters used to represent the item within the record).

For example, if you have a record with 10 DBCS characters, the RECORD clause
should say RECORD CONTAINS 20 CHARACTERS.

The size of a record is determined according to the rules for obtaining the size of a
group item. (See “USAGE Clause” on page 207 and “SYNCHRONIZED Clause” on
page 200.)

When the RECORD clause is omitted, the compiler determines the record lengths from
the record descriptions. When one of the entries within a record description contains
an OCCURS DEPENDING ON clause, the compiler uses the maximum value of the
variable-length item to calculate the number of character positions needed to store the
record internally.

If the associated file connector is an external file connector, all file description entries in

the run unit that are associated with that file connector must specify the same
maximum number of character positions.

Format 1 specifies the number of character positions for fixed-length records.

—— Format 1
»»—RECORD:

integer-3

\4
A

Lcontains L cHaRACTERS

integer-3
Must be an unsigned integer that specifies the number of character positions con-
tained in each record in the file.

Part 5. Data Division 149

RECORD Clause

Format 2

Under AIX, OS/2, and Windows the RECORD CONTAINS clause is
valid. However, the RECORD CONTAINS 0 CHARACTERS clause is not sup-
ported for line sequential files. It is treated as a comment for sequential, relative

and indexed files. @IS}

Under OS/390, the RECORD CONTAINS 0 CHARACTERS clause can
be specified for input QSAM files containing fixed-length records; the record size is
determined at object time from the DD statement parameters or the data set label.
If, at object time, the actual record is larger than the 01 record description, only the
01 record length is available. If the actual record is shorter, only the actual record
length can be referred to. Otherwise, uninitialized data or an addressing exception
can be produced.

Note: If the RECORD CONTAINS 0 clause is specified, then the SAME AREA,
SAME RECORD AREA, or APPLY WRITE-ONLY clauses cannot be specified.

Do not specify the RECORD CONTAINS 0 clause for an SD entry.

Format 2 specifies the number of character positions for either fixed-length or variable-
length records. Fixed-length records are obtained when all 01 record description entry
lengths are the same. The Format 2 RECORD CONTAINS clause is never required,
because the minimum and maximum record lengths are determined from the record
description entries.

Under AIX, OS/2, and Windows, the Format 2 RECORD clause is not
supported for line sequential files.

—— Format 2

»—RECORD—L—_'—integer-4—T0—integer-5 T o
CONTAINS CHARACTERS

integer-4
integer-5

Must be unsigned integers. Integer-4 specifies the size of the smallest data record,
and integer-5 specifies the size of the largest data record.

150 COBOL Language Reference

Format 3

RECORD Clause

Format 3 is used to specify variable-length records.

—— Format 3

»»—RECORD VARYING >
|—IS—J |-IN—J |—SIZE—J LL—J—integer-6—J
FROM

|—TO—in teger-7J |—CHARACTERSJ |—DEPENDING—LO—N_'—data-name-1J

integer-6
Specifies the minimum number of character positions to be contained in any record
of the file. If integer-6 is not specified, the minimum number of character positions
to be contained in any record of the file is equal to the least number of character
positions described for a record in that file.

integer-7
Specifies the maximum number of character positions in any record of the file. If
integer-7 is not specified, the maximum number of character positions to be con-
tained in any record of the file is equal to the greatest number of character posi-
tions described for a record in that file.

The number of character positions associated with a record description is determined
by the sum of the number of character positions in all elementary data items (excluding
redefinitions and renamings), plus any implicit FILLER due to synchronization. If a
table is specified:

e The minimum number of table elements described in the record is used in the sum-
mation above to determine the minimum number of character positions associated
with the record description.

e The maximum number of table elements described in the record is used in the
summation above to determine the maximum number of character positions associ-
ated with the record description.

If data-name-1 is specified:
¢ Data-name-1 must be an elementary unsigned integer.

¢ Data-name-1 cannot be a windowed date field.

¢ The number of character positions in the record must be placed into the data item
referenced by data-name-1 before any RELEASE, REWRITE, or WRITE statement
is executed for the file.

e The execution of a DELETE, RELEASE, REWRITE, START, or WRITE statement
or the unsuccessful execution of a READ or RETURN statement does not alter the
content of the data item referenced by data-name-1.

* After the successful execution of a READ or RETURN statement for the file, the
contents of the data item referenced by data-name-1 indicate the number of char-
acter positions in the record just read.

Part 5. Data Division 151

LABEL RECORDS Clause

During the execution of a RELEASE, REWRITE, or WRITE statement, the number of
character positions in the record is determined by the following conditions:

e |f data-name-1 is specified, by the content of the data item referenced by
data-name-1.

e |If data-name-1 is not specified and the record does not contain a variable occur-
rence data item, by the number of character positions in the record.

e If data-name-1 is not specified and the record contains a variable occurrence data
item, by the sum of the fixed position and that portion of the table described by the
number of occurrences at the time of execution of the output statement.

During the execution of a READ ... INTO or RETURN ... INTO statement, the number
of character positions in the current record that participate as the sending data items in
the implicit MOVE statement is determined by the following conditions:

e |f data-name-1 is specified, by the content of the data item referenced by
data-name-1.

e |If data-name-1 is not specified, by the value that would have been moved into the
data item referenced by data-name-1 had data-name-1 been specified.

LABEL RECORDS Clause
Under AIX, OS/2, and Windows, the LABEL RECORDS clause is not
supported for line sequential files.
It is treated as a comment for sequential, relative and indexed files. A warning
message is issued if you use any of the following language elements:

e LABEL RECORD IS data-name
e USE...AFTER...LABEL PROCEDURE
¢ GO TO MORE-LABELS

The LABEL RECORDS clause indicates the presence or absence of labels. If it is not
specified for a file, label records for that file must conform to the system label specifica-
tions.

For VSAM files, the LABEL RECORDS clause is syntax checked, but it has no effect
on the execution of the program. COBOL label processing, therefore, is not performed.

STANDARD
Labels conforming to system specifications exist for this file.

STANDARD is permitted for mass storage devices and tape devices.

OMITTED
No labels exist for this file.

OMITTED is permitted for tape devices.

152 COBOL Language Reference

LINAGE Clause

data-name-2
User labels are present in addition to standard labels. Data-name-2 specifies the
name of a user label record. Data-name-2 must appear as the subject of a record
description entry associated with the file.

The LABEL RECORDS clause is treated as a comment under an SD.

VALUE OF Clause
Under AIX, OS/2, and Windows, the VALUE OF clause is not supported
for line sequential files. It is treated as a comment for sequential, relative and indexed

files. Workstation

The VALUE OF clause describes an item in the label records associated with this file.
The clause is syntax checked, but has no effect on the execution of the program.

data-name-3
Should be qualified when necessary, but cannot be subscripted. It must be
described in the Working-Storage Section. It cannot be described with the USAGE

IS INDEX clause.

literal-1
Can be numeric or nonnumeric, or a figurative constant of category numeric or

nonnumeric.

Cannot be a floating-point literal.

The VALUE OF clause is treated as a comment under an SD.

DATA RECORDS Clause

Under AIX, OS/2, and Windows, the DATA RECORDS clause is not sup-
ported for line sequential files. It is treated as a comment for sequential, relative and

indexed files.

The DATA RECORDS clause is syntax checked, but it serves only as documentation
for the names of data records associated with this file.

data-name-4
The names of record description entries associated with this file.

As an IBM extension, the data-name need not have an 01 level nhumber record
description with the same name associated with it.

LINAGE Clause

The LINAGE clause specifies the depth of a logical page in terms of number of lines.
Optionally, it also specifies the line number at which the footing area begins, as well as
the top and bottom margins of the logical page. (The logical page and the physical
page cannot be the same size.)

Part 5. Data Division 153

LINAGE Clause

The LINAGE clause is effective for sequential and line sequential files opened OUTPUT
and, as an IBM extension, EXTEND.

All integers must be unsigned. All data-names must be described as unsigned integer
data items.

data-name-5

integer-8
The number of lines that can be written and/or spaced on this logical page. The
area of the page that these lines represent is called the page body . The value
must be greater than zero.

WITH FOOTING AT
Integer-9 or the value of the data item in data-name-6 specifies the first line
number of the footing area within the page body. The footing line number must be
greater than zero, and not greater than the last line of the page body. The footing
area extends between those two lines.

LINES AT TOP
Integer-10 or the value of the data item in data-name-7 specifies the number of
lines in the top margin of the logical page. The value can be zero.

LINES AT BOTTOM
Integer-11 or the value of the data item in data-name-8 specifies the number of
lines in the bottom margin of the logical page. The value can be zero.

Figure 5 illustrates the use of each phrase of the LINAGE clause.

)
) LINES AT TOP integer-10 (top mirgin)
)

logical
page body page depth

WITH FOOTING integer-9

footing area

v

LINAGE integer-8

)
) LINES AT BOTTOM integer-11 (bottom|margin)
)

Figure 5. LINAGE Clause Phrases

The logical page size specified in the LINAGE clause is the sum of all values specified
in each phrase except the FOOTING phrase. If the LINES AT TOP and/or the LINES

154 COBOL Language Reference

RECORDING MODE Clause

AT BOTTOM phrase is omitted, the assumed value for top and bottom margins is zero.
Each logical page immediately follows the preceding logical page, with no additional
spacing provided.

If the FOOTING phrase is omitted, its assumed value is equal to that of the page body
(integer-8 or data-name-5).

At the time an OPEN OUTPUT statement is executed, the values of integer-8,
integer-9, integer-10, and integer-11, if specified, are used to determine the page body,
first footing line, top margin, and bottom margin of the logical page for this file. See
Figure 5 on page 154 above. These values are then used for all logical pages printed
for this file during a given execution of the program.

At the time an OPEN statement with the OUTPUT phrase is executed for the file,
data-name-5, data-name-6, data-name-7, and data-name-8 determine the page body,
first footing line, top margin, and bottom margin for the first logical page only.

At the time a WRITE statement with the ADVANCING PAGE phrase is executed or a
page overflow condition occurs, the values of data-name-5, data-name-6, data-name-7,
and data-name-8 if specified, are used to determine the page body, first footing line, top
margin, and bottom margin for the next logical page.

If an external file connector is associated with this file description entry, all file
description entries in the run unit that are associated with this file connector must have:
¢ A LINAGE clause, if any file description entry has a LINAGE clause.

e The same corresponding values for integer-8, integer-9, integer-10, and integer-11,
if specified.

¢ The same corresponding external data items referenced by data-name-5,
data-name-6, data-name-7, and data-name-8.

See “ADVANCING Phrase” on page 434 for the behavior of carriage control characters
in EXTERNAL files.

The LINAGE clause is treated as a comment under an SD.

LINAGE-COUNTER Special Register
For information about the LINAGE-COUNTER Special Register, see
“LINAGE-COUNTER” on page 14.

RECORDING MODE Clause

Under OS/390 and VM
The RECORDING MODE clause specifies the format of the physical records in a
QSAM file. The clause is ignored for a VSAM file.

Permitted values for RECORDING MODE are:

Part 5. Data Division 155

RECORDING MODE Clause

Recording Mode F (Fixed)
All the records in a file are the same length and each is wholly contained within
one block. Blocks can contain more than one record, and there is usually a fixed
number of records for each block. In this mode, there are no record-length or
block-descriptor fields.

Recording Mode V (Variable)
The records can be either fixed-length or variable-length, and each must be wholly
contained within one block. Blocks can contain more than one record. Each data
record includes a record-length field and each block includes a block-descriptor
field. These fields are not described in the Data Division. They are each 4 bytes
long and provision is automatically made for them. These fields are not available
to you.

Recording Mode U (Fixed or Variable)
The records can be either fixed-length or variable-length. However, there is only
one record for each block. There are no record-length or block-descriptor fields.

Note: You cannot use RECORDING MODE U if you are using the BLOCK CON-
TAINS clause.

Recording Mode S (Spanned)
The records can be either fixed-length or variable-length, and can be larger than a
block. If a record is larger than the remaining space in a block, a segment of the
record is written to fill the block. The remainder of the record is stored in the next
block (or blocks, if required). Only complete records are made available to you.
Each segment of a record in a block, even if it is the entire record, includes a
segment-descriptor field, and each block includes a block-descriptor field. These
fields are not described in the Data Division; provision is automatically made for
them. These fields are not available to you.

Note: When recording mode S is used, the BLOCK CONTAINS CHARACTERS
clause must be used. Recording mode S is not allowed for ASCII files.

If the RECORDING MODE clause is not specified for a QSAM file, the COBOL for
0S/390 & VM compiler determines the recording mode as follows:

F The compiler determines the recording mode to be F if the largest level-01 record
associated with the file is not greater than the block size specified in the BLOCK
CONTAINS clause, and you do one of the following:

¢ Use the RECORD CONTAINS integer clause (for more information, see IBM
COBOL for 0S/390 & VM Compiler and Run-Time Migration Guide.)

¢ Omit the RECORD clause and make sure all level-01 records associated with
the file are the same size and none contain an OCCURS DEPENDING ON
clause.

V The compiler determines the recording mode to be V if the largest level-01 record
associated with the file is not greater than the block size specified in the BLOCK
CONTAINS clause, and you do one of the following:

e Use the RECORD IS VARYING clause

156 COBOL Language Reference

CODE-SET Clause

¢ Omit the RECORD clause and make sure all level-01 records associated with
the file are not the same size or some contain an OCCURS DEPENDING ON
clause

¢ Use the RECORD CONTAINS integer-1 TO integer-2 clause with integer-1 the
minimum length and integer-2 the maximum length of the level-01 records
associated with the file. The two integers must be different, with values
matching minimum and maximum length of either different length records or
record(s) with an OCCURS DEPENDING ON clause.

S The compiler determines the recording mode to be S if the maximum block size is
smaller than the largest record size.

U Recording mode U is never obtained by default. The RECORDING MODE U
clause must be explicitly used.

Under AlX, OS/2, and Windows
Under AIX, OS/2, and Windows, the RECORDING MODE clause is not supported for
line sequential files. It is treated as a comment for a relative or indexed file. For record
sequential files, the RECORDING MODE clause is treated as follows:

F Record descriptions are validated as fixed. Do not specify RECORDING MODE F
if the record descriptions are variable.

V Variable length record format is assumed (even if the record descriptions are
fixed).

U Treated as a comment.

S Treated the same as V.

CODE-SET Clause

Under AIX, OS/2, and Windows the CODE-SET clause is not supported
for line sequential files. It is treated as a comment for sequential, relative and indexed

{1 \\/orkstation

The CODE-SET clause specifies the character code used to represent data on a mag-
netic tape file. When the CODE-SET clause is specified, an alphabet-name identifies
the character code convention used to represent data on the input-output device.

Alphabet-name must be defined in the SPECIAL-NAMES paragraph as STANDARD-1
(for ASCll-encoded files), as STANDARD-2 (for ISO 7-bit encoded files), as EBCDIC
(for EBCDIC-encoded files), or as NATIVE. When NATIVE is specified, the CODE-SET
clause is syntax checked, but it has no effect on the execution of the program.

The CODE-SET clause also specifies the algorithm for converting the character codes
on the input-output medium from/to the internal EBCDIC character set.

Part 5. Data Division 157

CODE-SET Clause

When the CODE-SET clause is specified for a file, all data in this file must have
USAGE DISPLAY, and, if signed numeric data is present, it must be described with the
SIGN IS SEPARATE clause.

When the CODE-SET clause is omitted, the EBCDIC character set is assumed for this
file.

If the associated file connector is an external file connector, all CODE-SET clauses in
the run unit that are associated with that file connector must have the same character
set.

The CODE-SET clause is valid only for magnetic tape files.

The CODE-SET clause is treated as a comment under an SD.

158 COBOL Language Reference

Data Division—Data Description Entry

Data Division—Data Description Entry

A data description entry specifies the characteristics of a data item.

This chapter describes the coding of data description entries and record description
entries (which are sets of data description entries). The single term data description
entry is used in this chapter to refer to data and record description entries.

Data description entries that define independent data items do not make up a record.
These are known as data item description entries

The data description entry has three general formats. All data description entries must
end with a separator period.

Format 1

Format 1 is used for data description entries in all Data Division sections.

—— Format 1

»»—Ilevel-number B] >
data-name-1 redefines-clause
FILLER

\4

|—bZank—when—zero—clauseJ I—e)(ter'nul—clauseJ I—global—cluuseJ

\ 4
v

I—just ified—clauseJ I—occur‘s—clauseJ ’—picture—clauseJ

v

|—s ign-clause—J |-synchron ized—cluuse—J |—usuge—cluuse—J

\ 4

\4
A

|—value-clauseJ |—date-format-cZauseJ

Note: The clauses can be written in any order with two exceptions:
If data-name or FILLER is specified, it must immediately follow the level-number.

When the REDEFINES clause is specified, it must immediately follow data-name or
FILLER, if either is specified. If data-name or FILLER is not specified, the REDE-
FINES clause must immediately follow the level-number.

Level-number in Format 1 can be any number from 01-49 or 77.

A space, a separator comma, or a separator semicolon must separate clauses.

© Copyright IBM Corp. 1991, 1998 159

Level-Numbers

Format 2
Format 2 regroups previously defined items.
—— Format 2
»>—66—data-name-1—renames-clause. ><
A level-66 entry cannot rename another level-66 entry, nor can it rename a level-01,
level-77, or level-88 entry.
All level-66 entries associated with one record must immediately follow the last data
description entry in that record.
Details are contained in “RENAMES Clause” on page 196.
Format 3

Format 3 describes condition-names.

—— Format 3

»»—88—condition-name-1—value-clause.

\4
A

condition-name
A user-specified name that associates a value, a set of values, or a range of
values with a conditional variable.

A conditional variable is a data item that can assume one or more values, that
can, in turn, be associated with a condition-name.

Format 3 can be used to describe both elementary and group items. Further informa-
tion on condition-name entries can be found under “VALUE Clause” on page 215.

Level-Numbers

The level-number specifies the hierarchy of data within a record, and identifies special-
purpose data entries. A level-number begins a data description entry, a renamed or
redefined item, or a condition-name entry. A level-number has a value taken from the
set of integers between 1 and 49, or from one of the special level-numbers, 66, 77, or
88.

— Format

»»>—Tlevel-number
data-name—lj
FILLER

\ 4
A

160 COBOL Language Reference

Level-Numbers

level-number
01 and 77 must begin in Area A and must be followed either by a separator period;
or by a space, followed by its associated data-name, FILLER, or appropriate data
description clause.

Level numbers 02 through 49 can begin in Areas A or B and must be followed by a
space or a separator period.

Level numbers 66 and 88 can begin in Areas A or B and must be followed by a
space.

Single-digit level-numbers 1 through 9 can be substituted for level-numbers 01
through 09.

Successive data description entries can start in the same column as the first or
they can be indented according to the level-number. Indentation does not affect
the magnitude of a level-number.

When level-numbers are indented, each new level-number can begin any number
of spaces to the right of Area A. The extent of indentation to the right is limited
only by the width of Area B.

For more information, see “Levels of Data” on page 135

data-name
Explicitly identifies the data being described.

If specified, a data-name identifies a data item used in the program. The data-
name must be the first word following the level-number.

The data item can be changed during program execution.

Data-name must be specified for level-66 and level-88 items. It must also be spec-
ified for any entry containing the GLOBAL or EXTERNAL clause, and for record
description entries associated with file description entries having the GLOBAL or
EXTERNAL clauses.

FILLER
Is a data item that is not explicitly referred to in a program. The key word FILLER
is optional. If specified, FILLER must be the first word following the level-number.

The key word FILLER can be used with a conditional variable, if explicit reference
is never made to the conditional variable but only to values it can assume. FILLER
cannot be used with a condition-name.

In a MOVE CORRESPONDING statement, or in an ADD CORRESPONDING or
SUBTRACT CORRESPONDING statement, FILLER items are ignored. In an INI-
TIALIZE statement, elementary FILLER items are ignored.

If the data-name or FILLER clause is omitted, the data item being described is treated
as though FILLER had been specified.

Part 5. Data Division 161

DATE FORMAT Clause

BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause specifies that an item contains nothing but spaces
when its value is zero.

—— Format

»—BLANK: ZERO
l—WH ENJ kZEROS
ZEROES

A\
A

The BLANK WHEN ZERO clause can be specified only for elementary numeric or
numeric-edited items. These items must be described, either implicitly or explicitly, as
USAGE IS DISPLAY. When the BLANK WHEN ZERO clause is specified for a
numeric item, the item is considered a numeric-edited item.

The BLANK WHEN ZERO clause must not be specified for level-66 or level-88 items.

The BLANK WHEN ZERO clause must not be specified for the same entry as the
PICTURE symbols S or *.

The BLANK WHEN ZERO clause is not allowed for:

¢ |tems described with the USAGE IS INDEX clause

¢ Date fields

e DBCS items

e External or internal floating-point items

e ltems described with USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or
USAGE IS OBJECT REFERENCE

DATE FORMAT Clause

The DATE FORMAT clause specifies that a data item is a windowed or expanded date
field:

Windowed date fields
Contain a windowed (2-digit) year, specified by a DATE FORMAT clause
containing YY.

Expanded date fields
Contain an expanded (4-digit) year, specified by a DATE FORMAT clause
containing YYYY.

If the NODATEPROC compiler option is in effect, the DATE FORMAT clause is syntax
checked, but has no effect on the execution of the program. NODATEPROC disables
date processing. The rules and restrictions described in this reference for the DATE
FORMAT clause and date fields apply only if the DATEPROC compiler option is in
effect.

162 COBOL Language Reference

DATE FORMAT Clause

— Format
»»—DATE FORMAT YY. ><
s Y Y XX——
YYXXX—
YYXXXX—
YYYY—
YYYYXX—
YYYYXXX—
YYYYXXXX—

DATE FORMAT... Specifies that the data item contains...

YY A windowed year.

YYXX A windowed year followed by 2 characters; for example, digits
representing a month (01-12).

YYXXX A windowed year followed by 3 characters; for example, digits
representing a day of the year (001-365).

YYXXXX A windowed year followed by 4 characters; for example, 2
digits representing a month and 2 digits representing a day of
the month.

YYYY An expanded year.

YYYYXX An expanded year followed by 2 characters.

YYYYXXX An expanded year followed by 3 characters.

YYYYXXXX An expanded year followed by 4 characters.

For an introduction to date fields and related terms, see “Millennium Language Exten-
sions and Date Fields” on page 58. For details on using date fields in applications, see
the IBM COBOL Programming Guide for your platform, or the IBM COBOL Millennium
Language Extensions Guide.

Semantics of Windowed Date Fields

Windowed date fields undergo automatic expansion relative to the century window
when they are used as operands in arithmetic expressions or arithmetic statements.
However, the result of incrementing or decrementing a windowed date is still treated as
a windowed date for further computation, comparison, and storing.

When used in the following situations, windowed date fields are treated as if they were
converted to expanded date format:

e Operands in subtractions in which the other operand is an expanded date

e Operands in relation conditions

¢ A sending field in COMPUTE or MOVE statements

The details of the conversion to expanded date format depend on whether the win-
dowed date field is numeric or alphanumeric.

Part 5. Data Division 163

DATE FORMAT Clause

| Given a century window starting year of 19nn, the year part (yy) of a numeric windowed
| date field is treated as if it was expanded as follows:

| e If yyis less than nn, then add 2000 to yy
| e If yyis equal to or greater than nn, then add 1900 to yy

| Alphanumeric windowed date fields are treated in a similar manner, but using a prefix
| of “19” or “20” instead of adding 1900 or 2000.

| For example, when used as an operand of a relation condition, a windowed date field
| defined by:

| 01 DATE-FIELD DATE FORMAT YYXXXX PICTURE 9(6)

| VALUE IS 450101.

| is treated as if it was an expanded date field with a value of:

| e 19450101, if the century window starting year is 1945 or earlier
[or
| e 20450101, if the century window starting year is later than 1945

| Restrictions On Using Date Fields
[The following pages describe restrictions on using date fields in these contexts:

e Combining the DATE FORMAT clause with other clauses

e Group items consisting only of a date field

e Language elements that treat date fields as non-dates

e Language elements that do not accept date fields as arguments

| For restrictions on using date fields in other contexts, see:

e “Arithmetic with Date Fields” on page 233

e “Date Fields” (in conditional expressions) on page 242
“ADD Statement” on page 280

e “SUBTRACT Statement” on page 422

¢ “MOVE Statement” on page 349

Combining the DATE FORMAT Clause with Other Clauses

The only phrases of the USAGE clause that can be combined with the DATE FORMAT
clause are DISPLAY and COMP-3 (or its equivalents, COMPUTATIONAL-3 and
PACKED-DECIMAL).

The PICTURE clause character-string must specify the same number of characters or
digits as the DATE FORMAT clause. For alphanumeric date fields, the only PICTURE
character-string symbols allowed are A, 9, and X, with at least one X. For numeric date
fields, the only PICTURE character-string symbol allowed is 9.

| The following clauses are not allowed for a data item defined with DATE FORMAT:

| BLANK WHEN ZERO
| JUSTIFIED
| SIGN

164 COBOL Language Reference

DATE FORMAT Clause

The EXTERNAL clause is not allowed for a windowed date field or a group item con-
taining a windowed date field subordinate item.

Some restrictions apply when combining the following clauses with DATE FORMAT:

REDEFINES (see page 192)
VALUE (see page 215)

Group Items That Are Date Fields
If a group item is defined with a DATE FORMAT clause, then the following restrictions

apply:
The elementary items in the group must all be USAGE DISPLAY.

The length of the group item must be one of the following, according to its DATE
FORMAT clause:

DATE FORMAT Clause Length of Group Item
YY 2 characters
YYXX 4 characters
YYXXX 5 characters
YYXXXX 6 characters
YYYY 4 characters
YYYYXX 6 characters
YYYYXXX 7 characters
YYYYXXXX 8 characters

If the group consists solely of a date field with USAGE DISPLAY, and both the
group and the single subordinate item have DATE FORMAT clauses, then the
DATE FORMAT clauses must be identical.

If the group item contains subordinate items that subdivide the group, then the fol-
lowing restrictions apply:

1.

If a named (not FILLER) subordinate item consists of exactly the year part of
the group item date field, and has a DATE FORMAT clause, then the DATE
FORMAT clause must be YY or YYYY, with the same number of year charac-
ters as the group item.

If the group item is a Gregorian date (that is, it has a DATE FORMAT clause
of YYXXXX or YYYYXXXX), and a named subordinate item consists of the
year and month part of the Gregorian date and has a DATE FORMAT clause,
then the DATE FORMAT clause must be either YYXX or YYYYXX, with the
same number of year characters as the group item.

The only subordinate items that can have a DATE FORMAT clause are those
that define exactly the year part of the group item, or the year and month part
of a Gregorian date group item, as discussed in the above two restrictions.

For example, the following defines a valid group item:

Part 5. Data Division 165

DATE FORMAT Clause

01 YYMMDD DATE FORMAT YYXXXX.

02 YYMM DATE FORMAT YYXX.

03 YY DATE FORMAT YY PICTURE 99.
03 PICTURE 99.
02 DD PICTURE 99.

Language Elements That Treat Date Fields As Non-Dates

If date fields are used in the following language elements, they are treated as non-
dates. That is, the DATE FORMAT is ignored, and the content of the date data item is
used without undergoing automatic expansion.

¢ In the Environment Division FILE-CONTROL paragraph:

SELECT ... ASSIGN USING data-name
SELECT ... PASSWORD IS data-name
SELECT ... FILE STATUS IS data-name

¢ In Data Division entries:

LABEL RECORD IS data-name

LABEL RECORDS ARE data-name

LINAGE IS data-name FOOTING data-name TOP data-name BOTTOM data-
name

¢ In class conditions
¢ |n DISPLAY statements

Language Elements That Do Not Accept Windowed Date Fields As
Arguments
Windowed date fields cannot be used as:

e Data-names in the following formats of the Environment Division FILE-CONTROL
paragraph:

SELECT ... RECORD KEY IS
SELECT ... ALTERNATE RECORD KEY IS
SELECT ... RELATIVE KEY IS

e A data-name in the RECORD IS VARYING DEPENDING ON clause of a Data
Division File Description (FD) or Sort Description (SD) entry.

e The object of an OCCURS DEPENDING ON clause of a Data Division data defi-
nition entry.

e The key in an ASCENDING KEY or DESCENDING KEY phrase of an OCCURS
clause of a Data Division data definition entry.

¢ The operand in a sign condition.
e Any data-name or identifier in the following statements:

CANCEL

ENTRY

GO TO ... DEPENDING ON
INSPECT

166 COBOL Language Reference

EXTERNAL Clause

SET

SORT
STRING
UNSTRING

e In the CALL statement, as the identifier containing the program name, an identifier
in the USING phrase, or the identifier in the RETURNING phrase.

e In the INVOKE statement, as the identifier specifying the object on which the
method is invoked, the identifier containing the method name, an identifier in the
USING phrase, or the identifier in the RETURNING phrase.

e Identifiers in the TIMES and VARYING phrases of the PERFORM statement (win-
dowed date fields are allowed in the PERFORM conditions).

¢ An identifier in the VARYING phrase of a serial (format 1) SEARCH statement, or
any identifier in a binary (format 2) SEARCH statement (windowed date fields are
allowed in the SEARCH conditions).

¢ An identifier in the ADVANCING phrase of the WRITE statement.

e Arguments to intrinsic functions, except the UNDATE intrinsic function.

Workstation

Under AIX, OS/2, and Windows, windowed date fields cannot be used as ascending or
descending keys in MERGE or SORT statements.

Workstation

Under OS/390 and VM, windowed date fields can be used as ascending or descending
keys in MERGE and SORT statements, with some restrictions. For details, see
“MERGE Statement” on page 342 and “SORT Statement” on page 404.

Language Elements That Do Not Accept Date Fields As Arguments
Neither windowed date fields nor expanded date fields can be used:

e In the DIVIDE statement, except as an identifier in the GIVING or REMAINDER
clause.

e In the MULTIPLY statement, except as an identifier in the GIVING clause.

(Date fields cannot be used as operands in division or multiplication.)

EXTERNAL Clause

The EXTERNAL clause specifies that the storage associated with a data item is associ-
ated with the run unit rather than with any particular program or method within the run
unit. An external data item can be referenced by any program or method in the run unit
that describes the data item. References to an external data item from different pro-

Part 5. Data Division 167

GLOBAL Clause

grams or methods using separate descriptions of the data item are always to the same
data item. In a run unit, there is only one representative of an external data item.

The EXTERNAL clause can be specified only in data description entries whose level-
number is 01. It can only be specified on data description entries that are in the
Working-Storage Section of a program or method. It cannot be specified in Linkage
Section or File Section data description entries. Any data item described by a data
description entry subordinate to an entry describing an external record also attains the
EXTERNAL attribute. Indexes in an external data record do not possess the external
attribute.

The data contained in the record named by the data-name clause is external and can
be accessed and processed by any program or method in the run unit that describes
and, optionally, redefines it. This data is subject to the following rules:

e If two or more programs or methods within a run unit describe the same external
data record, each record-name of the associated record description entries must be
the same and the records must define the same number of standard data format
characters. However, a program or method that describes an external record can
contain a data description entry including the REDEFINES clause that redefines
the complete external record, and this complete redefinition need not occur iden-
tically in other programs or methods in the run unit.

e Use of the EXTERNAL clause does not imply that the associated data-name is a
global name.

¢ You cannot specify the EXTERNAL clause for a windowed date field, or for a group
item containing a windowed date field.

GLOBAL Clause

The GLOBAL clause specifies that a data-name is available to every program contained
within the program that declares it, as long as the contained program does not itself
have a declaration for that name. All data-names subordinate to or condition-names or
indexes associated with a global name are global names.

A data-name is global if the GLOBAL clause is specified either in the data description
entry by which the data-name is declared or in another entry to which that data
description entry is subordinate. The GLOBAL clause can be specified in the Working-
Storage Section, the File Section, the Linkage Section, and the Local-Storage Section,
but only in data description entries whose level-number is 01.

In the same Data Division, the data description entries for any two data items for which
the same data-name is specified must not include the GLOBAL clause.

A statement in a program contained directly or indirectly within a program which
describes a global name can reference that name without describing it again.

Two programs in a run unit can reference common data in the following circumstances:

168 COBOL Language Reference

JUSTIFIED Clause

1. The data content of an external data record can be referenced from any program
provided that program has described that data record.

2. If a program is contained within another program, both programs can refer to data
possessing the global attribute either in the containing program or in any program
that directly or indirectly contains the containing program.

JUSTIFIED Clause

The JUSTIFIED clause overrides standard positioning rules for a receiving item of the
alphabetic or alphanumeric categories.

—— Format

JUSTIFIED
JUST4 I—RIGHTJ

A\
A

You can only specify the JUSTIFIED clause at the elementary level. JUST is an abbre-
viation for JUSTIFIED, and has the same meaning.

You cannot specify the JUSTIFIED clause:

e For numeric, numeric-edited, or alphanumeric-edited items

¢ In descriptions of items described with the USAGE IS INDEX clause

e For items described as USAGE IS POINTER, USAGE IS PROCEDURE-POINTER,
or USAGE IS OBJECT REFERENCE

e For external or internal floating-point items

e For an edited DBCS item

e For date fields

¢ With level-66 (RENAMES) and level-88 (condition-name) entries

When the JUSTIFIED clause is specified for a receiving item, the data is aligned at the
rightmost character position in the receiving item. Also:

¢ |If the sending item is larger than the receiving item, the leftmost characters are
truncated.

¢ If the sending item is smaller than the receiving item, the unused character posi-
tions at the left are filled with spaces.

The JUSTIFIED clause can be specified for a DBCS item (except edited DBCS items).
When JUSTIFIED is specified for a receiving item, the data is aligned on the rightmost
character position. If the sending item is larger than the receiving item, extra charac-
ters are truncated on the left. If the sending item is smaller than the receiving item, any
unused positions on the left are filled with DBCS blanks.

If you omit the JUSTIFIED clause, the rules for standard alignment are followed (see
“Alignment Rules” on page 139).

The JUSTIFIED clause does not affect initial settings, as determined by the VALUE
clause.

Part 5. Data Division 169

OCCURS Clause

OCCURS Clause

The Data Division clauses used for table handling are the OCCURS clause and
USAGE IS INDEX clause. For the USAGE IS INDEX description, see “USAGE Clause”
on page 207.

The OCCURS clause specifies tables whose elements can be referred to by indexing or
subscripting. It also eliminates the need for separate entries for repeated data items.

Formats for the OCCURS clause include fixed-length tables or variable-length tables.

The subject of an OCCURS clause is the data-name of the data item containing the
OCCURS clause. Except for the OCCURS clause itself, data description clauses used
with the subject apply to each occurrence of the item described.

Whenever the subject of an OCCURS clause or any data-item subordinate to it is refer-
enced, it must be subscripted or indexed with the following exceptions:

¢ When the subject of the OCCURS clause is used as the subject of a SEARCH
statement.

¢ When the subject or subordinate data item is the object of the
ASCENDING/DESCENDING KEY clause.

e When the subordinate data item is the object of the REDEFINES clause.
When subscripted or indexed, the subject refers to one occurrence within the table.
When not subscripted or indexed, the subject represents the entire table.

The OCCURS clause cannot be specified in a data description entry that:
¢ Has a level number of 01, 66, 77, or 88.

e Describes a redefined data item. (However, a redefined item can be subordinate
to an item containing an OCCURS clause.) See “REDEFINES Clause” on
page 192.

Fixed-Length Tables
Fixed-length tables are specified using the OCCURS clause. Because seven sub-
scripts or indexes are allowed, six nested levels and one outermost level of the Format
1 OCCURS clause are allowed. The Format 1 OCCURS clause can be specified as
subordinate to the OCCURS DEPENDING ON clause. In this way, a table of up to
seven dimensions can be specified.

170 COBOL Language Reference

OCCURS Clause

—— Format 1—Fixed-Length Tables
»»—0CCURS—integer-2 >
Ly imes

,——t |

LEASCEND NG ! data—name—?j—‘

DESCENDINGJ |—KEYJ |—ISJ

BY

integer-2
The exact number of occurrences. Integer-2 must be greater than zero.

\4

\é
A

ASCENDING/DESCENDING KEY Phrase
Data is arranged in ascending or descending order (depending on the key word speci-
fied) according to the values contained in data-name-2. The data-names are listed in
their descending order of significance.

The order is determined by the rules for comparison of operands (see “Relation
Condition” on page 241). The ASCENDING and DESCENDING KEY data items are
used in OCCURS clauses and the SEARCH ALL statement for a binary search of the
table element.

data-name-2
Must be the name of the subject entry, or the name of an entry subordinate to the
subject entry. Data-name-2 cannot be a windowed date field. Data-name-2 can
be qualified.

If data-name-2 names the subject entry, that entire entry becomes the
ASCENDING/DESCENDING KEY, and is the only key that can be specified for this
table element.

If data-name-2 does not name the subject entry, then data-name-2:

¢ Must be subordinate to the subject of the table entry itself

e Must not be subordinate to, or follow, any other entry that contains an
OCCURS clause

e Must not contain an OCCURS clause.

Data-name-2 must not have subordinate items that contain OCCURS DEPENDING
ON clauses.

When the ASCENDING/DESCENDING KEY phrase is specified, the following rules
apply:
e Keys must be listed in decreasing order of significance.

¢ The total number of keys for a given table element must not exceed 12.

Part 5. Data Division 171

OCCURS Clause

¢ You must arrange the data in the table in ASCENDING or DESCENDING
sequence according to the collating sequence in use.

e A key can have DISPLAY, BINARY, PACKED-DECIMAL, or COMPUTATIONAL
usage.

e The sum of the lengths of all the keys associated with one table element must not
exceed 256.

. Under OS/390 and VM, a key can have COMPUTATIONAL-1,
COMPUTATIONAL-2, COMPUTATIONAL-3, or COMPUTATIONAL-4 usage.

o NEZEEE» Under AIX, OS/2, and Windows, a key can have
COMPUTATIONAL-1, COMPUTATIONAL-2, COMPUTATIONAL-3,
COMPUTATIONAL-4, or COMPUTATIONAL-5 usage.

e The ASCENDING/DESCENDING KEY phrase (for a SEARCH ALL statement only)
can be specified in the OCCURS clause for a DBCS item.

e If a key is specified without qualifiers and it is not a unique name, the key will be
implicitly qualified with the subject of the OCCURS clause and all qualifiers of the
OCCURS clause subject.

The following example illustrates the specification of ASCENDING KEY data item:

WORKING-STORAGE SECTION.
01 TABLE-RECORD.
05 EMPLOYEE-TABLE OCCURS 100 TIMES
ASCENDING KEY IS WAGE-RATE EMPLOYEE-NO
INDEXED BY A, B.

10 EMPLOYEE-NAME PIC X(20).
10 EMPLOYEE-NO PIC 9(6).
10 WAGE-RATE PIC 9999V99.

10 WEEK-RECORD OCCURS 52 TIMES
ASCENDING KEY IS WEEK-NO INDEXED BY C.

15 WEEK-NO PIC 99.
15 AUTHORIZED-ABSENCES PIC 9.
15 UNAUTHORIZED-ABSENCES PIC 9.
15 LATE-ARRIVALS PIC 9.

The keys for EMPLOYEE-TABLE are subordinate to that entry, while the key for
WEEK-RECORD is subordinate to that subordinate entry.

In the preceding example, records in EMPLOYEE-TABLE must be arranged in
ascending order of WAGE-RATE, and in ascending order of EMPLOYEE-NO within
WAGE-RATE. Records in WEEK-RECORD must be arranged in ascending order of
WEEK-NO. If they are not, results of any SEARCH ALL statement will be unpredict-
able.

172 COBOL Language Reference

OCCURS Clause

INDEXED BY Phrase
The INDEXED BY phrase specifies the indexes that can be used with a table. The
INDEXED BY phrase is required if indexing is used to refer a this table element. See
“Subscripting Using Index-Names (Indexing)” on page 51.

A table without an INDEXED BY option can be referred to through indexing.

Indexes normally are allocated in static memory associated with the program containing
the table. Thus, indexes are in the last-used state when a program is reentered.
However, in the following cases, indexes are allocated on a per-invocation basis. Thus,
you must SET the value of the index on every entry for indexes on tables in the:

e Local-Storage Section
e Working-Storage Section of a class definition (object instance variables)
e Linkage Section of a:

— Method
— Program compiled with the RECURSIVE attribute
— Program compiled with the THREAD option (Workstation Only)

Note: Indexes specified in an External data record do not possess the external attri-
bute.

index-name-1
Must follow the rules for formation of user-defined words. At least one character
must be alphabetic.

Each index-name specifies an index to be created by the compiler for use by the
program. These index-names are not data-names, and are not identified else-
where in the COBOL program; instead, they can be regarded as private special
registers for the use of this object program only. They are not data, or part of any
data hierarchy.

As an IBM extension, unreferenced index names need not be uniquely defined.
In one table entry, up to 12 index-names can be specified.

If a data item possessing the GLOBAL attribute includes a table accessed with an
index, that index also possesses the GLOBAL attribute. Therefore, the scope of an
index-name is identical to that of the data-name which names the table whose
index is named by that index-name and the scope of name rules for data-names

apply.

Part 5. Data Division 173

OCCURS DEPENDING ON Clause

Variable-Length Tables
Variable-length tables are specified using the OCCURS DEPENDING ON clause.

—— Format 2—Variable-Length Tables

»—OCCURS—integer—l—ﬂ-)—TO—integer-Z—L—_'—DEPENDING] >
TIMES ON

| >

»—data-name-1 v >
L[ASCENDIPJG data-name-2:

DESCENDINGuJ |—KEYJ |—ISJ

Luosser———Conaorname i1
BY

Note:
1 Integer-1 is optional as an IBM extension. If integer-1 is omitted, a value of
1 is assumed and the key word TO must also be omitted.

integer-1
The minimum number of occurrences.

The value of integer-1 must be greater than or equal to zero; it must also be less
than the value of integer-2.

integer-2
The maximum number of occurrences.

Integer-2 must be greater than integer-1.

The length of the subject item is fixed; it is only the number of repetitions of the
subject item that is variable.

OCCURS DEPENDING ON Clause
The OCCURS DEPENDING ON clause specifies variable-length tables.

data-name-1
Specifies the object of the OCCURS DEPENDING ON clause; that is, the data
item whose current value represents the current number of occurrences of the
subject item. The contents of items whose occurrence numbers exceed the value
of the object are undefined.

The object of the OCCURS DEPENDING ON clause must describe an integer data
item. The object cannot be a windowed date field.

The object of the OCCURS DEPENDING ON clause must not occupy any storage
position within the range of the table (that is, any storage position from the first
character position in the table through the last character position in the table).

The object of the OCCURS DEPENDING ON clause may not be variably located;
the object cannot follow an item that contains an OCCURS DEPENDING ON
clause.

174 COBOL Language Reference

OCCURS DEPENDING ON Clause

If the OCCURS clause is specified in a data description entry included in a record
description entry containing the EXTERNAL clause, data-name-1, if specified, must
reference a data item possessing the external attribute which is described in the
same Data Division.

If the OCCURS clause is specified in a data description entry subordinate to one
containing the GLOBAL clause, data-name-1, if specified, must be a global nhame
and must reference a data item which is described in the same Data Division.

At the time that the group item, or any data item that contains a subordinate OCCURS
DEPENDING ON item or that follows but is not subordinate to the OCCURS
DEPENDING ON item, is referenced, the value of the object of the OCCURS
DEPENDING ON clause must fall within the range integer-1 through integer-2.

When a group item containing a subordinate OCCURS DEPENDING ON item is
referred to, the part of the table area used in the operation is determined as follows:

¢ |If the object is outside the group, only that part of the table area that is specified by
the object at the start of the operation will be used.

¢ If the object is included in the same group and the group data item is referenced
as a sending item, only that part of the table area that is specified by the value of
the object at the start of the operation will be used in the operation.

¢ |f the object is included in the same group and the group data item is referenced
as a receiving item, the maximum length of the group item will be used in the oper-
ation.

Following are the verbs that are affected by the maximum length rule:

¢ ACCEPT identifier (Format 1 and 2)
e CALL ... USING BY REFERENCE

¢ [INVOKE ... USING BY REFERENCE
¢ MOVE ... TO identifier

e READ ... INTO identifier

e RELEASE identifier FROM ...

¢ RETURN ... INTO identifier

¢ REWRITE identifier FROM ...

e STRING ... INTO identifier

¢ UNSTRING ... INTO identifier DELIMITER IN identifier
¢ WRITE identifier FROM ...

The maximum length of variable-length groups is always used when they appear as the
identifier on the CALL ... USING BY REFERENCE identifier statement. Therefore, the
object of the OCCURS DEPENDING ON clause does not need to be set, unless the
group is variably-located.

If the group item is followed by a non-subordinate item, the actual length, rather than
the maximum length, will be used. At the time the subject of entry is referenced, or any
data item subordinate or superordinate to the subject of entry is referenced, the object
of the OCCURS DEPENDING ON clause must fall within the range integer-1 through
integer-2.

Part 5. Data Division 175

PICTURE Clause

In one record description entry, any entry that contains an OCCURS DEPENDING ON
clause can be followed only by items subordinate to it.

The OCCURS DEPENDING ON clause cannot be specified as subordinate to another
OCCURS clause.

The following constitute complex OCCURS DEPENDING ON:

e Subordinate items can contain OCCURS DEPENDING ON clauses.

e Entries containing an OCCURS DEPENDING ON clause can be followed by non-
subordinate items. Non-subordinate items, however, cannot be the object of an
OCCURS DEPENDING ON clause.

e The location of any subordinate or non-subordinate item, following an item con-
taining an OCCURS DEPENDING ON clause, is affected by the value of the
OCCURS DEPENDING ON object.

e Entries subordinate to the subject of an OCCURS DEPENDING ON clause can
contain OCCURS DEPENDING ON clauses.

¢ When implicit redefinition is used in a File Description (FD) entry, subordinate level
items can contain OCCURS DEPENDING ON clauses.

e The INDEXED BY phrase can be specified for a table that has a subordinate item
that contains an OCCURS DEPENDING ON clause.

For more information on complex OCCURS DEPENDING ON, see the IBM COBOL
Programming Guide for your platform.

All data-names used in the OCCURS clause can be qualified; they can not be sub-
scripted or indexed.

The ASCENDING/DESCENDING KEY and INDEXED BY clauses are described under
“Fixed-Length Tables” on page 170.

PICTURE Clause

The PICTURE clause specifies the general characteristics and editing requirements of
an elementary item.

—— Format

PICTURE: character-string
PIC 1N

\
A

PICTURE or PIC
The PICTURE clause must be specified for every elementary item except an index
data item or the subject of the RENAMES clause. In these cases, use of this
clause is prohibited.

The PICTURE clause can be specified only at the elementary level.

176 COBOL Language Reference

PICTURE Clause

PIC is an abbreviation for PICTURE and has the same meaning.

character-string
PICTURE character-string is made up of certain COBOL characters used as
symbols. The allowable combinations determine the category of the elementary
data item.

The PICTURE character-string can contain a maximum of 30 characters.

The PICTURE clause is not allowed:

¢ For index data items or the subject of the RENAMES clause

¢ |In descriptions of items described with USAGE IS INDEX

e For USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or USAGE IS
OBJECT REFERENCE data items

e For internal floating-point data items

Symbols Used in the PICTURE Clause
The meaning of each PICTURE clause symbol is defined in Table 12 on page 178.
The sequence in which PICTURE clause symbols must be specified is shown in
Figure 6 on page 181. More detailed explanations of PICTURE clause symbols follow
the figures.

Any punctuation character appearing within the PICTURE character-string is not consid-
ered a punctuation character, but rather a PICTURE character-string symbol.

When specified in the SPECIAL-NAMES paragraph, DECIMAL-POINT IS COMMA
exchanges the functions of the period and the comma in PICTURE character strings
and in numeric literals.

The lowercase letters corresponding to the uppercase letters representing the following
PICTURE symbols are equivalent to their uppercase representations in a PICTURE
character-string:

A, B, P, S, V, X, Z, CR, DB

E, G, N

The heading Size refers to the number of bytes the symbol contributes to the actual
size of the data item.

Part 5. Data Division 177

PICTURE Clause

Table 12 (Page 1 of 3). PICTURE Clause Symbol Meanings

Symbol Meaning Size Restrictions
A A character position that can Occupies 1 byte
contain only a letter of the
alphabet or a space.
B For Non-DBCS data—a char- Occupies 1 byte
acter position into which the
space character is inserted.
For DBCS data—a character Occupies 2 bytes
position into which a DBCS
space is inserted. Represents
a single DBCS character posi-
tion containing a DBCS space.
E Marks the start of the expo- Occupies 1 byte
nent in an external floating-
point item.
G A DBCS character position Occupies 2 bytes Cannot be specified for a
non-DBCS item.
Under AlIX, OS/2, and Windows,
the locale you select must indi-
cate a DBCS code page. For
information on locale, see
Appendix F, “Locale Consider-
ations (Workstation Only)” on
page 564.
N A DBCS character position Occupies 2 bytes Cannot be specified for a
non-DBCS item.
Under AlX, OS/2, and Windows
the locale you select must indi-
cate a DBCS code page. For
information on locale, see
Appendix F, “Locale Consider-
ations (Workstation Only)” on
page 564.
P An assumed decimal scaling Not counted in the size of the Can appear only as a contin-

position. Used to specify the
location of an assumed
decimal point when the point
is not within the number that
appears in the data item. See
also “P Symbol” on page 182.

data item. Scaling position
characters are counted in
determining the maximum
number of digit positions (18)
in numeric-edited items or in
items that appear as arith-
metic operands.

The size of the value is the
number of digit positions
represented by the PICTURE
character-string.

uous string of Ps in the leftmost
or rightmost digit positions within
a PICTURE character-string.

178 COBOL Language Reference

PICTURE Clause

Table 12 (Page 2 of 3). PICTURE Clause Symbol Meanings

the numeral zero is inserted.

of the data item.

Symbol Meaning Size Restrictions
S An indicator of the presence Not counted in determining Must be written as the leftmost
(but not the representation the size of the elementary character in the PICTURE string.
nor, necessarily, the position) item, unless an associated
of an operational sign. An SIGN clause specifies the
operational sign indicates SEPARATE CHARACTER
whether the value of an item phrase (which would occupy 1
involved in an operation is byte).
positive or negative.
\% An indicator of the location of Not counted in the size of the Can appear only once in a
the assumed decimal point. elementary item character-string.
Does not represent a char-
acter position.
When the assumed decimal
point is to the right of the
rightmost symbol in the string,
the V is redundant.
X A character position that can Occupies 1 byte
contain any allowable char-
acter from the character set of
the computer.
z A leading numeric character Each 'Z' is counted in the size
position. When that position of the data item.
contains a zero, a space char-
acter replaces the zero.
9 A character position that con- Each '9' is counted in the size
tains a numeral. of the data item.
0 A character position into which Each '0' is counted in the size

A character position into which
the slash character is inserted.

Each '/' is counted in the size
of the data item.

A character position into which
a comma is inserted.

Each '," is counted in the size
of the data item.

If the comma insertion character
is the last symbol in the
PICTURE character-string, the
PICTURE clause must be the
last clause of the data
description entry and must be
immediately followed by the sep-
arator period.

A trailing comma insertion char-
acter can be immediately fol-
lowed by the separator comma
or separator semicolon; in this
case, the PICTURE clause need
not be the last clause of the
data description entry.

Part 5. Data Division 179

PICTURE Clause

Table 12 (Page 3 of 3). PICTURE Clause Symbol Meanings

Symbol

Meaning

Size

Restrictions

An editing symbol that repres-
ents the decimal point for
alignment purposes. In addi-
tion, it represents a character
position into which a period is
inserted.

Each " is counted in the size

of the data item.

If the period insertion character
is the last symbol in the
PICTURE character-string, the
PICTURE clause must be the
last clause of that data
description entry and must be
immediately followed by the sep-
arator period.

A trailing period insertion char-
acter can be immediately fol-
lowed by the separator comma
or separator semicolon; in this
case, the PICTURE clause need
not be the last clause of the
data description entry.

CR
DB

Editing sign control symbols.

Each represents the character
position into which the editing
sign control symbol is placed.

Each character used in the
symbol is counted in deter-
mining the size of the data
item.

The symbols are mutually exclu-
sive in one character-string.

A check protect symbol—a
leading numeric character
position into which an asterisk
is placed when that position
contains a zero.

Each asterisk (*) is counted in

the size of the item.

A character position into which
a currency symbol is placed.
See also “Currency Symbol”
on page 182.

The currency symbol is

counted in the size of the data

item.

Figure 6 on page 181 shows the sequence in which PICTURE clause symbols must be

specified.

180 COBOL Language Reference

PICTURE Clause

;'\TSEOL Non-Floating Floating Other Symbols
Insertion Symbols Insertion Symbols

SECOND + [+ [cr ZZ+ [+ A

SYMBOL B|O {-}-}DB} {*{*}[}}ﬂ? $|9|x|s|Vv|P]|P
Ble|oe|oe|e|e]|e oo (0o |0o|e|0| 0| ° °
o|le|e|e|e|e|e oo |0 |0o|e|0| 0| ° °
/] |e|o |e|e0 |0 |e@ o oo (0|00 0fe ° °

g oo |o|0o|0o|e e oo |0 0 0|0 ° °

Lz

g_g oo (oo ° o o ° L4

°a [

& N

2>

%% {+ oo 0|0 |e o e e oo R

o®

c {gg}o e oo e o e oo | e oo e
$ °

_ E}o oo e ° °

Z

(2 {f oo |o|e 0|0 o |e ° °

B R

5o {+}o o oo °

Z> =

g% {+ oo |00 e ol e ° °

@ $|e|e|o|e@ ° °

(@)

r-

® s |e|e|o|e|e|e oo ° °
9|le|e (e |e|e @ [[° o | o o0 |0 ®
A
x|o|o|e o | o
S

%)

SQ|V|e|e|e]|e ° ° ° ° ° ° °

T

8g Ple|e|e]|e ° ° ° ° ° ° °

»
P ° eo|e []

Figure 6. PICTURE Clause Symbol Sequence

Figure Legend:

{}

Closed circle indicates that the symbol(s) at the top of
the column can, in a given character-string, appear any-
where to the left of the symbol(s) at the left of the row.

Closed square indicates that the item is an IBM exten-
sion.

Braces indicate items that are mutually exclusive.

Part 5. Data Division 181

PICTURE Clause

Symbols that appear twice Nonfloating insertion symbols + and -, floating insertion
symbols Z, *, +, -, and $, and the symbol P appear
twice. The leftmost column and uppermost row for each
symbol represents its use to the left of the decimal point
position. The second appearance of the symbol in the
table represents its use to the right of the decimal point
position.

P Symbol

Because the scaling position character P implies an assumed decimal point (to the left
of the Ps, if the Ps are leftmost PICTURE characters; to the right of the Ps, if the Ps
are rightmost PICTURE characters), the assumed decimal point symbol, V, is redun-
dant as either the leftmost or rightmost character within such a PICTURE description.

In certain operations that reference a data item whose PICTURE character-string con-
tains the symbol P, the algebraic value of the data item is used rather than the actual
character representation of the data item. This algebraic value assumes the decimal
point in the prescribed location and zero in place of the digit position specified by the
symbol P. The size of the value is the number of digit positions represented by the
PICTURE character-string. These operations are any of the following:

¢ Any operation requiring a numeric sending operand.

¢ A MOVE statement where the sending operand is numeric and its PICTURE
character-string contains the symbol P.

¢ A MOVE statement where the sending operand is numeric-edited and its PICTURE
character-string contains the symbol P and the receiving operand is numeric or
numeric-edited.

¢ A comparison operation where both operands are numeric.

In all other operations the digit positions specified with the symbol P are ignored and
are not counted in the size of the operand.

Currency Symbol

The currency symbol in a character-string is represented either by the symbol $ or by
the single character specified in the CURRENCY compiler option or in the CURRENCY
SIGN clause in the SPECIAL-NAMES paragraph of the Environment Division.

If the NOCURRENCY compiler option is in effect, the $ character is the default value
for the currency symbol.

Character-String Representation
Symbols That Can Appear More Than Once
The following symbols can appear more than once in one PICTURE character-
string:

ABPXZ960 / , + - %3
G N

At least one of the symbols A, X, Z, 9, or *, or at least two of the symbols +, -, or $
must be present in a PICTURE string.

182 COBOL Language Reference

PICTURE Clause

The symbol G or N can appear alone in the PICTURE character-string.

An unsigned nonzero integer enclosed in parentheses immediately following any of
these symbols specifies the number of consecutive occurrences of that symbol.

Example: The following two PICTURE clause specifications are equivalent:
PICTURE IS $99999.99CR

PICTURE IS $9(5).9(2)CR

Symbols That Can Appear Only Once
The following symbols can appear only once in one PICTURE character-string:

S VvV . CR DB
E

Except for the PICTURE symbol V, each time any of the above symbols appears in
the character-string, it represents an occurrence of that character or set of allow-
able characters in the data item.

Data Categories and PICTURE Rules

The allowable combinations of PICTURE symbols determine the data category of the
item:

¢ Alphabetic items

¢ Numeric Items

¢ Numeric-edited items

¢ Alphanumeric items

¢ Alphanumeric-edited items
e DBCS items

e External floating-point items

Alphabetic Items
The PICTURE character-string can contain only the symbol A.

The contents of the item in standard data format must consist of any of the letters of
the English alphabet and the space character.

Other Clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify a nonnumeric literal containing only alpha-
betic characters, SPACE, or a symbolic-character as the value of a figurative constant.

Numeric Items
Types of numeric items are:

e Binary
¢ Packed decimal (internal decimal)
e Zoned decimal (external decimal)

The PICTURE character-string can contain only the symbols 9, P, S, and V. For
numeric date fields, the PICTURE character-string can contain only the symbol 9.

Part 5. Data Division 183

PICTURE Clause

The number of digit positions must range from 1 through 18, inclusive. For numeric
date fields, the number of digit positions must match the number of characters specified
by the DATE FORMAT clause.

If unsigned, the contents of the item in standard data format must contain a combina-
tion of the Arabic numerals 0-9. If signed, it may also contain a +, —, or other represen-
tation of the operational sign.

Examples of Valid Ranges
PICTURE Valid Range of Values

9999 0 through 9999
S99 -99 through +99
S999V9 -999.9 through +999.9
PPP999 0 through .000999
S999PPP -1000 through -999000 and
+1000 through +999000 or zero

Other Clauses: The USAGE of the item can be DISPLAY, BINARY, COMPUTA-
TIONAL, PACKED-DECIMAL, COMPUTATIONAL-3, COMPUTATIONAL-4, or
COMPUTATIONAL-5.

A VALUE clause can specify a figurative constant ZERO.

A VALUE clause associated with an elementary numeric item must specify a numeric
literal or the figurative constant ZERO. A VALUE clause associated with a group item
consisting of elementary numeric items must specify a nonnumeric literal or a figura-
tive constant, because the group is considered alphanumeric. In both cases, the literal
is treated exactly as specified; no editing is performed.

The NUMPROC, TRUNC, and BINARY compiler options can affect the use of numeric
data items. For details, see the IBM COBOL Programming Guide for your platform.
(Note, the BINARY compiler option is only applicable to OS/2 and Windows programs.)

Numeric-edited Items
The PICTURE character-string can contain the following symbols:

B PV Z90O / , . + - CRDB * §

The combinations of symbols allowed are determined from the PICTURE clause symbol
order allowed (see Figure 6 on page 181), and the editing rules (see “PICTURE
Clause Editing” on page 187).

The following rules also apply:

e Either the BLANK WHEN ZERO clause must be specified for the item, or the string
must contain at least one of the following symbols:

B / Z ©® , . » + - CR DB §$

e The number of digit positions represented in the character-string must be in the
range 1 through 18, inclusive.

184 COBOL Language Reference

PICTURE Clause

¢ The total number of character positions in the string (including editing-character
positions) must not exceed 249.

The contents of those character positions representing digits in standard data format
must be one of the 10 Arabic numerals.

Other Clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify a nonnumeric literal or a figurative con-
stant. The literal is treated exactly as specified; no editing is done.

Alphanumeric Items
The PICTURE character-string must consist of either of the following:

e The symbol X

¢ Combinations of the symbols A, X, and 9 (A character-string containing all As or all
9s does not define an alphanumeric item.)

The item is treated as if the character-string contained only the symbol X.

The contents of the item in standard data format may be any allowable characters from
the character set of the computer.

Other Clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify a nonnumeric literal or a figurative con-
stant.

Alphanumeric-edited Items
The PICTURE character-string can contain the following symbols:

AX 9 B 0 /
The string must contain at least one A or X, and at least one B or 0 (zero) or /.

The contents of the item in standard data format must be two or more characters from
the character set of the computer.

Other Clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify a nonnumeric literal or a figurative con-
stant. The literal is treated exactly as specified; no editing is done.

DBCS ltems
The PICTURE character-string can contain the symbol(s) G, G and B, or N. Each G, B
or N represents a single DBCS character position.

The entire range of characters for a DBCS literal can be used.

Part 5. Data Division 185

PICTURE Clause

Under AIX, OS/2, and Windows, do not include a single byte character of
a DBCS code page in a DBCS data item. (The locale you select must indicate a DBCS
code page. For information on locale, see Appendix F, “Locale Considerations (Work-
station Only)” on page 564.)

For a code page with characters represented in double bytes, the following padding and
truncation rules apply:

e Padding—For DBCS data items, padding is done using the double byte space

characters until the data area is filled (based on the number of byte positions allo-
cated for the data item).

Single-byte characters are used for padding when the padding needed is not a
multiple of the code page width (for example, a group item moved to a DBCS data
item).

e Truncation—For DBCS data items, truncation is done based on the size of the
target data area on the byte boundary of the end of the data area. You must
ensure that a truncation does not result in truncation of bytes representing a partial

DBCS character.

Other Clauses: When PICTURE clause symbol G is used, USAGE DISPLAY-1 must
be specified.

When PICTURE clause symbol N is used, USAGE DISPLAY-1 is assumed and does
not need to be specified.

Any associated VALUE clause must specify a DBCS literal or the figurative constant
SPACE/SPACES.

External Floating-point Items
— Format

antissa E exponent—»<
E + El E req .+ 3

+0r —
A sign character must immediately precede both the mantissa and the exponent.

A + sign indicates that a positive sign will be used in the output to represent posi-
tive values and that a negative sign will represent negative values.

A - sign indicates that a blank will be used in the output to represent positive
values and that a negative sign will represent negative values.

Each sign position occupies one byte of storage.

186 COBOL Language Reference

PICTURE Clause

mantissa
The mantissa can contain the symbols:

9.V

An actual decimal point can be represented with a period (.) while an assumed
decimal point is represented by a V.

Either an actual or an assumed decimal point must be present in the mantissa; the
decimal point can be leading, embedded, or trailing.

The mantissa can contain from 1 to 16 numeric characters.
E Indicates the exponent.

exponent
The exponent must consist of the symbol 99.

Other Clauses: The OCCURS, REDEFINES, RENAMES, and USAGE clauses may
be associated with external floating-point items.

The SIGN clause is accepted as documentation and has no effect on the representation
of the sign.

The SYNCHRONIZED clause is treated as documentation.

The following clauses are invalid with external floating-point items:

e BLANK WHEN ZERO
e JUSTIFIED
e VALUE

PICTURE Clause Editing
There are two general methods of editing in a PICTURE clause:

¢ Insertion editing

— Simple insertion
Special insertion
Fixed insertion

Floating insertion

e Suppression and replacement editing

— Zero suppression and replacement with asterisks
— Zero suppression and replacement with spaces.

The type of editing allowed for an item depends on its data category . The type of
editing that is valid for each category is shown in Table 13 on page 188.

Part 5. Data Division 187

PICTURE Clause

Table 13. Data Categories

Data Category Type of Editing Insertion Symbol
Alphabetic None None
Numeric None None
Numeric-edited Simple insertion BO/,

Special insertion

Fixed insertion $+-CRDB
Floating insertion $+-
Zero suppression Z*
Replacement Z*+-$
Alphanumeric None None
Alphanumeric-edited Simple insertion BO/
DBCS Simple insertion B
External floating-point Special insertion

Simple Insertion Editing
This type of editing is valid for alphanumeric-edited, numeric-edited, and DBCS items.

Each insertion symbol is counted in the size of the item, and represents the position
within the item where the equivalent character is to be inserted. For edited DBCS
items, each insertion symbol (B) is counted in the size of the item and represents the
position within the item where the DBCS space is to be inserted.

For example:
PICTURE Value of Data Edited Result
X(10) /XX ALPHANUMERO1 ALPHANUMER/01
X(5)BX(7) ALPHANUMERIC ALPHA NUMERIC
99,B999,B000 1234 01,b234,b000
99,999 12345 12,345
GGBBGG D1D2D3D4 D1D2bbbbD3D4

Special Insertion Editing
This type of editing is valid for either numeric-edited items or external floating-point
items.

The period (.) is the special insertion symbol; it also represents the actual decimal point
for alignment purposes.

The period insertion symbol is counted in the size of the item, and represents the posi-
tion within the item where the actual decimal point is inserted.

Either the actual decimal point or the symbol V as the assumed decimal point, but not
both, must be specified in one PICTURE character-string.

188 COBOL Language Reference

PICTURE Clause

For example:
PICTURE Value of Data Edited Results
999.99 1.234 001.23
999.99 12.34 012.34
999.99 123.45 123.45
999.99 1234.5 234.50
+999.99E+99 12345 +123.45E+02

Fixed Insertion Editing
This type of editing is valid only for numeric-edited items. The following insertion
symbols are used:

$ (or other valid currency symbol)
+ — CR DB (editing-sign control symbols)

In fixed insertion editing, only one currency symbol and one editing sign control symbol
can be specified in one PICTURE character-string.

Unless it is preceded by a + or - symbol, the currency symbol must be the first char-
acter in the character-string.

When either + or - is used as a symbol, it must be the first or last character in the
character-string.

When CR or DB is used as a symbol, it must occupy the rightmost two character posi-
tions in the character-string. If these two character positions contain the symbols CR or
DB, the uppercase letters are the insertion characters.

Editing sign control symbols produce results that depend on the value of the data item,
as shown below:

Editing Symbol Result: Result:
in PICTURE Data Item Data Item
Character-String Positive or Zero Negative
+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

Part 5. Data Division 189

PICTURE Clause

For example:
PICTURE Value of Data Edited Result
999.99+ +6555.556 555.55+
+9999.99 -6555.555 -6555.55
9999.99 +1234.56 1234.56
$999.99 -123.45 $123.45
-$999.99 -123.456 -$123.45
-$999.99 +123.456 $123.45
$9999.99CR +123.45 $0123.45
$9999.99DB -123.45 $0123.45DB

Floating Insertion Editing
This type of editing is valid only for numeric-edited items.

The following symbols are used:
$ + -

Within one PICTURE character-string, these symbols are mutually exclusive as floating
insertion characters.

Floating insertion editing is specified by using a string of at least two of the allowable
floating insertion symbols to represent leftmost character positions into which these
actual characters can be inserted.

The leftmost floating insertion symbol in the character-string represents the leftmost
limit at which this actual character can appear in the data item. The rightmost floating
insertion symbol represents the rightmost limit at which this actual character can
appear.

The second leftmost floating insertion symbol in the character-string represents the left-
most limit at which numeric data can appear within the data item. Nonzero numeric
data may replace all characters at or to the right of this limit.

Any simple-insertion symbols (B 0 /,) within or to the immediate right of the string of
floating insertion symbols are considered part of the floating character-string. If the
period (.) special-insertion symbol is included within the floating string, it is considered
to be part of the character-string.

To avoid truncation, the minimum size of the PICTURE character-string must be:

e The number of character positions in the sending item, plus
¢ The number of nonfloating insertion symbols in the receiving item, plus
¢ One character for the floating insertion symbol.

190 COBOL Language Reference

PICTURE Clause

Representing Floating Insertion Editing
In a PICTURE character-string, there are two ways to represent floating insertion
editing and, thus, two ways in which editing is performed:

1. Any or all leading numeric character positions to the left of the decimal point are
represented by the floating insertion symbol. When editing is performed, a single
floating insertion character is placed to the immediate left of the first nonzero digit
in the data, or of the decimal point, whichever is farther to the left. The character
positions to the left of the inserted character are filled with spaces.

If all numeric character positions in the PICTURE character-string are represented
by the insertion character, then at least one of the insertion characters must be to
the left of the decimal point.

2. All the numeric character positions are represented by the floating insertion symbol.
When editing is performed, then:

e If the value of the data is zero, the entire data item will contain spaces.
« |f the value of the data is nonzero, the result is the same as in rule 1.

For example:

PICTURE Value of Data Edited Result
$$$$.99 .123 $.12
$$$9.99 .12 $0.12

$,$$$,999.99 -1234.56 $1,234.56

+,+++,999.99 -123456.789 -123,456.78

$$,$$$.$$$.99CR -1234567 $1,234,567.00CR

L 0000.00

Zero Suppression and Replacement Editing
This type of editing is valid only for numeric-edited items.

In zero suppression editing, the symbols Z and * are used. These symbols are mutu-
ally exclusive in one PICTURE character-string.

The following symbols are mutually exclusive as floating replacement symbols in one
PICTURE character-string:

Z*+ -9%

Specify zero suppression and replacement editing with a string of one or more of the
allowable symbols to represent leftmost character positions in which zero suppression
and replacement editing can be performed.

Any simple insertion symbols (B 0 /,) within or to the immediate right of the string of
floating editing symbols are considered part of the string. If the period (.) special
insertion symbol is included within the floating editing string, it is considered to be part
of the character-string.

Part 5. Data Division 191

REDEFINES Clause

Representing Zero Suppression
In a PICTURE character-string, there are two ways to represent zero suppression, and
two ways in which editing is performed:

1. Any or all of the leading numeric character positions to the left of the decimal point
are represented by suppression symbols. When editing is performed, the replace-
ment character replaces any leading zero in the data that appears in the same
character position as a suppression symbol. Suppression stops at the leftmost
character:

e That does not correspond to a suppression symbol
e That contains nonzero data
e That is the decimal point.

2. All the numeric character positions in the PICTURE character-string are repres-
ented by the suppression symbols. When editing is performed, and the value of
the data is nonzero, the result is the same as in the preceding rule. If the value of
the data is zero, then:

¢ If Z has been specified, the entire data item will contain spaces.

e If * has been specified, the entire data item, except the actual decimal point,
will contain asterisks.

For example:

PICTURE Value of Data Edited Result
*hkKk KK 0000.00 *hkKk KK
17717.17 0000.00
72777.99 0000.00 .00
**%%x 99 0000.00 *x%%,00
7799.99 0000.00 00.00

Z,777.77+ +123.456 123.45+

*y hkk kkt -123.45 *%x123.45-
Kk kkk kkk kkt +12345678.9 12,345,678.90+
$2,7277,777.72CR +12345.67 $ 12,345.67
$B*, xx% xxx *xBBDB -12345.67 $ **x12,345.67 DB

Do not specify both the asterisk (*) as a suppression symbol and the BLANK WHEN
ZERO clause for the same entry.

REDEFINES Clause

The REDEFINES clause allows you to use different data description entries to describe
the same computer storage area.

—— Format

»»—level-number REDEFINES—data-name-2:
data-name—lj
FILLER

A\
A

192 COBOL Language Reference

REDEFINES Clause

Note: Level-number, data-name-1, and FILLER are not part of the REDEFINES clause
itself, and are included in the format only for clarity.

When specified, the REDEFINES clause must be the first entry following data-name-1
or FILLER. If data-name-1 or FILLER is not specified, the REDEFINES clause must be
the first entry following the level-number.

The level-numbers of data-name-1 and data-name-2 must be identical, and must not be
level 66 or level 88.

data-name-1, FILLER
Identifies an alternate description for the same area, and is the redefining item or
the REDEFINES subject .

data-name-2
Is the redefined item or the REDEFINES object .

When more that one level-01 entry is written subordinate to an FD entry, a condition
known as implicit redefinition occurs. That is, the second level-01 entry implicitly rede-
fines the storage allotted for the first entry. In such level-01 entries, the REDEFINES
clause must not be specified.

Redefinition begins at data-name-1 and ends when a level-number less than or equal to
that of data-name-1 is encountered. No entry having a level-number numerically lower
than those of data-name-1 and data-name-2 can occur between these entries. For
example:

05 A PICTURE X(6).
05 B REDEFINES A.
10 B-1 PICTURE X(2).
10 B-2 PICTURE 9(4).

PICTURE 99V99.

O W W

05

In this example, A is the redefined item, and B is the redefining item. Redefinition
begins with B and includes the two subordinate items B-1 and B-2. Redefinition ends
when the level-05 item C is encountered.

The data description entry for data-name-2, the redefined item, can contain a REDE-
FINES clause.

The data description entry for the redefined item cannot contain an OCCURS clause.
However, the redefined item can be subordinate to an item whose data description
entry contains an OCCURS clause. In this case, the reference to the redefined item in
the REDEFINES clause must not be subscripted. Neither the redefined item nor the
redefining item, or any items subordinate to them, can contain an OCCURS
DEPENDING ON clause.

If the GLOBAL clause is used in the data description entry which contains the REDE-

FINES clause, it is only the subject of that REDEFINES clause that possesses the
global attribute.

Part 5. Data Division 193

REDEFINES Clause

The EXTERNAL clause must not be specified on the same data description entry as a
REDEFINES clause.

If the data item referenced by data-name-2 is either declared to be an external data
record or is specified with a level-number other than 01, the number of character posi-
tions it contains must be greater than or equal to the number of character positions in
the data item referenced by the subject of this entry. If the data-name referenced by
data-name-2 is specified with a level-number of 01 and is not declared to be an
external data record, there is no such constraint.

When the data item implicitly redefines multiple 01-level records in a file description
(FD) entry, items subordinate to the redefining or redefined item can contain an
OCCURS DEPENDING ON clause.

One or more redefinitions of the same storage area are permitted. The entries giving
the new descriptions of the storage area must immediately follow the description of the
redefined area without intervening entries that define new character positions. Multiple
redefinitions must all use the data-name of the original entry that defined this storage
area. For example:

05 A PICTURE 9999.
05 B REDEFINES A PICTURE 9V999.
05 C REDEFINES A PICTURE 99V99.

The redefining entry (identified by data-name-1), and any subordinate entries, must not
contain any VALUE clauses.

An item described as USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or
USAGE IS OBJECT REFERENCE can be the subject or object of a REDEFINES
clause.

An external or internal floating-point item can be the subject or object of a REDEFINES
clause.

REDEFINES Clause Considerations

194

Data items within an area can be redefined without changing their lengths. For
example:

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.
05 NAME-1 REDEFINES NAME-2.
10 WAGE PICTURE XXX.
10 EMP-NO PICTURE X(9).
10 YEAR PICTURE XX.

COBOL Language Reference

REDEFINES Clause

Data item lengths and types can also be re-specified within an area. For example:

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.
05 NAME-1 REDEFINES NAME-2.
10 WAGE PICTURE 999V999.
10 EMP-NO PICTURE X(6).
10 YEAR PICTURE XX.

When an area is redefined, all descriptions of the area are always in effect; that is,
redefinition does not cause any data to be erased and never supersedes a previous
description. Thus, if B REDEFINES C has been specified, either of the two procedural
statements, MOVE X TO B and MOVE Y TO C, could be executed at any point in the
program.

In the first case, the area described as B would assume the value and format of X. In
the second case, the same physical area (described now as C) would assume the
value and format of Y. Note that, if the second statement is executed immediately after
the first, the value of Y replaces the value of X in the one storage area.

The usage of a redefining data item need not be the same as that of a redefined item.
This does not, however, cause any change in existing data. For example:

05 B PICTURE 99 USAGE DISPLAY VALUE 8.
05 C REDEFINES B PICTURE S99 USAGE COMPUTATIONAL-4.
05 A PICTURE S99 USAGE COMPUTATIONAL-4.

Redefining B does not change the bit configuration of the data in the storage area.
Therefore, the following two statements produce different results:

ADD B TO A
ADD C TO A

In the first case, the value 8 is added to A (because B has USAGE DISPLAY). In the
second statement, the value -3848 is added to A (because C has USAGE
COMPUTATIONAL-4), and the bit configuration of the storage area has the binary value
-3848.

The above example demonstrates how the improper use of redefinition can give unex-
pected or incorrect results.

Part 5. Data Division 195

RENAMES Clause

REDEFINES Clause Examples
The REDEFINES clause can be specified for an item within the scope of an area being
redefined (that is, an item subordinate to a redefined item). For example:

05 REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).
10 GRADE PICTURE X(4).
10 SEMI-MONTHLY-PAY PICTURE 9999V99.

10 WEEKLY-PAY REDEFINES SEMI-MONTHLY-PAY
PICTURE 999V999.

05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.

The REDEFINES clause can also be specified for an item subordinate to a redefining
item. For example:

05 REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).

10 GRADE PICTURE X(4).

10 SEMI-MONTHLY-PAY PICTURE 999V999.
05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).

10 FILLER PICTURE X(6).

10 HOURLY-PAY PICTURE 99V99.

10 CODE-H REDEFINES HOURLY-PAY PICTURE 9999.

Undefined Results
Undefined results can occur when:

* A redefining item is moved to a redefined item (that is, if B REDEFINES C and the
statement MOVE B TO C is executed)

e A redefined item is moved to a redefining item (that is, if B REDEFINES C and if the
statement MOVE C TO B is executed).

RENAMES Clause

The RENAMES clause specifies alternative, possibly overlapping, groupings of elemen-
tary data items.

—— Format
»»—66—data-name-1—RENAMES—data-name-2

THRO&I—I—J—data—nrfme—j’——l

THRU

196 COBOL Language Reference

RENAMES Clause

The special level-number 66 must be specified for data description entries that contain
the RENAMES clause. Level-number 66 and data-name-1 are not part of the
RENAMES clause itself, and are included in the format only for clarity.

One or more RENAMES entries can be written for a logical record. All RENAMES
entries associated with one logical record must immediately follow that record's last
data description entry.

data-name-1
Identifies an alternative grouping of data items.

A level-66 entry cannot rename a level-01, level-77, level-88, or another level-66
entry.

Data-name-1 cannot be used as a qualifier; it can be qualified only by the names
of level indicator entries or level-01 entries.

Can specify a DBCS data item if data-name-2 specifies a DBCS data item and the
THROUGH phrase is not specified.

data-name-2, data-name-3
Identify the original grouping of elementary data items; that is, they must name ele-
mentary or group items within the associated level-01 entry, and must not be the
same data-name. Both data-names can be qualified.

The OCCURS clause must not be specified in the data entries for data-name-2 and
data-name-3, or for any group entry to which they are subordinate. In addition, the
OCCURS DEPENDING ON clause must not be specified for any item defined
between data-name-2 and data-name-3.

When data-name-3 is specified, data-name-1 is treated as a group item that
includes all elementary items:

e Starting with data-name-2 (if it is an elementary item) or the first elementary
item within data-name-2 (if it is a group item)

¢ Ending with data-name-3 (if it is an elementary item) or the last elementary
item within data-name-3 (if it is a group item).

The key words THROUGH and THRU are equivalent.

The leftmost character in data-name-3 must not precede the leftmost character in
data-name-2; the rightmost character in data-name-3 must not precede the right-
most character in data-name-2. This means that data-name-3 cannot be totally
subordinate to data-name-2.

When data-name-3 is not specified, all of the data attributes of data-name-2
become the data attributes for data-name-1. That is:

¢ When data-name-2 is a group item, data-name-1 is treated as a group item.

¢ When data-name-2 is an elementary item, data-name-1 is treated as an ele-
mentary item.

Figure 7 illustrates valid and invalid RENAMES clause specifications.

Part 5. Data Division 197

SIGN Clause

COBOL Specifications

Example 1 (Valid)
01 RECORD-I.
05 DN-1... .
05 DN-2... .
05 DN-3... .
05 DN—4... .

66 DN—6 RENAMES DN-1 THROUGH DN-3.

Example 2 (Valid)
01 RECORD-II.
05 DN-1.
10 DN-2... .
10 DN-2A... .
05 DN-1A REDEFINES DN-1.
10 DN-3A... .
10 DN-3... .
10 DN-3B... .
05 DN-5... .

66 DN—6 RENAMES DN-2 THROUGH DN-3.

Example 3 (Invalid)
01 RECORD-III.
05 DN-2.
10 DN-3... .
10 DN—4... .
05 DN-5... .

66 DN—6 RENAMES DN-2 THROUGH DN-3.

Example 4 (Invalid)
01 RECORD-IV.
05 DN-1.
10 DN-2A... .
10 DN-2B... .
10 DN—2C REDEFINES DN-2B.
15 DN-2... .
15 DN-2D... .
05 DN-3... .

66 DN—4 RENAMES DN-1 THROUGH DN-2.

Storage Layouts

|« RECORD-I >
DN-1 DN-2 DN-3 DN-4
|« DN-6 |
< RECORD-I] ——>
- DN-1 >
DN-2 DN-2A DN-5
P DN-1A .|
DN-3A DN-3 DN-3B
| «——DN-6——»|

<«—RECORD-II [—————>

< DN-2 >
DN-3 DN-4 DN-5
DN—-6 is indeterminate
<«——RECORD-IV >
< DN-1 >
DN-2A DN-2B DN-3
DN-2 DN-2D

DN—4 is indeterminate

Figure 7. RENAMES Clause—Valid and Invalid Specifications

SIGN Clause

The SIGN clause specifies the position and mode of representation of the operational
sign for a numeric entry.

LEADING

TR

TRAILING

J |—SEPARAT Eﬁ
CHARACTER

198 COBOL Language Reference

SIGN Clause

The SIGN clause can be specified only for a signed numeric data description entry (that
is, one whose PICTURE character-string contains an S), or for a group item that con-
tains at least one such elementary entry. USAGE IS DISPLAY must be specified,
explicitly or implicitly.

If a SIGN clause is specified in either an elementary or group entry subordinate to a
group item for which a SIGN clause is specified, the SIGN clause for the subordinate
entry takes precedence for the subordinate entry.

If you specify the CODE-SET clause in an FD entry, any signed numeric data
description entries associated with that file description entry must be described with the
SIGN IS SEPARATE clause.

The SIGN clause is required only when an explicit description of the properties and/or
position of the operational sign is necessary.

When specified, the SIGN clause defines the position and mode of representation of
the operational sign for the numeric data description entry to which it applies, or for
each signed numeric data description entry subordinate to the group to which it applies.

If the SEPARATE CHARACTER phrase is not specified, then:

¢ The operational sign is presumed to be associated with the LEADING or TRAILING
digit position, whichever is specified, of the elementary numeric data item. (In this
instance, specification of SIGN IS TRAILING is the equivalent of the standard
action of the compiler.)

e The character S in the PICTURE character string is not counted in determining the
size of the item (in terms of standard data format characters).

o |If the SEPARATE CHARACTER phrase is specified, then:

¢ The operational sign is presumed to be the LEADING or TRAILING character posi-
tion, whichever is specified, of the elementary numeric data item. This character
position is not a digit position.

e The character S in the PICTURE character string is counted in determining the size
of the data item (in terms of standard data format characters).

e +is the character used for the positive operational sign.

e - is the character used for the negative operational sign.
Every numeric data description entry whose PICTURE contains the symbol S is a
signed numeric data description entry. If the SIGN clause is also specified for such an

entry, and conversion is necessary for computations or comparisons, the conversion
takes place automatically.

The SIGN clause is treated as documentation for external floating-point items. For
internal floating-point items, the SIGN clause must not be specified.

Part 5. Data Division 199

SYNCHRONIZED Clause

SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an elementary item on a
natural boundary in storage.

—— Format

SYNCHRONIZED
SYNC‘I LEFT
RIGHT:

A\
A

SYNC is an abbreviation for SYNCHRONIZED and has the same meaning.

The SYNCHRONIZED clause is never required, but can improve performance on some
systems for binary items used in arithmetic.

The SYNCHRONIZED clause can appear at the elementary level or at the group level
in which case, every elementary item within this group level item is synchronized.

LEFT
Specifies that the elementary item is to be positioned so that it will begin at the left
character position of the natural boundary in which the elementary item is placed.

RIGHT
Specifies that the elementary item is to be positioned such that it will terminate on
the right character position of the natural boundary in which it has been placed.

When specified, the LEFT and the RIGHT phrases are syntax checked, but they have
no effect on the execution of the program.

The length of an elementary item is not affected by the SYNCHRONIZED clause.

Table 14 lists the effect of the SYNCHRONIZE clause on other language elements.

Table 14 (Page 1 of 2). SYNCHRONIZE Clause Effect on Other Language Elements

Language Element Comments

OCCURS clause When specified for an item within the scope of an OCCURS
clause, each occurrence of the item is synchronized.

DISPLAY or Each item is syntax checked, but it has no effect on the execution

PACKED-DECIMAL of the program.

200 COBOL Language Reference

SYNCHRONIZED Clause

Table 14 (Page 2 of 2). SYNCHRONIZE Clause Effect on Other Language Elements

Language Element

Comments

BINARY or COMPUTA-
TIONAL

When the item is the first elementary item subordinate to an item
that contains a REDEFINES clause, the item must not require the
addition of unused character positions.

When the synchronized clause is not specified for a subordinate
data item (one with a level number of 02 through 49):

- The item is aligned at a displacement that is a multiple of
2 relative to the beginning of the record, if its USAGE is
BINARY and its PICTURE is in the range of S9 through S9(4).

- The item is aligned at a displacement that is a multiple of
4 relative to the beginning of the record, if its USAGE is
BINARY and its PICTURE is in the range of S9(5) through
S9(18), or its USAGE is INDEX.

When SYNCHRONIZED is not specified for binary items, no space
is reserved for slack bytes.

USAGE IS POINTER,
USAGE IS
PROCEDURE-POINTER,
or USAGE IS OBJECT
REFERENCE

The data is aligned on a fullword boundary.

COMPUTATIONAL-1

The data is aligned on a fullword boundary.

COMPUTATIONAL-2

The data is aligned on a doubleword boundary.

COMPUTATIONAL-3

The data is treated the same as the SYNCHRONIZED clause for a
PACKED-DECIMAL item.

COMPUTATIONAL-4

The data is treated the same as the SYNCHRONIZED clause for a
COMPUTATIONAL item.

COMPUTATIONAL-5
(Workstation Only)

The data is treated the same as the SYNCHRONIZED clause for a
COMPUTATIONAL item.

DBCS and Floating Point
Item

The SYNCHRONIZED clause is ignored.

REDEFINES clause

For an item that contains a REDEFINES clause, the data item that
is redefined must have the proper boundary alignment for the data
item that redefines it. For example, if you write the following, be
sure that data item A begins on a fullword boundary:

02 A PICTURE X(4).
02 B REDEFINES A PICTURE S9(9) BINARY SYNC.

In the File Section, the compiler assumes that all level-01 records containing SYN-
CHRONIZED items are aligned on doubleword boundaries in the buffer. You must
provide the necessary slack bytes between records to ensure alignment when there are

multiple records in a block.

Part 5. Data Division 201

SYNCHRONIZED Clause

Slack Bytes

In the Working-Storage Section, the compiler aligns all level-01 entries on a doubleword
boundary.

For the purposes of aligning binary items in the Linkage Section, all level-01 items are
assumed to begin on doubleword boundaries. Therefore, if you issue a CALL state-
ment, such operands of any USING phrase within it must be aligned correspondingly.

There are two types of slack bytes:

Slack bytes within records
Unused character positions preceding each synchronized item in the record.

Slack bytes between records
Unused character positions added between blocked logical records.

Slack Bytes within Records

For any data description that has binary items that are not on their natural boundaries,
the compiler inserts slack bytes within a record to ensure that all SYNCHRONIZED
items are on their proper boundaries.

Because it is important that you know the length of the records in a file, you need to
determine whether slack bytes are required and, if necessary, how many the compiler
will add. The algorithm the compiler uses to calculate this is as follows:

¢ The total number of bytes occupied by all elementary data items preceding the
binary item are added together, including any slack bytes previously added.

e This sum is divided by m, where:
m = 2 for binary items of 4-digit length or less

m = 4 for binary items of 5-digit length or more: USAGE IS INDEX, USAGE IS
POINTER, USAGE IS PROCEDURE-POINTER, USAGE IS OBJECT REFER-
ENCE and COMPUTATIONAL-1 data items

m = 8 for COMPUTATIONAL-2 data items.

e If the remainder (r) of this division is equal to zero, no slack bytes are required. If
the remainder is not equal to zero, the number of slack bytes that must be added
is equalto m - r.

These slack bytes are added to each record immediately following the elementary data
item preceding the binary item. They are defined as if they constituted an item with a

level number equal to that of the elementary item that immediately precedes the SYN-
CHRONIZED binary item, and are included in the size of the group that contains them.

202 COBOL Language Reference

For example:
01 FIELD-A.
05 FIELD-B PICTURE
05 FIELD-C.
10 FIELD-D PICTURE
[16 SLACK-BYTES PICTURE
10 FIELD-E COMPUTATIONAL PICTURE
01 FIELD-L.
05 FIELD-M PICTURE
05 FIELD-N PICTURE
[65 SLACK-BYTES PICTURE
05 FIELD-0.

10 FIELD-P COMPUTATIONAL PICTURE

SYNCHRONIZED Clause

X(5).

XX.
X. INSERTED BY COMPILER]
S9(6) SYNC.

X(5).
XX.
X. INSERTED BY COMPILER]

S9(6) SYNC.

Slack bytes can also be added by the compiler when a group item is defined with an
OCCURS clause and contains within it a SYNCHRONIZED binary data item. To deter-
mine whether slack bytes are to be added, the following action is taken:

¢ The compiler calculates the size of the group, including all the necessary slack

bytes within a record.

¢ This sum is divided by the largest m required by any elementary item within the

group.

e If ris equal to zero, no slack bytes are required. If ris not equal to zero, m - r

slack bytes must be added.

The slack bytes are inserted at the end of each occurrence of the group item containing
the OCCURS clause. For example, a record defined as follows will appear in storage,

as shown, in Figure 8:
01 WORK-RECORD.

05 WORK-CODE PICTURE X.
05 COMP-TABLE OCCURS 10 TIMES.
10 COMP-TYPE PICTURE X.
[10 SLACK-BYTES PIC XX. INSERTED BY COMPILER]
10 COMP-PAY PICTURE S9(4)V99 COMP SYNC.
10 COMP-HRS PICTURE S9(3) COMP SYNC.
10 COMP-NAME PICTURE X(5).

Part 5. Data Division 203

SYNCHRONIZED Clause

4—————— FirstOccurrence of COMP-TABLE }{ ¢ Second Occurrence of COMP-TABLE >
i
i
i
i
i

lack COMP- |
ytes COMP-PAY HOURS | COMP-NAME

WORK-CODE
COMP-TYPE
™ 0

| Bytes |
i

| |
i \
| |
| Slack i I
| |
| |
i |

D D D D D

D =doubleword boundary
F =fullword boundary
H =halfword boundary

Figure 8. Insertion of Slack Bytes within a Record

In order to align COMP-PAY and COMP-HRS upon their proper boundaries, the compiler has
added two slack bytes within the record.

In the example previous, without further adjustment, the second occurrence of
COMP-TABLE would begin one byte before a doubleword boundary, and the alignment of
COMP-PAY and COMP-HRS would not be valid for any occurrence of the table after the first.
Therefore, the compiler must add slack bytes at the end of the group, as though the
record had been written as follows:

01 WORK-RECORD.

05 WORK-CODE PICTURE X.
05 COMP-TABLE OCCURS 10 TIMES.
10 COMP-TYPE PICTURE X.
[16 SLACK-BYTES PIC XX. INSERTED BY COMPILER]
10 COMP-PAY PICTURE S9(4)V99 COMP SYNC.
10 COMP-HRS PICTURE S9(3) COMP SYNC.
10 COMP-NAME PICTURE X(5).
[10 SLACK-BYTES PIC XX. INSERTED BY COMPILER]

In this example, the second (and each succeeding) occurrence of COMP-TABLE begins
one byte beyond a doubleword boundary. The storage layout for the first occurrence of
COMP-TABLE will now appear as shown in Figure 9.

204 COBOL Language Reference

SYNCHRONIZED Clause

4——— FirstOccurrence of COMP-TABLE _—

|
1
|
' Slack COMP-

: Bytes COMP-PAY HOURS i COMP-NAME

WORK-CODE
COMP-TYPE

D =doubleword boundary
F =fullword boundary
H =halfword boundary

Figure 9. Insertion of Slack Bytes between Records

Each succeeding occurrence within the table will now begin at the same relative posi-
tion as the first.

Slack Bytes between Records
Under OS/390 and VM, if the file contains blocked logical records that are
to be processed in a buffer, and any of the records contain binary entries for which the
SYNCHRONIZED clause is specified, you can improve performance by adding any
needed slack bytes between records for proper alignment.

The lengths of all the elementary data items in the record, including all slack bytes, are
added. (For variable-length records under OS/390 and VM, it is necessary to add an
additional 4 bytes for the count field.) The total is then divided by the highest value of
m for any one of the elementary items in the record.

If r (the remainder) is equal to zero, no slack bytes are required. If ris not equal to
zero, m - r slack bytes are required. These slack bytes can be specified by writing a
level-02 FILLER at the end of the record.

To show the method of calculating slack bytes both within and between records, con-
sider the following record description:

01 COMP-RECORD.
05 A-1 PICTURE X(5).

05 A-2 PICTURE X(3).
05 A-3 PICTURE X(3).
05 B-1 PICTURE $S9999 USAGE COMP SYNCHRONIZED.
05 B-2 PICTURE $99999 USAGE COMP SYNCHRONIZED.
05 B-3 PICTURE $9999 USAGE COMP SYNCHRONIZED.

Part 5. Data Division 205

SYNCHRONIZED Clause

The number of bytes in A-1, A-2, and A-3 totals 11. B-1 is a 4-digit COMPUTATIONAL
item and 1 slack byte must therefore be added before B-1. With this byte added, the
number of bytes preceding B-2 totals 14. Because B-2 is a COMPUTATIONAL item of
5 digits in length, two slack bytes must be added before it. No slack bytes are needed
before B-3.

The revised record description entry now appears as:
01 COMP-RECORD.

05 A-1 PICTURE X(5).

05 A-2 PICTURE X(3).

05 A-3 PICTURE X(3).

[05 SLACK-BYTE-1 PICTURE X. INSERTED BY COMPILER]

05 B-1 PICTURE $9999 USAGE COMP SYNCHRONIZED.
[05 SLACK-BYTE-2 ~ PICTURE XX. INSERTED BY COMPILER]

05 B-2 PICTURE $99999 USAGE COMP SYNCHRONIZED.
05 B-3 PICTURE $9999 USAGE COMP SYNCHRONIZED.

There is a total of 22 bytes in COMP-RECORD, but, from the rules given in the preceding
discussion, it appears that m =4 and r = 2. Therefore, to attain proper alignment for
blocked records, you must add 2 slack bytes at the end of the record.

The final record description entry appears as:
01 COMP-RECORD.

05 A-1 PICTURE X(5).

05 A-2 PICTURE X(3).

05 A-3 PICTURE X(3).

[05 SLACK-BYTE-1 PICTURE X. INSERTED BY COMPILER]

05 B-1 PICTURE $S9999 USAGE COMP SYNCHRONIZED.
[05 SLACK-BYTE-2 PICTURE XX. INSERTED BY COMPILER]

05 B-2 PICTURE $99999 USAGE COMP SYNCHRONIZED.
05 B-3 PICTURE $S9999 USAGE COMP SYNCHRONIZED.
05 FILLER PICTURE XX. [SLACK BYTES YOU ADD]

206 COBOL Language Reference

USAGE Clause

USAGE Clause

The USAGE clause specifies the format of a data item in computer storage.

—— Format 1

> BINARY
LUSAGEﬁ |—NATIVEJ
IS —COMP:

M

—COMP-1
|—NATIVEJ

comp-2
Larrve!
-comp-3

—COMP-4
Lnat1ve
—ComMp-5—1)
—COMPUTATIONAL

—COMPUTATIONAL- 1_|_—_|—
NATIVE

—COMPUTATIONAL- Z—L—_|—
NATIVE

—COMPUTATIONAL-3———

—COMPUTATIONAL- 4—m—
NATIVE

—COMPUTATIONAL-5- 10—
—DISPLAY
|—NATIVEJ

—DISPLAY-1

|—NATIVEJ
—INDEX:
I objref phrase |—————
—PACKED-DECIMAL—————
—POINTER
'—PROCEDURE-POINTER

\4
A

objref phrase :
—OBJECT REFERENCE I |

Llass-name-lJ
LMETACLASSﬁJ
OF:
Note:

1 COMP-5 and COMPUTATIONAL-5 are only supported on AlIX, OS/2, and
Windows.

The NATIVE phrase is treated as a comment for COMP-3,
COMPUTATIONAL-3, COMP-5, COMPUTATIONAL-5, and
PACKED-DECIMAL data items. NATIVE has no effect on OS/390 and VM.

The USAGE clause can be specified for a data description entry with a level-number
other than 66 or 88. However, if it is specified at the group level, it applies to each
elementary item in the group. The usage of an elementary item must not contradict the
usage of a group to which the elementary item belongs.

The USAGE clause specifies the format in which data is represented in storage. The
format can be restricted if certain Procedure Division statements are used.

Part 5. Data Division 207

USAGE Clause

When the USAGE clause is not specified at either the group or elementary level, it is
assumed that the usage is DISPLAY.

For data items defined with the DATE FORMAT clause, only usage DISPLAY and
COMP-3 (or its equivalents, COMPUTATIONAL-3 and PACKED-DECIMAL) are
allowed. For details, see “Combining the DATE FORMAT Clause with Other Clauses”
on page 164.

Computational Items
A computational item is a value used in arithmetic operations. It must be numeric. If
the USAGE of a group item is described with any of these items, the elementary items
within the group have this usage.

The maximum length of a computational item is 18 decimal digits.

The PICTURE of a computational item can contain only:

One or more numeric character positions
One operational sign

One implied decimal point

One or more decimal scaling positions

oT<mo

COMPUTATIONAL-1 and COMPUTATIONAL-2 items (internal floating-point) cannot
have PICTURE strings.

BINARY
Specified for binary data items. Such items have a decimal equivalent consisting
of the decimal digits 0 through 9, plus a sign. Negative numbers are represented
as the two's complement of the positive number with the same absolute value.

The amount of storage occupied by a binary item depends on the number of
decimal digits defined in its PICTURE clause:

Digits in PICTURE Clause Storage Occupied

1 through 4 2 bytes (halfword)

5 through 9 4 bytes (fullword)

10 through 18 8 bytes (doubleword)

The operational sign for “big-endian” binary data (such as OS/390 and VM) is con-
tained in the left most bit of the binary data. The operational sign for “little-endian”
binary data is contained in the left most bit of the right most byte of the binary data.

Note: BINARY, COMPUTATIONAL, and COMPUTATIONAL-4 data items can be
affected by the BINARY and TRUNC compiler option specifications. For informa-
tion on the effect of these compiler options, see the IBM COBOL Programming
Guide for your platform. (The BINARY compiler option is only applicable to OS/2
and Windows programs.)

PACKED-DECIMAL
Specified for internal decimal items. Such an item appears in storage in packed
decimal format. There are 2 digits for each character position, except for the

208 COBOL Language Reference

USAGE Clause

trailing character position, which is occupied by the low-order digit and the sign.
Such an item can contain any of the digits 0 through 9, plus a sign, representing a
value not exceeding 18 decimal digits.

The sign representation uses the same bit configuration as the 4-bit sign represen-
tation in zoned decimal fields. For details, see the IBM COBOL Programming
Guide for your platform.

COMPUTATIONAL or COMP (Binary)

This is the equivalent of BINARY. The COMPUTATIONAL phrase is synonymous
with BINARY.

COMPUTATIONAL-1 or COMP-1 (Floating-Point)

Specified for internal floating-point items (single precision). COMP-1 items are 4
bytes long.

COMP-1 data items are affected by the FLOAT(NATIVE|HEX) com-
piler option. For details, see the IBM COBOL Programming Guide for your plat-
form

COMPUTATIONAL-2 or COMP-2 (Long Floating-Point)

Specified for internal floating-point items (double precision). COMP-2 items are 8
bytes long.

COMP-2 data items are affected by the FLOAT(NATIVE|HEX) com-
piler option. For details, see the IBM COBOL Programming Guide for your plat-

form <@RrEeT

COMPUTATIONAL-3 or COMP-3 (Internal Decimal)

This is the equivalent of PACKED-DECIMAL.

COMPUTATIONAL-4 or COMP-4 (Binary)

This is the equivalent of BINARY.

COMPUTATIONAL-5 or COMP-5 (Native Binary)

DISPLAY Phrase

Under AIX, OS/2, and Windows, this represents native binary data.
In a COMP-5 binary data item, the total precision of the literal (integer and decimal
positions) can be up to the maximum value that can be accommodated in the
number of bytes allocated for the binary field (for example, 2, 4, or 8 bytes) rather
than conforming to the maximum integer and decimal positions specified in the
PICTURE clause. This is always the native binary data, independent of the

BINARY compiler option.

The data item is stored in character form, 1 character for each 8-bit byte. This corre-
sponds to the format used for printed output. DISPLAY can be explicit or implicit.

USAGE IS DISPLAY is valid for the following types of items:

Alphabetic
Alphanumeric
Alphanumeric-edited
Numeric-edited

Part 5. Data Division 209

USAGE Clause

e External floating-point
e External decimal (numeric)

Alphabetic , alphanumeric , alphanumeric-edited , and numeric-edited items are dis-
cussed in “Data Categories and PICTURE Rules” on page 183.

External Decimal Items are sometimes referred to as zoned decimal items. Each
digit of a number is represented by a single byte. The 4 high-order bits of each byte
are zone bits; the 4 high-order bits of the low-order byte represent the sign of the item.
The 4 low-order bits of each byte contain the value of the digit.

The maximum length of an external decimal item is 18 digits.

The PICTURE character-string of an external decimal item can contain only 9s; the
operational-sign, S; the assumed decimal point, V; and one or more Ps.

Effect of CHAR(EBCDIC) Compiler Option (Workstation Only): Character data
items are treated as EBCDIC when the CHAR(EBCDIC) option is used, unless the
character data is defined with the NATIVE phrase. Also note, group items are affected
by the CHAR options as well. A group item is treated as a USAGE DISPLAY item and
consists of either native single byte characters (with CHAR(NATIVE)) or EBCDIC char-
acters (with CHAR(EBCDIC)). Any USAGE clause specified on a group applies to the
elementary items within the group and not to the group itself for the purpose of defining
semantics involving group items.

Command-line arguments are always passed in as native data types. If you specify the
host data type compiler options (CHAR(EBCDID), FLOAT(HEX), or BINARY(S390)),
you must specify the NATIVE phrase on any arguments with data types affected by
these compiler options.

DISPLAY-1 Phrase
The DISPLAY-1 phrase defines an item as DBCS.

INDEX Phrase
A data item defined with the INDEX phrase is an index data item .

An index data item is a 4-byte elementary item (hot necessarily connected with any
table) that can be used to save index-name values for future reference. Through a
SET statement, an index data item can be assigned an index-name value; such a value
corresponds to the occurrence number in a table.

Direct references to an index data item can be made only in a SEARCH statement, a
SET statement, a relation condition, the USING phrase of the Procedure Division
header, or the USING phrase of the CALL statement.

An index data item can be referred to directly in the USING phrase of an ENTRY state-
ment.

210 COBOL Language Reference

USAGE Clause

An index data item can be part of a group item referred to in a MOVE statement or an
input/output statement.

An index data item saves values that represent table occurrences, yet is not necessarily
defined as part of any table. Thus, when it is referred to directly in a SEARCH or SET
statement, or indirectly in a MOVE or input/output statement, there is no conversion of
values when the statement is executed.

The USAGE IS INDEX clause can be written at any level. If a group item is described
with the USAGE IS INDEX clause, the elementary items within the group are index data
items; the group itself is not an index data item, and the group name cannot be used in
SEARCH and SET statements or in relation conditions. The USAGE clause of an ele-
mentary item cannot contradict the USAGE clause of a group to which the item
belongs.

An index data item cannot be a conditional variable.

The DATE FORMAT, JUSTIFIED, PICTURE, BLANK WHEN ZERO, SYNCHRONIZED,
or VALUE clauses cannot be used to describe group or elementary items described
with the USAGE IS INDEX clause.

SYNCHRONIZED can be used with USAGE IS INDEX to obtain efficient use of the
index data item.

OBJECT REFERENCE Phrase
A data item defined with the OBJECT REFERENCE phrase is an object reference .

class-name-1
An optional class name.

You must declare class-name-1 in the REPOSITORY paragraph in the Configura-
tion Section of the containing class or outermost program. If specified,
class-name-1 indicates that data-name always refers to an object-instance of class
class-name-1 or a class derived from class-name-1.

If class-name-1 is not specified, data-name can refer to an object of any class. In
this case, data-name-1 is a “universal” object reference.

You can specify data-name-1 within a group item without affecting the semantics of
the group item. There is no conversion of values or other special handling of the
object references when statements are executed that operate on the group. The
group continues to behave as an alphanumeric data item.

METACLASS
Indicates that the data-name always refers to a class object reference that is an
instance of the metaclass of class-name-1 or of a metaclass derived from the
metaclass of class-name-1.

You can use these object references to INVOKE methods that are defined in the
metaclass.

Part 5. Data Division 211

USAGE Clause

The USAGE IS OBJECT REFERENCE clause can be used at any level except level 66
or 88. If a group item is described with the USAGE IS OBJECT REFERENCE clause,
the elementary items within the group are object-reference data items. The group itself
is not an object reference. The USAGE clause of an elementary item cannot contradict
the USAGE clause of a group that contains the item.

An object reference can be defined in any section of the data division of a class,
method, or program, although it does not belong to any class or category. An object-
reference data item can be used in only:

e A SET statement (Format 7 only)

e A relation condition

e An INVOKE statement

e The USING or RETURNING phrase of an INVOKE statement

¢ The USING or RETURNING phrase of a CALL statement

e A program Procedure Division or ENTRY statement USING or RETURNING
phrase

¢ A method Procedure Division USING or RETURNING phrase

Object reference data items:

e Are ignored in CORRESPONDING operations

¢ Are unaffected by INITIALIZE statements

e Can be the subject or object of a REDEFINES clause

e Cannot be a conditional variable

e Can be written to a file (but upon subsequent reading of the record the content of
the object reference is undefined)

A VALUE clause for an object-reference data item can contain only NULL or NULLS.

You can use the SYNCHRONIZED clause with USAGE IS OBJECT REFERENCE to
obtain efficient alignment of the object-reference data item.

The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses cannot
be used to describe group or elementary items defined with the USAGE IS OBJECT
REFERENCE clause.

POINTER Phrase

212

A data item defined with USAGE IS POINTER is a pointer data item . A pointer data
item is a 4-byte elementary item,

You can use pointer data items to accomplish limited base addressing. Pointer data
items can be compared for equality or moved to other pointer items.
A pointer data item can only be used:

e In a SET statement (Format 5 only)

¢ In a relation condition

e In the USING phrase of a CALL statement, an ENTRY statement, or the Procedure
Division header.

COBOL Language Reference

USAGE Clause

The USAGE IS POINTER clause can be written at any level except level 88. If a group
item is described with the USAGE IS POINTER clause, the elementary items within the
group are pointer data items; the group itself is not a pointer data item and cannot be
used in the syntax where a pointer data item is allowed. The USAGE clause of an
elementary item cannot contradict the USAGE clause of a group to which the item
belongs.

Pointer data items can be part of a group that is referred to in a MOVE statement or an
input/output statement. However, if a pointer data item is part of a group, there is no
conversion of values when the statement is executed.

A pointer data item can be the subject or object of a REDEFINES clause.

SYNCHRONIZED can be used with USAGE IS POINTER to obtain efficient use of the
pointer data item.

A VALUE clause for a pointer data item can contain only NULL or NULLS.
A pointer data item cannot be a conditional variable.
A pointer data item does not belong to any class or category.

The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses cannot
be used to describe group or elementary items defined with the USAGE IS POINTER
clause.

Pointer data items are ignored in CORRESPONDING operations.

A pointer data item can be written to a data set, but, upon subsequent reading of the
record containing the pointer, the address contained can no longer represent a valid
pointer.

Note: USAGE IS POINTER is implicitly specified for the ADDRESS OF special reg-
ister. For more information see the IBM COBOL Programming Guide for your platform.

PROCEDURE-POINTER Phrase
A procedure-pointer data item can contain the address of a procedure entry point.
Procedure-pointer data items can be compared for equality or moved to other
procedure-pointer data items.

Under OS/390 and VM, a procedure-pointer data item is an 8-byte elemen-
tary item.

Under AIX, OS/2, and Windows, a procedure-pointer data item is a
4-byte elementary item.

The entry point for a procedure-pointer data item can be:

Part 5. Data Division 213

USAGE Clause

e The primary entry point of a COBOL program as defined by the PROGRAM-ID
statement of the outermost program of a compilation unit; it must not be the
PROGRAM-ID of a nested program.

e An alternate entry point of a COBOL program as defined by a COBOL ENTRY
statement

e An entry point in a non-COBOL program.

The entry point address and code address are contained in the first word. The second
word is binary zero.

A procedure-pointer data item can only be used:

e In a SET statement (Format 6 only)

e In a CALL statement

e In a relation condition

¢ In the USING phrase of an ENTRY statement or the Procedure Division header

The USAGE IS PROCEDURE-POINTER clause can be written at any level except level
88. If a group item is described with the USAGE IS PROCEDURE-POINTER clause,
the elementary items within the group are procedure-pointer data items; the group itself
is not a procedure-pointer and cannot be used in the syntax where a procedure-pointer
data item is allowed. The USAGE clause of an elementary item cannot contradict the
USAGE clause of a group to which the item belongs.

Procedure-pointer data items can be part of a group that is referred to in a MOVE
statement or an input/output statement. However, there is no conversion of values
when the statement is executed. If a procedure-pointer data item is written to a data
set, subsequent reading of the record containing the procedure-pointer can result in an
invalid value in the procedure-pointer.

A procedure-pointer data item can be the subject or object of a REDEFINES clause.

SYNCHRONIZED can be used with USAGE IS PROCEDURE-POINTER to obtain effi-
cient alignment of the procedure-pointer data item.

The GLOBAL, EXTERNAL, and OCCURS clause can be used with USAGE IS
PROCEDURE-POINTER.

A VALUE clause for a procedure-pointer data item can contain only NULL or NULLS.
The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses cannot
be used to describe group or elementary items defined with the USAGE IS
PROCEDURE-POINTER clause.

A procedure-pointer data item cannot be a conditional variable.

A procedure-pointer data item does not belong to any class or category.

Procedure-pointer data items are ignored in CORRESPONDING operations.

214 COBOL Language Reference

VALUE Clause

NATIVE Phrase

Under OS/390 and VM, the NATIVE phrase is treated as a comment.

Using the NATIVE phrase, you can mix characters, floating point, and binary data as
represented on the S390 and native platform. The NATIVE phrase overrides the
CHAR(EBCDIC), FLOAT(HEX), and BINARY(S390) compiler options, which indicate
host data type usages. (Note, the BINARY compiler option is only applicable to OS/2
and Windows programs.)

Using both host and native data types within a program (ASCIlI and EBCDIC, Hex
Floating point and IEEE floating point, and/or big endian and little endian binary) is only
valid for those data items specifically defined with the NATIVE phrase.

Specifying NATIVE does not change the class or the category of the data item.

Numeric data items are treated in arithmetic operations (hnumeric comparisons, arith-
metic expressions, assignment to numeric targets, arithmetic statement) based on their
logical numeric values, regardless of their internal representations.

Characters are converted to the representation of the target item prior to an assign-
ment.

Comparisons are done based on the collating sequence rules applicable to the oper-
ands. If native and non-native characters are compared, the comparison is based on
the COLLSEQ option in effect.

VALUE Clause

Format 1

The VALUE clause specifies the initial contents of a data item or the value(s) associ-
ated with a condition name. The use of the VALUE clause differs depending on the
Data Division section in which it is specified.

In the class Working-Storage Section, the VALUE clause can only be used in condition-
name entries.

As an IBM extension, in the File and Linkage Sections, if the VALUE clause is used in
entries other than condition-name entries, the VALUE clause is treated as a comment.

In the Working-Storage Section, the VALUE clause can be used in condition-name
entries, or in specifying the initial value of any data item. The data item assumes the
specified value at the beginning of program execution. If the initial value is not explicitly
specified, it is unpredictable.

— Format 1—Literal Value
»»—VALUE literal
o]

\4
A

Part 5. Data Division 215

VALUE Clause

Format 1 specifies the initial value of a data item. Initialization is independent of any
BLANK WHEN ZERO or JUSTIFIED clause specified.

A format 1 VALUE clause specified in a data description entry that contains or is subor-
dinate to an OCCURS clause causes every occurrence of the associated data item to
be assigned the specified value. Each structure that contains the DEPENDING ON
phrase of the OCCURS clause is assumed to contain the maximum number of occur-
rences for the purposes of VALUE initialization.

The VALUE clause must not be specified for a data description entry that contains, or is
subordinate to, an entry containing either an EXTERNAL or a REDEFINES clause.
This rule does not apply to condition-name entries.

If the VALUE clause is specified at the group level, the literal must be a nonnumeric
literal or a figurative constant. The group area is initialized without consideration for the
subordinate entries within this group. In addition, the VALUE clause must not be speci-
fied for subordinate entries within this group.

For group entries, the VALUE clause must not be specified if the entry also contains
any of the following clauses: JUSTIFIED, SYNCHRONIZED, or USAGE (other than
USAGE DISPLAY).

The VALUE clause must not conflict with other clauses in the data description entry, or
in the data description of this entry's hierarchy.

Any VALUE clause associated with COMPUTATIONAL-1 or COMPUTATIONAL-2
(internal floating-point) items must specify a floating-point literal. The condition-name
VALUE phrase must also specify a floating-point literal. In addition, the figurative con-
stant ZERO and both integer and decimal forms of the zero literal can be specified in a
floating-point VALUE clause or condition-name VALUE phrase.

For information on floating-point literal values, see “Rules for Floating-point Literal
Values:” on page 24.

A VALUE clause cannot be specified for external floating-point items.

A VALUE clause associated with a DBCS item must contain a DBCS literal or the figu-
rative constant SPACE.

A data item cannot contain a VALUE clause if the prior data item contains a OCCURS
clause with the DEPENDING ON phrase.

Rules for Literal Values:
¢ Wherever a literal is specified, a figurative constant can be substituted.

¢ |f the item is numeric, all VALUE clause literals must be numeric. If the literal
defines the value of a Working-Storage item, the literal is aligned according to the
rules for numeric moves, with one additional restriction: The literal must not have a
value that requires truncation of nonzero digits. If the literal is signed, the associ-
ated PICTURE character-string must contain a sign symbol (S).

216 COBOL Language Reference

Format 2

VALUE Clause

e All numeric literals in a VALUE clause of an item must have a value that is within
the range of values indicated by the PICTURE clause for that item. For example,
for PICTURE 99PPP, the literal must be within the range 1000 through 99000, or
zero. For PICTURE PPP99, the literal must be within the range 0.00000 through
0.00099.

¢ |If the item is an elementary or group alphabetic, alphanumeric, alphanumeric-
edited, or numeric-edited item, all VALUE clause literals must be nonnumeric
literals. The literal is aligned according to the alphanumeric alignment rules, with
one additional restriction: the number of characters in the literal must not exceed
the size of the item.

¢ The functions of the editing characters in a PICTURE clause are ignored in deter-
mining the initial appearance of the item described. However, editing characters
are included in determining the size of the item. Therefore, any editing characters
must be included in the literal. For example, if the item is defined as PICTURE
+999.99 and the value is to be +12.34, then the VALUE clause should be specified
as VALUE "+012.34".

—— Format 2—Condition-Name Value

»»—88—condition-name-1 VALUE >
Lis
VALUES
ARE
I

>—Lliteral—l

A\
A

THROUGH Zit‘eral-ZJ
THRU——,_

This format associates a value, values, and/or range(s) of values with a condition-
name. Each such condition-name requires a separate level-88 entry. Level-number 88
and condition-name are not part of the Format 2 VALUE clause itself. They are
included in the format only for clarity.

condition-name-1
A user-specified name that associates a value with a conditional variable. If the
associated conditional variable requires subscripts or indexes, each procedural ref-
erence to the condition-name must be subscripted or indexed as required for the
conditional variable.

Condition-names are tested procedurally in condition-name conditions (see “Condi-
tional Expressions” on page 237).

literal-1
When literal-1 is specified alone, the condition-name is associated with a single
value.

literal-1 THROUGH literal-2
The condition-name is associated with at least one range of values. Whenever the
THROUGH phrase is used, literal-1 must be less than literal-2, unless the associ-

Part 5. Data Division 217

VALUE Clause

ated data item is a windowed date field. For details, see “Rules for Condition-
Name Values:” on page 218.

In the VALUE clause of a data description entry (Format 2), all the literals specified for

the THROUGH phrase must be DBCS literals if the associated conditional variable is a

DBCS data item. The figurative constants SPACE and SPACES can be used as DBCS
literals.

Under OS/390 and VM, the range of DBCS literals specified for the
THROUGH phrase is based on the binary collating sequence of the hexadecimal values
of the DBCS characters.

Under AIX, OS/2, and Windows, the range of nonnumeric literals or
DBCS literals specified for the THROUGH phrase is based on the collating sequence
indicated by the locale (except for single-byte character comparisons when a
non-NATIVE collating sequence is in effect). For more information on locale, see
Appendix F, “Locale Considerations (Workstation Only)” on page 564.

Rules for Condition-Name Values:

e The VALUE clause is required in a condition-name entry, and must be the only
clause in the entry. Each condition-name entry is associated with a preceding con-
ditional variable. Thus, every level-88 entry must always be preceded either by the
entry for the conditional variable, or by another level-88 entry when several
condition-names apply to one conditional variable. Each such level-88 entry implic-
itly has the PICTURE characteristics of the conditional variable.

e The key words THROUGH and THRU are equivalent.

The condition-name entries associated with a particular conditional variable must
immediately follow the conditional variable entry. The conditional variable can be
any elementary data description entry except another condition-name, a RENAMES
clause (level-66 item), or an item with USAGE IS INDEX.

The conditional variable cannot be an item with USAGE IS POINTER, USAGE IS
PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE.

A condition-name can be associated with a group item data description entry. In
this case:

— The condition-name value must be specified as a nonnumeric literal or figura-
tive constant.

— The size of the condition-name value must not exceed the sum of the sizes of
all the elementary items within the group.

— No element within the group can contain a JUSTIFIED or SYNCHRONIZED
clause.

— No USAGE other than DISPLAY can be specified within the group.
USAGE other than USAGE IS DISPLAY can be specified within the group.
Condition-names can be specified both at the group level and at subordinate levels

within the group.

218 COBOL Language Reference

VALUE Clause

The relation test implied by the definition of a condition-name at the group level is
performed in accordance with the rules for comparison of nonnumeric operands,
regardless of the nature of elementary items within the group.

The VALUE clause is allowed for internal floating-point data items.

The VALUE clause is allowed for DBCS data items. Relation tests for DBCS data
items are performed according to the rules for comparison of DBCS items. These
rules can be found in “Comparison of DBCS Operands” on page 251.

A space, a separator comma, or a separator semicolon, must separate successive
operands.

Each entry must end with a separator period.

¢ The type of literal in a condition-name entry must be consistent with the data type
of its conditional variable. In the following example:

— CITY-COUNTY-INFO, COUNTY-NO, and CITY are conditional variables.

The PICTURE associated with COUNTY-NO limits the condition-name value to
a 2-digit numeric literal.

The PICTURE associated with CITY limits the condition-name value to a
3-character nonnumeric literal.

— The associated condition-names are level-88 entries.

Any values for the condition-names associated with CITY-COUNTY-INFO
cannot exceed 5 characters.

Because this is a group item, the literal must be nonnumeric.
05 CITY-COUNTY-INFO.

88 BRONX VALUE "O3NYC".
88 BROOKLYN VALUE "24NYC".
88 MANHATTAN VALUE "31INYC".
88 QUEENS VALUE "41NYC".
88 STATEN-ISLAND VALUE "43NYC".
10 COUNTY-NO PICTURE 99.
88 DUTCHESS VALUE 14.
88 KINGS VALUE 24.
88 NEW-YORK VALUE 31.
88 RICHMOND VALUE 43.
10 CITY PICTURE X(3).
88 BUFFALO VALUE "BUF".
88 NEW-YORK-CITY VALUE "NYC".
88 POUGHKEEPSIE VALUE "POK".

05 POPULATION...
e If the item is a windowed date field, the following restrictions apply:
— For alphanumeric conditional variables:

- Both literal-1 and literal-2 (if specified) must be alphanumeric literals of the
same length as the conditional variable.

- The literals must not be specified as figurative constants.

Part 5. Data Division 219

VALUE Clause

Format 3

- If literal-2 is specified, then both literals must contain only decimal digits.

— If the YEARWINDOW compiler option is specified as a negative integer, then
literal-2 must not be specified.

— If literal-2 is specified, then literal-1 must be less than literal-2 after applying
the century window specified by the YEARWINDOW compiler option. That is,
the expanded date value of literal-1 must be less than the expanded date
value of literal-2.

For more information on using condition-names with windowed date fields, see
“Condition-Name Conditions and Windowed Date Field Comparisons” on
page 241.

— Format 3—NULL Value

»—VALUE NULL:
LI S—] |—NU LLSJ

\4
A

This format assigns an invalid address as the initial value of an item defined as USAGE
IS POINTER or USAGE IS PROCEDURE-POINTER. It also assigns an invalid object
reference as the initial value of an item defined as USAGE IS OBJECT REFERENCE.

VALUE IS NULL can only be specified for elementary items described implicitly or
explicitly as USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or USAGE IS
OBJECT REFERENCE.

220 COBOL Language Reference

Part 6. Procedure Division

Procedure Division Structure 223
Requirements for a Method Procedure Division 224
The Procedure Division Header 225
Declaratives e e 228
Procedures e 229
Arithmetic Expressions 231
Conditional Expressions 237
Statement Categories 258
Statement Operations 262
Procedure Division Statements Lo 275
ACCEPT Statement e e 275
ADD Statement e e e 280
ALTER Statement e 283
CALL Statement 285
CANCEL Statement 292
CLOSE Statement 294
COMPUTE Statement e 298
CONTINUE Statement e 300
DELETE Statement 301
DISPLAY Statemento 303
DIVIDE Statement e 306
ENTRY Statement e 309
EVALUATE Statement o 310
EXIT Statement e 314
EXIT METHOD Statement e 315
EXIT PROGRAM Statement oo 316
GOBACK Statement e 317
GO TO Statement e 318
IF Statement L 320
INITIALIZE Statement 322
INSPECT Statement o 325
INVOKE Statement e 334
MERGE Statement 342
MOVE Statement 349
MULTIPLY Statement 354
OPEN Statement 356
PERFORM Statement 362
READ Statement e 373
RELEASE Statement 382
RETURN Statement 384
REWRITE Statement 386
SEARCH Statement 390
SET Statement 397
SORT Statement e 404

© Copyright IBM Corp. 1991, 1998 221

START Statement e 412
STOP Statement 415
STRING Statement e 417
SUBTRACT Statement e 422
UNSTRING Statement o 425
WRITE Statement e 433

222 COBOL Language Reference

Procedure Division Structure

Procedure Division Structure

The Procedure Division is optional in a COBOL source program, class definition, and
method definition.

Program Procedure Division
A program Procedure Division consists of optional declaratives, and procedures
that contain sections and/or paragraphs, sentences, and statements.

Class Procedure Division
The class Procedure Division contains only method definitions. All methods intro-
duced in a COBOL class compilation unit must be defined in that compilation unit's
Procedure Division.

Method Procedure Division
A method Procedure Division consists of optional declaratives, and procedures that
contain sections and/or paragraphs, sentences, and statements. A method can
INVOKE other methods, be recursively INVOKEd, and issue a CALL to a program.
A method Procedure Division cannot contain nested programs or methods.

For additional details on a method Procedure Division, see “Requirements for a

Method Procedure Division” on page 224.
—— Format—Program and Method Procedure Division
»»—PROCEDURE DIVISION

Lprocedur‘e division header‘J

LDECLARATIVES.—L{ sect |—.—USE
paragraph-name.
sentence

>—Lsection—name—w—SECTION . | ><
l—prior‘ity-number‘—(z)J | ‘
paragraph-name.

LW—I
sect:

b—section-name—SECTION |
l—priori ty—number*—(z)J

Notes:
1 As an IBM extension, section-name can be omitted. If you omit section-name, paragraph-
name can be omitted.

2 Priority-numbers are not valid for methods, recursive programs, or (on AlX, OS/2, and
Windows) programs compiled with the THREAD option.

L eno DECLARATIVES.J
]

— Format—Class Procedure Division

»>—PROCEDURE DIVISION.
l—Lmet‘hod-definition

\4
A

© Copyright IBM Corp. 1991, 1998 223

Procedure Division Structure

Requirements for a Method Procedure Division
When using a Method Procedure Division, you need to know that:

e You can use the EXIT METHOD statement or the GOBACK statement to return
control to the invoking method or program. An implicit EXIT METHOD statement is
generated as the last statement of every method procedure division.

For details on the EXIT METHOD statement, see “EXIT METHOD Statement” on
page 315.

e You can use the STOP RUN statement (which terminates the run unit) in a
method.

¢ You can use the RETURN-CODE special register within a method Procedure Divi-
sion to access return codes from CALLed subprograms, but the RETURN-CODE
value is not returned to the invoker of the current method. Use the Procedure
Division RETURNING data name to return a value to the invoker of the current
method. For details, see the discussion of RETURNING data-name-2 under “The
Procedure Division Header” on page 225.

You cannot specify the following statements in a method PROCEDURE DIVISION:

e ALTER

e ENTRY

EXIT PROGRAM

e GO TO without a specified procedure name
SEGMENTATION

USE FOR DEBUGGING

The following special registers are allocated on a per-invocation basis for methods;
thus, they are in initial state on each method entry.

e ADDRESS OF (for each record in the Linkage Section)
¢ RETURN-CODE

e SORT-CONTROL

e SORT-CORE-SIZE

e SORT-FILE-SIZE

e SORT-MESSAGE

¢ SORT-MODE-SIZE

e SORT-RETURN

e TALLY

224 COBOL Language Reference

Procedure Division Header

The Procedure Division Header

The Procedure Division, if specified, is identified by one of the following headers,
depending on whether you are defining a program, method, or class.

—— Format—Procedure Division Header for Programs and Methods

»»—PROCEDURE DIVISION \' >
USING l ldata—name—l]—\—
—r—]—REFERENCE—
BY
VALUE
Cord

>

v
A

I—RETURNING—datfu-nume-ZJ

— Format—Procedure Division Header for Classes
»»—PROCEDURE DIVISION—.

\
A

USING
The USING phrase makes data items defined in a calling program available to a
called subprogram or an invoked method.

Only specify the USING phrase if the program is invoked by a CALL statement or a
method is invoked by the INVOKE statement and the CALL or INVOKE statement
includes a USING phrase.

The USING phrase is valid in the Procedure Division header of a called subpro-
gram entered at the beginning of the nondeclaratives portion; each USING identi-
fier must be defined as a level-01 or level-77 item in the Linkage Section of the
called subprogram or invoked method; it must not contain a REDEFINES clause.

A data item in the USING phrase of the Procedure Division header can have a
REDEFINES clause in its data description entry.

In a called subprogram entered at the first executable statement following an
ENTRY statement, the USING option is valid in the ENTRY statement; each
USING identifier must be defined as a level-01 or level-77 item in the Linkage
Section of the called subprogram or invoked method. In a calling program, the
USING phrase is valid for the CALL or INVOKE statement; each USING identifier
must be defined as a level-01, level-77, or an elementary item in the Data Division.

Each USING identifier in a calling program can be a data item of any level in the
Data Division.

USING identifiers cannot be windowed date fields.

It is possible to call from non-COBOL programs or pass user parameters from a
system command to a COBOL main program.

For AlIX, OS/2, and Windows, command-line arguments are always
passed in as native data types. If you specify the host data type compiler options

Part 6. Procedure Division 225

Procedure Division Header

(CHAR(EBCDIC), FLOAT(HEX), or BINARY(S390)), you must specify the NATIVE
phrase on any arguments with data types affected by these compiler options.
(Note, the BINARY compiler option is only applicable to OS/2 and Windows pro-

grams.) Workstation

The order of appearance of USING identifiers in both calling and called subpro-
grams or invoking and invoked methods, determines the correspondence of single
sets of data available to both programs. The correspondence is positional and not
by name. For calling and called subprograms, corresponding identifiers must
contain the same number of characters, although their data descriptions need not
be the same. For invoking and invoked methods, see “Conformance Requirements
for USING Phrase” on page 338.

For index-names, no correspondence is established; index-names in calling and
called programs or invoking and invoked methods always refer to separate
indexes.

The identifiers specified in a CALL USING or INVOKE USING statement name
data items available to the calling program or invoking method that can be referred
to in the called program or invoked method; a given identifier can appear more
than once. These items are defined in any Data Division section.

As an IBM extension, an identifier can appear more than once in a Procedure Divi-
sion USING phrase. The last value passed to it by a CALL USING or INVOKE
USING statement is used. The BY REFERENCE or BY VALUE phrase applies to
all parameters that follow until overridden by another BY REFERENCE or BY
VALUE phrase.

BY REFERENCE
When a CALL or INVOKE argument is passed BY CONTENT or BY REFER-
ENCE, BY REFERENCE must be specified or implied for the corresponding
formal parameter on the PROCEDURE/ENTRY USING phrase.

BY REFERENCE is the default if neither BY REFERENCE or BY VALUE is
specified.

If the reference to the corresponding data item in the CALL or INVOKE state-
ment declares the parameter to be passed BY REFERENCE (explicit or
implicit), the object program executes as if each reference to a USING identi-
fier in the called subprogram or invoked method Procedure Division is replaced
by a reference to the corresponding USING identifier in the calling program or
invoked method.

If the reference to the corresponding data item in the CALL or INVOKE state-
ment declares the parameter to be passed BY CONTENT, the value of the
item is moved when the CALL or INVOKE statement is executed and placed
into a system-defined storage item possessing the attributes declared in the
Linkage Section for data-name-1. The data description of each parameter in
the BY CONTENT phrase of the CALL or INVOKE statement must be the
same, meaning no conversion or extension or truncation, as the data
description of the corresponding parameter in the USING phrase of the Proce-
dure Division header.

226 COBOL Language Reference

Procedure Division Header

BY VALUE
If the reference to the corresponding data item in the CALL or INVOKE state-
ment declares the parameter to be passed BY VALUE, then the value of the
argument is passed, not a reference to the sending data item. Since CALLed
subprograms and INVOKEd methods have access only to a temporary copy of
the sending data item, any modifications made to the formal parameters corre-
sponding to the BY VALUE argument do not affect the argument.

Examples illustrating these concepts can be found in IBM COBOL Program-
ming Guide for your platform.

RETURNING data-name-2
Is the RETURNING phrase identifier. It specifies a data item to be returned as a
program or method result. You must define data-name-2 as either a level 01 or 77
entry in the Linkage Section. Data-name-2 cannot be a windowed date field.

Data-name-2 is an output-only parameter. When a program or method returns to
its invoker, the value in data-name-2 is implicitly stored into the identifier specified
in the CALL RETURNING phrase or the INVOKE RETURNING phrase, as
described in “CALL Statement” on page 285 or “INVOKE Statement” on

page 334. If, in the execution of a Procedure Division statement, data-name-2 is
used as a sending item before being used as a receiving item, the results are
undefined.

When you specify Procedure Division RETURNING data-name-2, the
RETURN-CODE special register can be used within the PROCEDURE DIVISION
only as a means of accessing return codes from CALLed subprograms. The
RETURN-CODE value is not returned to the caller of the current program (the
value in data-name-2 is).

If the CALLed subprogram is COBOL, the CALLed COBOL program must specify
the RETURNING phrase on its Procedure Division header. In addition,
data-name-2 and the corresponding RETURNING identifier in the target program
must have the same PICTURE, USAGE, SIGN, SYNCHRONIZE, JUSTIFIED, and
BLANK WHEN ZERO clauses (except that currency signs can differ and periods
and commas can be interchanged due to the DECIMAL POINT IS COMMA
clause).

Do not use the Procedure Division RETURNING phrase in:

e Programs that contain the ENTRY statement
¢ Nested programs

¢ Main programs— results of specifying Procedure Division RETURNING on a
main program are undefined. You should only specify the Procedure Division
RETURNING phrase on called subprograms. For main programs, use the
RETURN-CODE special register to return a value to the operating environ-
ment.

Part 6. Procedure Division 227

Declaratives

. Under OS/390 and VM, on programs that use CEEPIPI—results
of specifying Procedure Division RETURNING on programs that are called with
the Language Environment preinitialization service (CEEPIPI) are undefined.

Data items defined in the Linkage Section of the called program or invoked method,
can be referenced within the Procedure Division of that program if, and only if, they
satisfy one of the following conditions:

e They are operands of the USING phrase of the Procedure Division header or the
ENTRY statement

e They are operands of SET ADDRESS OF, CALL...BY REFERENCE ADDRESS
OF, or INVOKE...BY REFERENCE ADDRESS OF

e They are defined with a REDEFINES or RENAMES clause, the object of which
satisfies the above conditions

e They are items subordinate to any item that satisfies the condition in the rules
above

e They are condition-names or index-names associated with data items that satisfy
any of the above conditions.

Declaratives

Declaratives provide one or more special-purpose sections that are executed when an
exceptional condition occurs.

When Declarative Sections are specified, they must be grouped at the beginning of the
Procedure Division, and the entire Procedure Division must be divided into sections.

Each Declarative Section starts with a USE statement that identifies the section's func-
tion; the series of procedures that follow specify what actions are to be taken when the
exceptional condition occurs. Each Declarative Section ends with another section-
name followed by a USE statement, or with the key words END DECLARATIVES. See
“USE Statement” on page 529 for more information on the USE statement.

The entire group of Declarative Sections is preceded by the key word DECLARATIVES,
written on the line after the Procedure Division header; the group is followed by the key
words END DECLARATIVES. The key words DECLARATIVES and END DECLAR-
ATIVES must each begin in Area A and be followed by a separator period. No other
text can appear on the same line.

In the declaratives part of the Procedure Division, each section header must be fol-

lowed by a separator period, and must be followed by a USE statement, followed by a
separator period. No other text can appear on the same line.

228 COBOL Language Reference

Procedures

The USE statement has three formats:

1. EXCEPTION declarative (see “USE Statement” on page 529)
2. DEBUGGING declarative (see “USE Statement” on page 529)
3. LABEL declarative (see “USE Statement” on page 529)

The USE statement itself is never executed; instead, the USE statement defines the
conditions that execute the succeeding procedural paragraphs, which specify the
actions to be taken. After the procedure is executed, control is returned to the routine
that activated it.

Within a declarative procedure, except for the USE statement itself, there must be no
reference to any nondeclarative procedure.
As IBM extensions, the following apply to declarative procedures:
For AlIX, OS/2, Windows, OS/390, and VM:
e A declarative procedure can be performed from a nondeclarative procedure.
Additionally for OS/390 and VM:
e A nondeclarative procedure can be performed from a declarative procedure.

e A declarative procedure can be referenced in a GO TO statement in a declar-
ative procedure.

e A nondeclarative procedure can be referenced in a GO TO statement in a
declarative procedure.

Within a declarative procedure, no statement should be included that would cause the
execution of a USE procedure that had been previously invoked and had not yet
returned control to the invoking routine.

You can include a statement that executes a previously invoked USE procedure that is
still in control. However, to avoid an infinite loop, you must be sure there is an eventual
exit at the bottom.

The declarative procedure is exited when the last statement in the procedure is exe-
cuted.

Procedures

Within the Procedure Division, a procedure consists of:

e A section or a group of sections
e A paragraph or group of paragraphs

A procedure-name is a user-defined name that identifies a section or a paragraph.

Section
A section-header optionally followed by one or more paragraphs.

Part 6. Procedure Division 229

Procedures

Section-header
A section-name followed by the key word SECTION, optionally followed, by a
priority-number , followed by a separator period.

If there are declaratives (format-1), a section-header is not required in the Pro-
cedure Division.

Section-name
A user-defined word that identifies a section. A referenced section-name,
because it cannot be qualified, must be unique within the program in
which it is defined.

Priority-number
An integer or a positive signed numeric literal ranging in value from 0
through 99.

Sections in the declaratives portion must contain priority numbers in the range
of 0 through 49.

You cannot specify priority-numbers:

¢ In a method definition
e In a program that is declared with the RECURSIVE attribute
¢ In a program that specifies the THREAD compiler option (Workstation

only)
A section ends immediately before the next section header, or at the end of

the Procedure Division, or, in the declaratives portion, at the key words END
DECLARATIVES.

Paragraph

A paragraph-name followed by a separator period, optionally followed by one or
more sentences.

Note: Paragraphs must be preceded by a period because paragraphs always
follow either the ID Division Header, a Section, or another paragraph, all of which
must end with a period.

Paragraph-name
A user-defined word that identifies a paragraph. A paragraph-name, because
it can be qualified, need not be unique.

If there are no declaratives (format-2), a paragraph-name is not required in the
Procedure Division.

A paragraph ends immediately before the next paragraph-name or section header,
or at the end of the Procedure Division, or, in the declaratives portion, at the key
words END DECLARATIVES.

As an IBM extension, all paragraphs do not need to be contained within sections,
even if one or more paragraphs are so contained.

230 COBOL Language Reference

Arithmetic Expressions

Sentence
One or more statements terminated by a separator period.

Statement
A syntactically valid combination of identifiers and symbols (literals,
relational-operators, and so forth) beginning with a COBOL verb.

identifier
The word or words necessary to make unique reference to a data
item, optionally including qualification, subscripting, indexing, and
reference-modification. In any Procedure Division reference (except
the class test), the contents of an identifier must be compatible with
the class specified through its PICTURE clause, or results are unpre-
dictable.

Execution begins with the first statement in the Procedure Division, excluding
declaratives. Statements are executed in the order in which they are presented for
compilation, unless the statement rules dictate some other order of execution.

The end of the Procedure Division is indicated by one of the following:

* An ldentification Division header, which indicates the start of a nested source
program

¢ The END PROGRAM header

e The physical end of the program; that is, the physical position in a source
program after which no further source program lines occur

Arithmetic Expressions

Arithmetic expressions are used as operands of certain conditional and arithmetic state-

ments.
An arithmetic expression can consist of any of the following:
1. An identifier described as a numeric elementary item (including numeric functions)
2. A numeric literal
3. The figurative constant ZERO
4. Identifiers and literals, as defined in items 1, 2, and 3, separated by arithmetic
operators
5. Two arithmetic expressions, as defined in items 1, 2, 3, and/or 4, separated by an
arithmetic operator
6. An arithmetic expression, as defined in items 1, 2, 3, 4, and/or 5, enclosed in

parentheses.

Any arithmetic expression can be preceded by a unary operator.

Identifiers and literals appearing in arithmetic expressions must represent either
numeric elementary items or numeric literals on which arithmetic can be performed.

Part 6. Procedure Division 231

Arithmetic Expressions

If an exponential expression is evaluated as both a positive and a negative number, the
result will always be the positive number. The square root of 4, for example,

4 %% 0.5 (the square root of 4)
is evaluated as +2 and -2. IBM COBOL always returns +2.
If the value of an expression to be raised to a power is zero, the exponent must have a

value greater than zero. Otherwise, the size error condition exists. In any case where
no real number exists as the result of the evaluation, the size error condition exists.

Arithmetic Operators

Five binary arithmetic operators and two unary arithmetic operators (Table 15) can be
used in arithmetic expressions. They are represented by specific characters that must
be preceded and followed by a space.

Table 15. Binary and Unary Operators

Binary Unary

Operator Meaning Operator Meaning
+ Addition + Multiplication by +1
- Subtraction - Multiplication by -1
* Multiplication
/ Division
ki Exponentiation

Note: Exponents in fixed-point exponential expressions cannot contain more than 9
digits. The compiler will truncate any exponent with more than 9 digits. In this case,
the compiler will issue a diagnostic message if the exponent is a literal or constant; if
the exponent is a variable or data-name, a diagnostic is issued at run-time.

Parentheses can be used in arithmetic expressions to specify the order in which ele-
ments are to be evaluated.

Expressions within parentheses are evaluated first. When expressions are contained
within a nest of parentheses, evaluation proceeds from the least inclusive to the most
inclusive set.

When parentheses are not used, or parenthesized expressions are at the same level of
inclusiveness, the following hierarchic order is implied:

1. Unary operator
2. Exponentiation
3. Multiplication and division
4. Addition and subtraction.

Parentheses either eliminate ambiguities in logic where consecutive operations appear
at the same hierarchic level or modify the normal hierarchic sequence of execution
when this is necessary. When the order of consecutive operations at the same

232 COBOL Language Reference

hierarchic level is not completely specified by parentheses, the order is from left to

right.

Arithmetic Expressions

An arithmetic expression can begin only with a left parenthesis, a unary operator, or an
operand (that is, an identifier or a literal). It can end only with a right parenthesis or an
operand. An arithmetic expression must contain at least one reference to an identifier

or a literal.

There must be a one-to-one correspondence between left and right parentheses in an
arithmetic expression, with each left parenthesis placed to the left of its corresponding

right parenthesis.

If the first operator in an arithmetic expression is a unary operator, it must be imme-
diately preceded by a left parenthesis if that arithmetic expression immediately follows

an identifier or another arithmetic expression.

Table 16 shows permissible arithmetic symbol pairs. An arithmetic symbol pair is the
combination of two such symbols in sequence. In the table:

Yes indicates a permissible pairing.
No indicates that the pairing is not permitted.

Table 16. Valid Arithmetic Symbol Pairs

Second Symbol

Identifier Unary +
or xRy or
First Symbol Literal - Unary - (
Identifier or Literal No Yes No No Yes
S A S Yes No Yes Yes No
Unary + or Unary - Yes No No Yes No
(Yes No Yes Yes No
) No Yes No No Yes

Arithmetic with Date Fields

Arithmetic operations that include a date field are restricted to:

e Adding a non-date to a date field

e Subtracting a non-date from a date field

e Subtracting a date field from a compatible date field

Date field operands are compatible if they have the same date format except for the

year part, which may be windowed or expanded.

The following operations are not allowed:

e Any operation between incompatible dates

Part 6. Procedure Division

233

Arithmetic Expressions

¢ Adding two date fields
e Subtracting a date field from a non-date
e Unary minus, applied to a date field

e Division, exponentiation, or multiplication of or by a date field

The following pages describe the result of using date fields in the supported addition
and subtraction operations.

For more information on using date fields in arithmetic operations, see:

e “ADD Statement” on page 280
e “COMPUTE Statement” on page 298
e “SUBTRACT Statement” on page 422

Notes:

1. Arithmetic operations treat date fields as numeric items; they do not recognize any
date-specific internal structure. For example, adding 1 to a windowed date field
containing the value 991231 (that might be used in an application to represent
December 31, 1999) results in the value 991232, not 000101.

2. When used as operands in arithmetic expressions or arithmetic statements, win-
dowed date fields are treated as if they were converted to expanded date format by
adding 1900 or 2000 to the year part, depending on the century window specified
by the YEARWINDOW compiler option. For details, see “Semantics of Windowed
Date Fields” on page 163.

Addition Involving Date Fields
The following table shows the result of using a date field with a compatible operand in
an addition.

Table 17. Results of Using Date Fields in Addition

Second Operand

First Operand Non-date Date field
Non-date Non-date Date field
Date field Date field Not allowed

For details on how a result is stored in a receiving field, see “Storing Arithmetic Results
That Involve Date Fields” on page 235.

234 COBOL Language Reference

Arithmetic Expressions

Subtraction Involving Date Fields

The following table shows the result of using a date field with a compatible operand in
the subtraction:

first operand — second operand

In a SUBTRACT statement, these operands appear in the reverse order:

SUBTRACT second operand FROM first operand

Table 18. Results of Using Date Fields in Subtraction

Second Operand

First Operand Non-date Date field
Non-date Non-date Not allowed
Date field Date field Non-date

Storing Arithmetic Results That Involve Date Fields
The following statements perform arithmetic, then store the result, or sending field, into
one or more receiving fields:

ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

Note: In a MULTIPLY statement, only GIVING identifiers can be date fields. In a
DIVIDE statement, only GIVING identifiers or the REMAINDER identifier can be date
fields.

Any windowed date fields that are operands of the arithmetic expression or statement
are treated as if they were expanded before use, as described under “Semantics of
Windowed Date Fields” on page 163.

If the sending field is a date field, then the receiving field must be a compatible date
field.

If the sending and receiving fields are both date fields, then they must be compatible;
that is, they must have the same date format, except for the year part, which may be
windowed or expanded.

If the ON SIZE ERROR clause is not specified on the statement, the store operation
follows the existing COBOL rules for the statement, and proceeds as if the receiving
and sending fields (after any initial expansion of windowed date field operands) were
both non-dates.

Part 6. Procedure Division 235

Arithmetic Expressions

When the ON SIZE ERROR clause is specified, Table 19 on page 237 shows how
these statements store the value of a sending field in a receiving field, where either
field may be a date field.

Table 19 on page 237 uses the following terms to describe how the store is performed:

Non-windowed

Windowed...

The statement performs the store with no special date-sensitive size error
processing, as described under “SIZE ERROR Phrases” on page 264.

...with non-date sending field

The non-date sending field is treated as a windowed date field compatible
with the windowed date receiving field, but with the year part representing
the number of years since 1900. (This representation is similar to a win-
dowed date field with a base year of 1900, except that the year part is not
limited to a positive number of at most 2 digits.) The store proceeds as if
this assumed year part of the sending field were expanded by adding 1900
to it.

...with date sending field

The store proceeds as if all windowed date field operands had been
expanded as necessary, so that the sending field is a compatible expanded
date field.

Size error processing: For both kinds of sending field, if the assumed or
actual year part of the sending field falls within the century window, then
the sending field is stored in the receiving field after removing the century
component of the year part. That is, the low-order or rightmost 2 digits of
the expanded year part are retained, and the high-order or leftmost 2 digits
are discarded.

If the year part does not fall within the century window, then the receiving
field is unmodified, and the size error imperative statement is executed
when any remaining arithmetic operations are complete.

For example:

77 DUE-DATE PICTURE 9(5) DATE FORMAT YYXXX.
77 IN-DATE PICTURE 9(8) DATE FORMAT YYYYXXX VALUE 1995001.

COMPUTE DUE-DATE = IN-DATE + 10000
ON SIZE ERROR imperative-statement
END-COMPUTE

The sending field is an expanded date field representing January 1, 2005.
Assuming that 2005 falls within the century window, the value stored in
DUE-DATE is 05001—the sending value of 2005001 without the century
component 20.

236 COBOL Language Reference

Conditional Expressions

Table 19. Storing Arithmetic Results Involving Date Fields When ON SIZE ERROR is Specified

Sending Field
Receiving Field Non-date Date field
Non-date Non-windowed Not allowed
Windowed date field Windowed Windowed
Expanded date field Non-windowed Non-windowed

Conditional Expressions

A conditional expression causes the object program to select alternative paths of
control, depending on the truth value of a test. Conditional expressions are specified in
EVALUATE, IF, PERFORM, and SEARCH statements.

A conditional expression can be specified in either simple conditions or complex condi-
tions. Both simple and complex conditions can be enclosed within any number of
paired parentheses; the parentheses do not change whether the condition is simple or
complex.

Simple Conditions
There are five simple conditions:

¢ Class condition

¢ Condition-name condition
¢ Relation condition

e Sign condition

¢ Switch-status condition

A simple condition has a truth value of either true or false.

Class Condition
The class condition determines whether the content of a data item is alphabetic,
alphabetic-lower, alphabetic-upper, numeric, or contains only the characters in the set
of characters specified by the CLASS clause as defined in the SPECIAL-NAMES para-
graph of the Environment Division.

The class condition determines whether the contents of a data item are DBCS or
KANJI.

—— Format

»»—identifier-1 NUMERI
entiste |—ISJ |—NOTJ AiPHABETIC
ALPHABETIC-LOWER—
ALPHABETIC-UPPER—|
class-name
DBCS
KANJ I

\4
A

Part 6. Procedure Division 237

Conditional Expressions

identifier-1
Must reference a data item whose usage is explicitly or implicitly DISPLAY.

Identifier-1 can reference a data item whose usage is explicitly or implicitly
DISPLAY-1.

If identifier-1 is a function-identifier, it must reference an alphanumeric function.

NOT
When used, NOT and the next key word define the class test to be executed for
truth value. For example, NOT NUMERIC is a truth test for determining that an
identifier is nonnumeric.

NUMERIC
Identifier consists entirely of the characters 0 through 9, with or without an opera-
tional sign.

If its PICTURE does not contain an operational sign, the identifier being tested is
determined to be numeric only if the contents are numeric and an operational sign
is not present.

If its PICTURE does contain an operational sign, the identifier being tested is deter-
mined to be numeric only if the item is an elementary item, the contents are
numeric, and a valid operational sign is present.

The NUMERIC test cannot be used with an identifier described as alphabetic or as
a group item that contains one or more signed elementary items.

For numeric data items, the identifier being tested can be described as USAGE
DISPLAY or (as IBM extensions) USAGE COMPUTATIONAL-3, or USAGE
PACKED-DECIMAL.

ALPHABETIC
Identifier consists entirely of any combination of the lowercase or uppercase alpha-
betic characters A through Z and the space.

The ALPHABETIC test cannot be used with an identifier described as numeric.

ALPHABETIC-LOWER
Identifier consists entirely of any combination of the lowercase alphabetic charac-
ters a through z and the space.

The ALPHABETIC-LOWER test cannot be used with an identifier described as
numeric.

ALPHABETIC-UPPER
Identifier consists entirely of any combination of the uppercase alphabetic charac-
ters A through Z and the space.

The ALPHABETIC-UPPER test cannot be used with an identifier described as
numeric.

class-name
Identifier consists entirely of the characters listed in the definition of class-name in
the SPECIAL-NAMES paragraph.

238 COBOL Language Reference

Conditional Expressions

The class-name test must not be used with an identifier described as numeric.

DBCS
Under OS/390 and VM, the identifier consists entirely of DBCS charac-
ters. For DBCS data items, the identifier being tested must be described explicitly
or implicitly as USAGE DISPLAY-1. Each byte of the DBCS identifier being tested
can contain characters that range in value from X'00" through X'FF".

Under AIX, OS/2, and Windows, the identifier contains DBCS char-
acters that correspond to valid OS/390 DBCS characters.

For all platforms, a range check is performed on the data portion of the item for
valid character representation. The valid range is X'41' through X'FE' for both
bytes of each DBCS character and X'4040' for the DBCS blank. (These ranges
are for the equivalent DBCS character representation for OS/390, not the actual
DBCS character value ranges of the workstation DBCS characters.)

KANJI
Under OS/390 and VM, the identifier consists entirely of DBCS charac-
ters. For KANJI data items, the identifier being tested must be described explicitly
or implicitly as USAGE DISPLAY-1. Each byte of the DBCS identifier being tested
can contain characters that range in value from X'00"' through X'FF'.

Under AIX, OS/2, and Windows the identifier contains DBCS charac-
ters that correspond to valid OS/390 DBCS characters.

For all platforms, a range check is performed on the data portion of the item for
valid character representation. The valid range is from X'41' through X'7F" for
the first byte, from X'41' through X'FE' for the second byte, and X'4040' for the
DBCS blank. (These ranges are for the equivalent DBCS character representation
for OS/390, not the actual DBCS character value ranges of the workstation DBCS
characters.)

The class test is not valid for items defined as USAGE IS INDEX, as these items do not
belong to any class or category.

The class test is not valid for items defined as USAGE IS POINTER or USAGE IS
PROCEDURE-POINTER, as these items do not belong to any class or category.

The class condition cannot be used for external floating-point (USAGE DISPLAY) or
internal floating-point (USAGE COMP-1 and USAGE COMP-2) items.

Table 20 shows valid forms of the class test.

Table 20 (Page 1 of 2). Valid Forms of the Class Test for Different Types of Identifiers

Type of Identifier Valid Forms of the Class Test

Alphabetic ALPHABETIC NOT ALPHABETIC
ALPHABETIC-LOWER NOT ALPHABETIC-LOWER
ALPHABETIC-UPPER NOT ALPHABETIC-UPPER
class-name NOT class-name

Part 6. Procedure Division 239

Conditional Expressions

Table 20 (Page 2 of 2). Valid Forms of the Class Test for Different Types of Identifiers

Type of Identifier Valid Forms of the Class Test
Alphanumeric, ALPHABETIC NOT ALPHABETIC
Alphanumeric-edited, or ALPHABETIC-LOWER NOT ALPHABETIC-LOWER
Numeric-edited ALPHABETIC-UPPER NOT ALPHABETIC-UPPER
NUMERIC NOT NUMERIC
class-name NOT class-name
External-Decimal NUMERIC NOT NUMERIC
or Internal-Decimal
DBCS DBCS NOT DBCS
KANJI NOT KANJI

Condition-Name Condition
A condition-name condition tests a conditional variable to determine whether its value is
equal to any value(s) associated with the condition-name.

—— Format

»»—condition-name

\ 4
A

A condition-name is used in conditions as an abbreviation for the relation condition.
The rules for comparing a conditional variable with a condition-name value are the
same as those specified for relation conditions.

If the condition-name has been associated with a range of values (or with several
ranges of values), the conditional variable is tested to determine whether or not its
value falls within the range(s), including the end values. The result of the test is true if
one of the values corresponding to the condition-name equals the value of its associ-
ated conditional variable.

Condition-names with DBCS and floating-point values are allowed.

The following example illustrates the use of conditional variables and condition-names:

01 AGE-GROUP PIC 99.
88 INFANT VALUE 0.
88 BABY VALUE 1, 2.
88 CHILD VALUE 3 THRU 12.
88 TEEN-AGER VALUE 13 THRU 19.

AGE-GROUP is the conditional variable; INFANT, BABY, CHILD, and TEEN-AGER are
condition-names. For individual records in the file, only one of the values specified in
the condition-name entries can be present.

The following IF statements can be added to the above example to determine the age
group of a specific record:

240 COBOL Language Reference

Conditional Expressions

IF INFANT... (Tests for value 0)

IF BABY... (Tests for values 1, 2)

IF CHILD... (Tests for values 3 through 12)
IF TEEN-AGER... (Tests for values 13 through 19)

Depending on the evaluation of the condition-name condition, alternative paths of exe-
cution are taken by the object program.

Condition-Name Conditions and Windowed Date Field

Comparisons

If the conditional variable is a windowed date field, then the values associated with its
condition-names are treated like values of the windowed date field; that is, they are
treated as if they were converted to expanded date format, as described under “Seman-
tics of Windowed Date Fields” on page 163.

For example, given YEARWINDOW(1945), specifying a century window of 1945-2044,
and the following definition:

05 DATE-FIELD PIC 9(6) DATE FORMAT YYXXXX.
88 DATE-TARGET VALUE 051220.

then a value of 051220 in DATE-FIELD would cause the following condition to be true:
IF DATE-TARGET...

because the value associated with DATE-TARGET and the value of DATE-FIELD
would both be treated as if they were prefixed by “20” before comparison.

However, the following condition would be false:
IF DATE-FIELD = 051220...

because, in a comparison with a windowed date field, literals are treated as if they are
prefixed by “19”, regardless of the century window. So the above condition effectively
becomes:

IF 20051220 = 19051220...

For more information on using windowed date fields in conditional expressions, see
“Date Fields” on page 242.

Relation Condition

A relation condition compares two operands, either of which can be an identifier, literal,
arithmetic expression, or index-name. A nonnumeric literal can be enclosed in paren-
theses within a relation condition.

Part 6. Procedure Division 241

Conditional Expressions

— Format 1
»>—operand-1 GREATER: operand-2——»<
Lisd | Lyor! Lrian-]
[A
THAN
—<:
AT T
TO
—GREATER—L—_'—OR EQUAL—L—_I—
THAN TO
—LESS OR EQUAL
Lrvand o]
L <=
operand-1

The subject of the relation condition. Can be an identifier, literal, function-identifier,
arithmetic expression, or index-name.

operand-2
The object of the relation condition. Can be an identifier, literal, function-identifier,
arithmetic expression, or index-name.

The relation condition must contain at least one reference to an identifier.

The relational operator specifies the type of comparison to be made. Table 21 shows
relational operators and their meanings. Each relational operator must be preceded
and followed by a space. The relational operators >= and <= must not have a space
between them.

Table 21. Relational Operators and Their Meanings

Relational Operator Can Be Written Meaning

IS GREATER THAN IS > Greater than

IS NOT GREATER THAN IS NOT > Not greater than

IS LESS THAN IS < Less than

IS NOT LESS THAN IS NOT < Not less than

IS EQUAL TO IS = Equal to

IS NOT EQUAL TO IS NOT = Not equal to

IS GREATER THAN OR IS >= Is greater than or equal to
EQUAL TO

IS LESS THAN OR EQUAL IS <= Is less than or equal to
TO

Date Fields

Date fields can be alphanumeric, external decimal, or internal decimal; the existing
rules for the validity and mode (numeric or nonnumeric) of comparing such items still

242 COBOL Language Reference

Conditional Expressions

apply. For example, an alphanumeric date field cannot be compared with an internal
decimal date field. In addition to these rules, two date fields can be compared only if
they are compatible; they must have the same date format except for the year part,
which may be windowed or expanded.

Table 22 shows supported comparisons with date fields. This table uses the following
terms to describe how the comparisons are performed:

Non-windowed
The comparison is performed with no windowing, as if the operands were
both non-dates.

Windowed
The comparison is performed as if:

1. Any windowed date field in the relation were expanded according to
the century window specified by the YEARWINDOW compiler option,
as described under “Semantics of Windowed Date Fields” on
page 163.

2. Any repetitive alphanumeric figurative constant were expanded to the
size of the windowed date field with which it is compared, giving an
alphanumeric non-date comparand. Repetitive alphanumeric figurative
constants include ZERO (in an alphanumeric context), SPACE,
LOW-VALUE, HIGH-VALUE, QUOTE and ALL literal.

3. Any alphanumeric non-date operand, either specified or computed (for
example, by reference modification or figurative constant expansion),
were expanded by prefixing the value with “19”.

4. Any numeric non-date operand, either specified or computed (for
example, as the result of an arithmetic expression), were expanded by
adding 1900 to the year part of the data item (or literal).

The comparison is then performed according to normal COBOL rules.
Nonnumeric comparisons are not changed to numeric comparisons by the
prefixing of the century value.

Table 22. Comparisons with Date Fields

Second Operand

First Operand Non-date Windowed date field Expanded date field
Non-date Non-windowed Windowed? Non-windowed
Windowed date field Windowed? Windowed Windowed
Expanded date field Non-windowed Windowed Non-windowed
Note:

1. When compared with windowed date fields, non-dates are assumed to contain a windowed
year relative to 1900. For details, see items 3 and 4 under the definition of “Windowed” com-
parison.

Part 6. Procedure Division 243

Conditional Expressions

Relation conditions can contain arithmetic expressions. For information about the treat-
ment of date fields in arithmetic expressions, see “Arithmetic with Date Fields” on
page 233.

DBCS Items

Under OS/390 and VM, DBCS data items and literals can be used with all
relational operators. Comparisons are based on the binary collating sequence of the
hexadecimal values of the DBCS characters. If the DBCS items are not the same
length, the smaller item is padded on the right with DBCS spaces.

Under AIX, OS/2, and Windows, comparisons of DBCS data items and
literals are based on a collation sequence according to the COLLSEQ compiler option:

e If the COLLSEQ(NATIVE) compiler option is in effect, then the collating sequence
is determined by the locale. For information on the locale, see Appendix F,
“Locale Considerations (Workstation Only)” on page 564.

¢ Otherwise, the collating sequence is determined by the binary values of the DBCS
characters.

Note: The PROGRAM COLLATING SEQUENCE clause will not be applied in compar-
isons of DBCS data items and literals.

DBCS items can be compared only with DBCS items.

Pointer Data Items

Only EQUAL and NOT EQUAL are allowed as relational operators when specifying
pointer data items. Pointer data items are items defined explicitly as USAGE IS
POINTER, or are ADDRESS OF special registers, which are implicitly defined as
USAGE IS POINTER.

The operands are equal if the two addresses used in the comparison would both result
in the same storage location.

This relation condition is allowed in IF, PERFORM, EVALUATE, and SEARCH Format
1 statements. It is not allowed in SEARCH Format 2 (SEARCH ALL) statements,
because there is no meaningful ordering that can be applied to pointer data items.

—— Format 2
ADDRESS OF—identifier-1 EQUAL >
identifier-2—— |—IS—J |—NOT—J L |—TOJ
NULL -
NULLS
ADDRESS OF—identifier-3 »><
identifier-4———
NULL-
NULLS

244 COBOL Language Reference

Conditional Expressions

identifier-1
identifier-3
Can specify any level item defined in the Linkage Section, except 66 and 88.

identifier-2
identifier-4
Must be described as USAGE IS POINTER.

NULL(S)
As in this syntax diagram, can be used only if the other operand is defined as
USAGE IS POINTER. That is, NULL=NULL is not allowed.

Table 23 summarizes the permissible comparisons for USAGE IS POINTER, NULL,
and ADDRESS OF.

Table 23. Permissible Comparisons for USAGE IS POINTER, NULL, and ADDRESS OF

Second Operand

USAGE IS
First Operand POINTER ADDRESS OF NULL/NULLS
USAGE IS POINTER Yes Yes Yes
ADDRESS OF Yes Yes Yes
NULL/NULLS Yes Yes No

Note:

YES = Comparison allowed only for EQUAL, NOT EQUAL
NO = No comparison allowed

Procedure-Pointer Data Items

Only EQUAL and NOT EQUAL are allowed as relational operators when specifying
procedure-pointer data items. Procedure-pointer data items are items defined explicitly
as USAGE IS PROCEDURE-POINTER.

The operands are equal if the two addresses used in the comparison would both result
in the same storage location.

This relation condition is allowed in IF, PERFORM, EVALUATE, and SEARCH Format
1 statements. It is not allowed in SEARCH Format 2 (SEARCH ALL) statements,
because there is no meaningful ordering that can be applied to procedure-pointer data
items.

— Format 3
> EQUAL >
identifier-1— |—ISJ |—NOTJ L |—TOJ identifier-2—
NULL——— NULL———
NULLS—— NULLS——

Part 6. Procedure Division 245

Conditional Expressions

identifier-1
identifier-2
Must be described as USAGE IS PROCEDURE-POINTER.

NULL(S)
As in this syntax diagram, can be used only if the other operand is defined as
USAGE IS PROCEDURE-POINTER. That is, NULL=NULL is not allowed.

Object Reference Data Items

A data item of USAGE OBJECT REFERENCE can be compared for equality or ine-
quality with another data item of USAGE OBJECT REFERENCE or with NULL, NULLS,
or SELF. (A comparison with SELF is only allowed in a method.) Two object-
references compare equal only if the data items identify the same object.

— Format 4
object-reference-identifier-1 EQUAL >
SELF Lisd Lyord L Lo
NULL =
NULLS

\ 4
A

NULL:
NULLS

> object-reference-identifier-2
ESELF

Comparison of Numeric and Nonnumeric Operands

Comparing Numeric Operands
The algebraic values of numeric operands are compared.

¢ The length (number of digits) of the operands is not significant.

¢ Unsigned numeric operands are considered positive.

e Zero is considered to be a unique value, regardless of sign.

e Comparison of numeric operands is permitted, regardless of the type of USAGE
specified for each.

Table 24 on page 247 summarizes permissible comparisons with humeric operands.

The symbols used in Table 24 and Table 25 are as follows:

NN = Comparison for nonnumeric operands
NU = Comparison for numeric operands
Blank = Comparison is not allowed.

246 COBOL Language Reference

Conditional Expressions

Table 24. Permissible Comparisons with Numeric Second Operands

Second Operand

First Operand ZR NL ED Bl AE ID IFP EFP FPL
Nonnumeric Operand
Group (GR) NN NNI NN1 NN
Alphabetic (AL) NN NN1 NN1 NN
Alphanumeric (AN) NN NN1 NN1 NN
Alphanumeric-edited (ANE) NN NNI NN1 NN
Numeric-Edited (NE) NN NN1 NN1 NN
Figurative Constant (FC 2) NN1 NN
Nonnumeric Literal (NNL) NN1 NN
Numeric Operand
Figurative Constant ZERO NU NU NU NU NU NU
(ZR)
Numeric Literal (NL) NU NU NU NU NU NU
External Decimal (ED) NU NU NU NU NU NU NU NU NU
Binary (BI) NU NU NU NU NU NU NU NU NU
Arithmetic Expression (AE) NU NU NU NU NU NU NU NU NU
Internal Decimal (ID) NU NU NU NU NU NU NU NU NU
Internal Floating-point (IFP) NU NU NU NU NU NU NU NU NU
External Floating-Point (EFP) NU NU NU NU NU NU NU NU NU
Floating-point Literal (FPL) NU NU NU NU NU NU

Note:

1
2

Integer item only.

Includes all figurative constants except ZERO.

Comparing Nonnumeric Operands

Comparisons of nonnumeric operands are made with respect to the collating sequence

of

the character set in use.

For the EBCDIC character set, the EBCDIC collating sequence is used.

For the ASCII character set, the ASCII collating sequence is used. (See
Appendix B, “EBCDIC and ASCII Collating Sequences” on page 544.)

Under AIX, OS/2, and Windows if the collating sequence specified
is NATIVE (explicitly or by default), the comparisons of characters are based on

the collating sequence indicated by the locale setting. For more information on

locale, see Appendix F, “Locale Considerations (Workstation Only)” on page 564.

Workstation

Part 6. Procedure Division

247

Conditional Expressions

¢ When the PROGRAM COLLATING SEQUENCE clause is specified in the
OBJECT-COMPUTER paragraph, the collating sequence associated with the
alphabet-name clause in the SPECIAL-NAMES paragraph is used.

The size of each operand is the total number of characters in that operand; the size
affects the result of the comparison. There are two cases to consider:

Operands of Equal Size
Characters in corresponding positions of the two operands are compared,
beginning with the leftmost character and continuing through the rightmost
character.

If all pairs of characters through the last pair test as equal, the operands are
considered as equal.

If a pair of unequal characters is encountered, the characters are tested to
determine their relative positions in the collating sequence. The operand con-
taining the character higher in the sequence is considered the greater
operand.

Operands of Unequal Size
If the operands are of unequal size, the comparison is made as though the
shorter operand were extended to the right with enough spaces to make the
operands equal in size.

248 COBOL Language Reference

Conditional Expressions

Table 25 summarizes permissible comparisons with nonnumeric operands.

Table 25. Permissible Comparisons with Nonnumeric Second Operands

Second Operand

First Operand GR AL AN ANE NE FC2 NNL
Nonnumeric Operand
Group (GR) NN NN NN NN NN NN NN
Alphabetic (AL) NN NN NN NN NN NN NN
Alphanumeric (AN) NN NN NN NN NN NN NN
Alphanumeric-edited NN NN NN NN NN NN NN
(ANE)
Numeric-Edited (NE) NN NN NN NN NN NN NN
Figurative Constant NN NN NN NN NN
(FC?)
Nonnumeric Literal NN NN NN NN NN
(NNL)
Numeric Operand
Figurative Constant NN NN NN NN NN
ZERO (ZR)
Numeric Literal (NL) NN1 NN1 NN1 NN1 NN1
External Decimal NN1 NN1 NN1 NN1 NN1 NN1 NN1
(ED)
Binary (BI)
Arithmetic
Expression (AE)
Internal Decimal (ID)
Internal Floating-
point (IFP)
External Floating- NN NN NN NN NN NN NN
point (EFP)
Floating-point Literal
(FPL)
Note:
1 Integer item only.
2 Includes all figurative constants except ZERO.
Part 6. Procedure Division 249

Conditional Expressions

Comparing Numeric and Nonnumeric Operands

The nonnumeric comparison rules, discussed above, apply. In addition, when numeric
and nonnumeric operands are being compared, their USAGE must be the same. In
such comparisons:

e The numeric operand must be described as an integer literal or data item.

¢ Non-integer literals and data items must not be compared with nonnumeric oper-
ands.

e External floating-point items can be compared with honnumeric operands.

If either of the operands is a group item, the nonnumeric comparison rules, discussed
above, apply. In addition to those rules:

e |f the nonnumeric operand is a literal or an elementary data item , the numeric
operand is treated as though it were moved to an alphanumeric elementary data
item of the same size, and the contents of this alphanumeric data item were then
compared with the nonnumeric operand.

e If the nonnumeric operand is a group item , the numeric operand is treated as
though it were moved to a group item of the same size, and the contents of this
group item were compared then with the nonnumeric operand.

See “MOVE Statement” on page 349.

Comparing Index-Names and Index Data Items
Comparisons involving index-names and/or index data items conform to the following
rules:

¢ The comparison of two index-names is actually the comparison of the corre-
sponding occurrence numbers.

¢ In the comparison of an index-name with a data item (other than an index data
item), or in the comparison of an index-name with a literal, the occurrence number
that corresponds to the value of the index-name is compared with the data item or
literal.

¢ In the comparison of an index-name with an arithmetic expression, the occurrence
number that corresponds to the value of the index-name is compared with the
arithmetic expression.

Since an integer function can be used wherever an arithmetic expression can be
used, this extension allows you to compare an index-name to an integer or numeric
function.

¢ In the comparison of an index data item with an index-name or another index data
item, the actual values are compared without conversion. Results of any other
comparison involving an index data item are undefined.

Table 26 on page 251 shows valid comparisons for index-names and index data items.

250 COBOL Language Reference

Conditional Expressions

Table 26. Comparisons for Index-Names and Index Data Items

Data-Name Literal
(Numeric (Numeric
Operands Index- Index Integer Integer Arithmetic
Compared Name Data ltem Only) Only) Expression
Index-Name Compare Compare Compare Compare Compare
occurrence without occurrence occurrence occurrence
number conver- number number number with
sion with data- with literal arithmetic
name expression
Index Data Compare Compare lllegal lllegal lllegal
Item without without
conversion conver-
sion

Comparison of DBCS Operands
The rules for comparing DBCS operands are the same as those for the comparison of
nonnumeric operands.

Under OS/390 and VM, the comparison is based on a binary collating
sequence of the hexadecimal values of the DBCS characters.

Under AIX, OS/2, and Windows if the collating sequence specified is
NATIVE (explicitly or by default), the comparisons of characters are based on the col-
lating sequence indicated by the locale setting. For more information on locale, see
Appendix F, “Locale Considerations (Workstation Only)” on page 564.

Note: The PROGRAM COLLATING SEQUENCE clause will not be applied to compar-
isons of DBCS operands.

Sign Condition
The sign condition determines whether or not the algebraic value of a numeric operand
is greater than, less than, or equal to zero.

—— Format
»»—operand-1 POSITIVE ><
|—ISJ |—NOTJ tNEGATIVE:I
ZER
operand-1

Must be defined as a numeric identifier, or it must be defined as an arithmetic
expression that contains at least one reference to a variable. Operand-1 must not
be a windowed date field. Operand-1 can be defined as a floating-point identifier.

Part 6. Procedure Division 251

Conditional Expressions

The operand is:

e POSITIVE if its value is greater than zero
e NEGATIVE if its value is less than zero
e ZERO if its value is equal to zero

An unsigned operand is either POSITIVE or ZERO.

NOT
One algebraic test is executed for the truth value of the sign condition. For
example, NOT ZERO is regarded as true when the operand tested is positive or
negative in value.

Under OS/390 and VM, if you are using the NUMPROC compiler
option, the results of the sign condition test can be affected. For details, see the
IBM COBOL for OS/390 & VM Programming Guide.

Switch-Status Condition
The switch-status condition determines the on or off status of an UPSI switch.

—— Format

»»—condition-name

A\
A

condition-name
Must be defined in the SPECIAL-NAMES paragraph as associated with the ON or
OFF value of an UPSI switch. (See “SPECIAL-NAMES Paragraph” on page 89.)

The switch-status condition tests the value associated with the condition-name. (The
value associated with the condition-name is considered to be alphanumeric.) The result
of the test is true if the UPSI switch is set to the value (0 or 1) corresponding to
condition-name. See “UPSI” in the IBM COBOL Programming Guide for your platform.

Complex Conditions

A complex condition is formed by combining simple conditions, combined conditions,
and/or complex conditions with logical operators, or negating these conditions with
logical negation.

Each logical operator must be preceded and followed by a space. The following table
shows the logical operators and their meanings.

252 COBOL Language Reference

Conditional Expressions

Table 27. Logical Operators and Their Meanings

Logical Name Meaning

Operator

AND Logical con- The truth value is true when both conditions are true.
junction

OR Logical The truth value is true when either or both conditions are true.
inclusive
OR

NOT Logical Reversal of truth value (the truth value is true if the condition is
negation false).

Unless modified by parentheses, the following precedence rules (from highest to
lowest) apply:

Arithmetic operations
Simple conditions
NOT

AND

OR

agrwnNPE

The truth value of a complex condition (whether parenthesized or not) is the truth value
that results from the interaction of all the stated logical operators on either of the fol-
lowing:

¢ The individual truth values of simple conditions

¢ The intermediate truth values of conditions logically combined or logically negated.

A complex condition can be either of the following:

¢ A negated simple condition
¢ A combined condition (which can be negated)

Negated Simple Conditions
A simple condition is negated through the use of the logical operator NOT.

— Format
»»—NOT—condition-1

\4
A

The negated simple condition gives the opposite truth value of the simple condition.
That is, if the truth value of the simple condition is true, then the truth value of that
same negated simple condition is false, and vice versa.

Placing a negated simple condition within parentheses does not change its truth value.
That is, the following two statements are equivalent:

NOT A IS EQUAL TO B.
NOT (A IS EQUAL TO B).

Part 6. Procedure Division 253

Conditional Expressions

Combined Conditions
Two or more conditions can be logically connected to form a combined condition.

—— Format

I
o
S
Q
~
~
~
o
3
—~
=
=
o
(2]
o
S
Q
~
~
~
o
?
N
\4
A

The condition to be combined can be any of the following:
e A simple-condition
¢ A negated simple-condition
e A combined condition

¢ A negated combined condition (that is, the NOT logical operator followed by a com-
bined condition enclosed in parentheses)

e Combinations of the preceding conditions that are specified according to the rules
in the following table.

Table 28. Combined Conditions—Permissible Element Sequences

Combined When not leftmost, can When not rightmost, can
condition Left be immediately pre- Right be immediately followed
element most ceded by: most by:

simple- con- Yes OR NOT AND (Yes OR AND)

dition

OR AND No simple-condition) No simple-condition NOT (
NOT Yes OR AND (No simple-condition (

(Yes OR NOT AND (No simple-condition NOT (
) No simple-condition) Yes OR AND)

Parentheses are never needed when either ANDs or ORs (but not both) are used
exclusively in one combined condition. However, parentheses can be needed to modify
the implicit precedence rules to maintain the correct logical relation of operators and
operands.

There must be a one-to-one correspondence between left and right parentheses, with
each left parenthesis to the left of its corresponding right parenthesis.

Table 29 on page 255 illustrates the relationships between logical operators and condi-
tions C1 and C2.

254 COBOL Language Reference

Conditional Expressions

Table 29. Logical Operators and Evaluation Results of Combined Conditions

NOT NOT
C1 (c2 C1 NOT

Value for Value AND C1OR AND AND (C10R NOT C1
Ci1 for C2 c2 Cc2 C2) Cc2 C2) OR C2
True True True True False False False True
False True False True True True False True
True False False True True False False False
False False False False True False True True

Order of Evaluation of Conditions

Parentheses, both explicit and implicit, define the level of inclusiveness within a
complex condition. Two or more conditions connected by only the logical operators
AND or OR at the same level of inclusiveness establish a hierarchical level within a
complex condition. An entire complex condition, therefore, is a nested structure of
hierarchical levels with the entire complex condition being the most inclusive hierar-
chical level.

Within this context, the evaluation of the conditions within an entire complex condition
begins at the left of the condition. The constituent connected conditions within a hierar-
chical level are evaluated in order from left to right, and evaluation of that hierarchical
level terminates as soon as a truth value for it is determined, regardless of whether all
the constituent connected conditions within that hierarchical level have been evaluated.

Values are established for arithmetic expressions and functions if and when the condi-
tions containing them are evaluated. Similarly, negated conditions are evaluated if and
when it is necessary to evaluate the complex condition that they represent. For
example:

NOT A IS GREATER THAN B OR A + B IS EQUAL TO C AND D IS POSITIVE
is evaluated as if parenthesized as follows:

(NOT (A IS GREATER THAN B)) OR
(((A + B) IS EQUAL TO C) AND (D IS POSITIVE))

Order of Evaluation:
1. (NOT (A IS GREATER THAN B)) is evaluated, giving some intermediate truth value,
tl. If t1 is true, the combined condition is true, and no further evaluation takes
place. If t1 is false, evaluation continues as follows.

2. (A + B) is evaluated, giving some intermediate result, x.

3. (x IS EQUAL TO C) is evaluated, giving some intermediate truth value, t2. If t2 is
false, the combined condition is false, and no further evaluation takes place. If t2
is true, the evaluation continues as follows.

4, (D IS POSITIVE) is evaluated, giving some intermediate truth value, t3. If t3 is
false, the combined condition is false. If t3 is true, the combined condition is true.

Part 6. Procedure Division 255

Conditional Expressions

Abbreviated Combined Relation Conditions
When relation-conditions are written consecutively, any relation-condition after the first
can be abbreviated in one of two ways:

e Omission of the subject
e Omission of the subject and relational operator.

—— Format

objec t—I—N

»—relation-condition v AND
l—OR—I l—NOTJ l—reZationaZ—operatorJ

In any consecutive sequence of relation-conditions, both forms of abbreviation can be
specified. The abbreviated condition is evaluated as if:

1. The last stated subject is the missing subject.
2. The last stated relational operator is the missing relational operator.

The resulting combined condition must comply with the rules for element sequence in
combined conditions, as shown in Table 28 on page 254.

If the word immediately following NOT is GREATER THAN, >, LESS THAN, <, EQUAL
TO, and =, then the NOT participates as part of the relational operator.

NOT in any other position is considered a logical operator (and thus results in a
negated relation-condition).

Using Parentheses

You can use parentheses in combined relation conditions to specify an intended order
of evaluation. Using parentheses can also help you to improve the readability of condi-
tional expressions.

The following rules govern the use of parentheses in abbreviated combined relation
conditions:

1. Parentheses can be used to change the order of evaluation of the logical operators
AND and OR.

2. The word NOT participates as part of the relational operator when it is immediately
followed by GREATER THAN, >, LESS THAN, <, EQUAL TO, and =.

3. NOT in any other position is considered a logical operator and thus results in a
negated relation-condition. If you use NOT as a logical operator, only the relation
condition immediately following the NOT is negated; the negation is not propagated
through the abbreviated combined relation condition along with the subject and
relational operator.

4. The logical NOT operator can appear within a parenthetical expression that imme-
diately follows a relational operator.

5. When a left parenthesis appears immediately after the relational operator, the rela-
tional operator is distributed to all objects enclosed in the parentheses. In the case

256 COBOL Language Reference

10.

11.

12.

Conditional Expressions

of a “distributed” relational operator, the subject and relational operator remain
current after the right parenthesis which ends the distribution. The following three
restrictions apply to cases where the relational operator is distributed throughout
the expression:

a. A simple condition cannot appear within the scope of the distribution.

b. Another relational operator cannot appear within the scope of the distribution.

c. The logical operator NOT cannot appear immediately after the left parenthesis,
which defines the scope of the distribution.

Evaluation proceeds from the least to the most inclusive condition.

There must be a one-to-one correspondence between left and right parentheses,
with each left parenthesis to the left of its corresponding right parenthesis. If the
parentheses are unbalanced, the compiler inserts a parenthesis and issues an
E-level message. Note, however, that if the compiler-inserted parenthesis results
in the truncation of the expression, you will receive an S-level diagnostic message.

The last stated subject is inserted in place of the missing subject.

The last stated relational operator is inserted in place of the missing relational
operator.

Insertion of the omitted subject and/or relational operator ends when:

a. Another simple condition is encountered,

b. A condition-name is encountered,

c. A right parenthesis is encountered that matches a left parenthesis that appears
to the left of the subject.

In any consecutive sequence of relation conditions, you can use both abbreviated
relation conditions that contain parentheses and those that don't.

Consecutive logical NOT operators cancel each other and result in an S-level
message. Note, however, that an abbreviated combined relation condition can
contain two consecutive NOT operators when the second NOT is part of a rela-
tional operator. For example, you can abbreviate the first condition as the second
condition listed below.

A = B and not A not = C
A = B and not not = C

The following table summarizes the rules for forming an abbreviated combined relation
condition.

Part 6. Procedure Division 257

Statement Categories

Table 30. Abbreviated Combined Conditions—Permissible Element Sequences

Combined When not leftmost, can When not rightmost, can
Condition Left be immediately preceded Right be immediately followed
Element most by: most by:
Subject Yes NOT (No Relational operator
Object No Relational operator AND Yes AND OR)
OR NOT (
Relational No Subject AND OR NOT No Object (
operator
AND OR No Object) No Object Relational operator
NOT (
NOT Yes AND OR (No Subject Object Relational
operator (
(Yes Relational operator AND No Subject Object NOT (
OR NOT (
) No Object) Yes AND OR)

The following examples illustrate abbreviated combined relation conditions, with and
without parentheses, and their unabbreviated equivalents.

Table 31. Abbreviated Combined Conditions—Unabbreviated Equivalents

Abbreviated Combined Relation Condition Equivalent

A=BANDNOT<CORD ((A = B) AND (A NOT < C)) OR (A NOT < D)
ANOT>BORC (A NOT > B) OR (A NOT > C)
NOTA=BORC (NOT (A=B)) OR (A=C)

NOT (A=B OR < C) NOT ((A = B) OR (A < C))

NOT (A NOT = B AND C AND NOT D) NOT ((((A NOT = B) AND (A NOT =C)) AND

(NOT (A NOT = D))))

Statement Categories
There are four categories of COBOL statements:

e Imperative

e Conditional

¢ Delimited scope

e Compiler directing.

Imperative Statements
An imperative statement either specifies an unconditional action to be taken by the
program, or is a conditional statement terminated by its explicit scope terminator (see
“Delimited Scope Statements” on page 261). A series of imperative statements can be
specified whenever an imperative statement is allowed. A conditional statement that is
terminated by its explicit scope terminator is also classified as an imperative statement

258 COBOL Language Reference

Statement Categories

(see “Delimited Scope Statements” on page 261). Table 32 lists COBOL imperative
statements.

Table 32 (Page 1 of 2). Imperative Statements

Arithmetic

ADD1
COMPUTE!
DIVIDE!
MULTIPLY1
SUBTRACT!

Data Movement

ACCEPT (DATE,DAY,DAY-OF-WEEK,TIME)
INITIALIZE

INSPECT

MOVE

SET

STRING2

UNSTRING2

Ending

STOP RUN
EXIT PROGRAM
EXIT METHOD
GOBACK

Input-Output

ACCEPT identifier
CLOSE

DELETE3
DISPLAY

OPEN

READA4
REWRITE3
START3

STORP literal
WRITES

Ordering

MERGE
RELEASE
RETURNS6
SORT

Procedure Branching

ALTER
EXIT

GO TO
PERFORM

Program or Method Linkage

CALLY
CANCEL
INVOKE

Part 6. Procedure Division

259

Statement Categories

Table 32 (Page 2 of 2). Imperative Statements

Table Handling
SET

Note:

1 Without the ON SIZE ERROR and/or the NOT ON SIZE ERROR phrase.

Without the ON OVERFLOW and/or the NOT ON OVERFLOW phrase.

Without the INVALID KEY and/or the NOT INVALID KEY phrase.

Without the AT END, NOT AT END, INVALID KEY, and/or NOT INVALID KEY phrases.

Without the INVALID KEY, NOT INVALID KEY, END-OF-PAGE, and/or NOT END-OF-PAGE

phrases.

Without the AT END and/or NOT AT END phrase.

7 Without the ON OVERFLOW phrase, and without the ON EXCEPTION and/or NOT ON
EXCEPTION phrase.

g b~ wN

(2]

Conditional Statements
A conditional statement specifies that the truth value of a condition is to be deter-
mined, and that the subsequent action of the object program is dependent on this truth
value. (See “Conditional Expressions” on page 237.) Table 33 lists COBOL state-
ments that become conditional when a condition (for example, ON SIZE ERROR or
ON OVERFLOW) is included, and when the statement is not terminated by its explicit
scope terminator.

Table 33 (Page 1 of 2). Conditional Statements

Arithmetic
ADD...ON SIZE ERROR
ADD...NOT ON SIZE ERROR
COMPUTE...ON SIZE ERROR
COMPUTE...NOT ON SIZE ERROR
DIVIDE...ON SIZE ERROR
DIVIDE...NOT ON SIZE ERROR
MULTIPLY...ON SIZE ERROR
MULTIPLY...NOT ON SIZE ERROR
SUBTRACT...ON SIZE ERROR
SUBTRACT...NOT ON SIZE ERROR

Data Movement
STRING...ON OVERFLOW
STRING...NOT ON OVERFLOW
UNSTRING...ON OVERFLOW
UNSTRING...NOT ON OVERFLOW

Decision
IF
EVALUATE

260 COBOL Language Reference

Statement Categories

Table 33 (Page 2 of 2). Conditional Statements

Input-Output
DELETE...INVALID KEY
DELETE...NOT INVALID KEY
READ...AT END
READ...NOT AT END
READ...INVALID KEY
READ...NOT INVALID KEY
REWRITE...INVALID KEY
REWRITE...NOT INVALID KEY
START...INVALID KEY
START...NOT INVALID KEY
WRITE...AT END-OF-PAGE
WRITE...NOT AT END-OF-PAGE
WRITE...INVALID KEY
WRITE...NOT INVALID KEY

Ordering
RETURN...AT END
RETURN...NOT AT END

Program or Method Linkage
CALL...ON OVERFLOW
CALL...ON EXCEPTION
CALL...NOT ON EXCEPTION
INVOKE...ON EXCEPTION
INVOKE...NOT ON EXCEPTION

Table Handling
SEARCH

Delimited Scope Statements

In general, a DELIMITED SCOPE statement uses an explicit scope terminator to turn a
conditional statement into an imperative statement; the resulting imperative statement
can then be nested. Explicit scope terminators can also be used, however, to terminate
the scope of an imperative statement. Explicit scope terminators are provided for all
COBOL verbs that can have conditional phrases.

Unless explicitly specified otherwise, a delimited scope statement can be specified
wherever an imperative statement is allowed by the rules of the language.

Explicit Scope Terminators

An EXPLICIT SCOPE TERMINATOR marks the end of certain Procedure Division
statements. A conditional statement that is delimited by its explicit scope terminator is
considered an imperative statement and must follow the rules for imperative state-
ments.

Part 6. Procedure Division 261

Statement Operations

The following are explicit scope terminators:

END-ADD END-READ
END-CALL END-RETURN
END-COMPUTE END-REWRITE
END-DELETE END-SEARCH
END-DIVIDE END-START
END-EVALUATE END-STRING
END-IF END-SUBTRACT
END-INVOKE END-UNSTRING
END-MULTIPLY END-WRITE

END-PERFORM

Implicit Scope Terminators
At the end of any sentence, an IMPLICIT SCOPE TERMINATOR is a separator period
that terminates the scope of all previous statements not yet terminated.

An unterminated conditional statement cannot be contained by another statement.
However, a scope terminator will be assumed just prior to the next phrase of the con-
taining statement.

Note: Except for nesting conditional statements within IF statements, nested state-
ments must be imperative statements, and must follow the rules for imperative state-
ments. You should not nest conditional statements.

Compiler-Directing Statements
Statements that direct the compiler to take a specified action are discussed in
“Compiler-Directing Statement” on page 508.

Statement Operations
COBOL statements perform the following types of operations:

e Arithmetic

¢ Data manipulation

¢ Input/output

e Procedure branching

There are several phrases common to arithmetic and data manipulation statements,
such as:

¢ CORRESPONDING Phrase
¢ GIVING Phrase

¢ ROUNDED Phrase

¢ S|ZE ERROR Phrases

CORRESPONDING Phrase

The CORRESPONDING phrase (CORR) allows ADD, SUBTRACT, and MOVE oper-
ations to be performed on elementary data items of the same name if the group items
to which they belong are specified.

262 COBOL Language Reference

Statement Operations

Both identifiers following the key word CORRESPONDING must name group items. In
this discussion, these identifiers are referred to as identifier-1 and identifier-2.

A pair of data items (subordinate items), one from identifier-1 and one from identifier-2,
correspond if the following conditions are true:

¢ In an ADD or SUBTRACT statement, both of the data items are elementary
numeric data items. Other data items are ignored.

¢ |n a MOVE statement, at least one of the data items is an elementary item, and the
move is permitted by the move rules.

¢ The two subordinate items have the same name and the same qualifiers up to but
not including identifier-1 and identifier-2.

¢ The subordinate items are not identified by the key word FILLER.

* Neither identifier-1 nor identifier-2 is described as a level 66, 77, or 88 item, nor is
either described as a USAGE IS INDEX item. Neither identifier-1 nor identifier-2
can be reference-modified.

e The subordinate items do not include a REDEFINES, RENAMES, OCCURS,
USAGE IS INDEX, USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or
USAGE IS OBJECT REFERENCE clause in their descriptions.

However, identifier-1 and identifier-2 themselves can contain or be subordinate to
items containing a REDEFINES or OCCURS clause in their descriptions.

¢ Neither identifier-1 nor identifier-2 is described as a USAGE IS POINTER, USAGE
IS PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE

¢ dentifier-1 and/or identifier-2 can be subordinate to a FILLER item.

For example, if two data hierarchies are defined as follows:

05 ITEM-1 OCCURS 6.
10 ITEM-A PIC S9(3).
10 ITEM-B PIC +99.9.
10 ITEM-C PIC X(4).
10 ITEM-D REDEFINES ITEM-C PIC 9(4).
10 ITEM-E USAGE COMP-1.
10 ITEM-F USAGE INDEX.
05 ITEM-2.
10 ITEM-A PIC 99.
10 ITEM-B PIC +9V9.
10 ITEM-C PIC A(4).
10 ITEM-D PIC 9(4).
10 ITEM-E PIC 9(9) USAGE COMP.
10 ITEM-F USAGE INDEX.

Then, if ADD CORR ITEM-2 TO ITEM-1(X) is specified, ITEM-A and ITEM-A(X),
ITEM-B and ITEM-B(X), and ITEM-E and ITEM-E(X) are considered to be corre-
sponding and are added together. ITEM-C and ITEM-C(X) are not included because
they are not numeric. ITEM-D and ITEM-D(X) are not included because ITEM-D(X)
includes a REDEFINES clause in its data description. ITEM-F and ITEM-F(X) are not

Part 6. Procedure Division 263

Statement Operations

included because they are defined as USAGE IS INDEX. Note that ITEM-1 is valid as
either identifier-1 or identifier-2.

If any of the individual operations in the ADD CORRESPONDING statement produces a
size error condition, imperative-statement-1 in the ON SIZE ERROR phrase is not exe-
cuted until all of the individual additions are completed.

GIVING Phrase

The value of the identifier that follows the word GIVING is set equal to the calculated
result of the arithmetic operation. Because this identifier is not involved in the computa-
tion, it can be a numeric-edited item.

ROUNDED Phrase
After decimal point alignment, the number of places in the fraction of the result of an
arithmetic operation is compared with the number of places provided for the fraction of
the resultant identifier.

When the size of the fractional result exceeds the number of places provided for its
storage, truncation occurs unless ROUNDED is specified. When ROUNDED is speci-
fied, the least significant digit of the resultant identifier is increased by 1 whenever the
most significant digit of the excess is greater than or equal to 5.

When the resultant identifier is described by a PICTURE clause containing rightmost
Ps, and when the number of places in the calculated result exceeds the number of
integer positions specified, rounding or truncation occurs, relative to the rightmost
integer position for which storage is allocated.

In a floating-point arithmetic operation, the ROUNDED phrase has no effect; the result
of a floating-point operation is always rounded. For more information on floating-point
arithmetic expressions, see IBM COBOL Programming Guide for your platform.

SIZE ERROR Phrases
A size error condition can occur in four different ways:

* When the absolute value of the result of an arithmetic evaluation, after decimal
point alignment, exceeds the largest value that can be contained in the result field

e When division by zero occurs

e When the result of an arithmetic statement is stored in a windowed date field, and
the year of the result falls outside the century window. For example, given
YEARWINDOW(1940), which specifies a century window of 1940-2039, the fol-
lowing SUBTRACT statement causes a size error:

01 WINDOWED-YEAR DATE FORMAT YY PICTURE 99
VALUE IS 50.

SUBTRACT 20 FROM WINDOWED-YEAR
ON SIZE ERROR imperative-statement

264 COBOL Language Reference

Statement Operations

The size error occurs because the result of the subtraction, a windowed date field,
has an effective year value of 1930, which falls outside the century window. For
details on how windowed date fields are treated as if they were converted to
expanded date format, see “Subtraction Involving Date Fields” on page 235.

For more information on how size errors can occur when using date fields, see
“Storing Arithmetic Results That Involve Date Fields” on page 235.

¢ In an exponential expression, as indicated in the following table:

Table 34. Exponentiation Size Error Conditions

Action taken when a SIZE

Action taken when a SIZE ERROR clause is not
Size error ERROR clause is present present
Zero raised to zero power The SIZE ERROR imper- The value returned is 1, and a
ative is executed. message is issued.
Zero raised to a negative The SIZE ERROR imper- Program is terminated abnor-
number ative is executed. mally.
A negative number raised to a The SIZE ERROR imper- The absolute value of the
fractional power ative is executed. base is used, and a message
is issued.

The size error condition applies only to final results, not to any intermediate results.

If the resultant identifier is defined with USAGE IS BINARY, COMPUTATIONAL, or
COMPUTATIONAL-4, the largest value that can be contained in it is the maximum
value implied by its associated decimal PICTURE character-string.

If the ROUNDED phrase is specified, rounding takes place before size error checking.

When a size error occurs, the subsequent action of the program depends on whether or
not the ON SIZE ERROR phrase is specified.

If the ON SIZE ERROR phrase is not specified and a size error condition occurs, trun-
cation rules apply and the value of the affected resultant identifier is computed.

If the ON SIZE ERROR phrase is specified and a size error condition occurs, the value
of the resultant identifier affected by the size error is not altered—that is, the error
results are not placed in the receiving identifier. After completion of the execution of
the arithmetic operation, the imperative statement in the ON SIZE ERROR phrase is
executed, control is transferred to the end of the arithmetic statement, and the NOT ON
SIZE ERROR phrase, if specified, is ignored.

For ADD CORRESPONDING and SUBTRACT CORRESPONDING statements, if an
individual arithmetic operation causes a size error condition, the ON SIZE ERROR
imperative statement is not executed until all the individual additions or subtractions
have been completed.

Part 6. Procedure Division 265

Statement Operations

If the NOT ON SIZE ERROR phrase has been specified and, after execution of an
arithmetic operation, a size error condition does not exist, the NOT ON SIZE ERROR
phrase is executed.

When both ON SIZE ERROR and NOT ON SIZE ERROR phrases are specified, and
the statement in the phrase that is executed does not contain any explicit transfer of
control, then, if necessary, an implicit transfer of control is made after execution of the
phrase to the end of the arithmetic statement.

Arithmetic Statements
The arithmetic statements are used for computations. Individual operations are speci-
fied by the ADD, SUBTRACT, MULTIPLY, and DIVIDE statements. These operations
can be combined symbolically in a formula, using the COMPUTE statement.

Arithmetic Statement Operands
The data description of operands in an arithmetic statement need not be the same.
Throughout the calculation, the compiler performs any necessary data conversion and
decimal point alignment.

Size of Operands

The maximum size of each operand is 18 decimal digits. The composite of operands
is a hypothetical data item resulting from aligning the operands at the decimal point and
then superimposing them on one another. It must not contain more than 18 decimal
digits.

For example, assume that each item is defined as follows in the Data Division:

A PICTURE 9(7)V9(5).
B PICTURE 9(11)V99.
C PICTURE 9(12)V9(3).

If the following statement is executed, the composite of operands consists of 17
decimal digits:

ADD ABTOC

It has the following implicit description:
COMPOSITE-OF-OPERANDS PICTURE 9(12)V9(5).

The composite of operands can be more than 18 digits. For more information, see the
section on intermediate results in the IBM COBOL Programming Guide for your plat-
form.

In the ADD and SUBTRACT statements, if the composite of operands is 18 digits or
less, the compiler ensures that enough places are carried so that no significant digits
are lost during execution. The following table shows how the composite of operands is
determined for arithmetic statements:

266 COBOL Language Reference

Statement Operations

Table 35. How the Composite of Operands is Determined

Statement Determination of the Composite of Operands

SUBTRACT Superimposing all operands in a given statement (except those following the
ADD word GIVING)

MULTIPLY Superimposing all receiving data items

DIVIDE Superimposing all receiving data items, except the REMAINDER data item
COMPUTE Restriction does not apply

In all arithmetic statements, it is important to define data with enough digits and decimal
places to ensure the desired accuracy in the final result.

Overlapping Operands
When operands in an arithmetic statement share part of their storage (that is, when the
operands overlap), the result of the execution of such a statement is unpredictable.

Multiple Results
When an arithmetic statement has multiple results, execution conceptually proceeds as
follows:

e The statement performs all arithmetic operations to find the result to be placed in
the receiving items, and stores that result in a temporary location.

¢ A sequence of statements transfers or combines the value of this temporary result
with each single receiving field. The statements are considered to be written in the
same left-to-right order as the multiple results are listed.

For example, executing the following statement:
ADD A, B, C, TO C, D(C), E.
is equivalent to executing the following series of statements:

ADD A, B, C GIVING TEMP.
ADD TEMP TO C.

ADD TEMP TO D(C).

ADD TEMP TO E.

In the above example, TEMP is a compiler-supplied temporary result field. When the
addition operation for D(C) is performed, the subscript C contains the new value of C.

Data Manipulation Statements
The following COBOL statements move and inspect data: ACCEPT, INITIALIZE,
INSPECT, MOVE, READ, RELEASE, RETURN, REWRITE, SET, STRING,
UNSTRING, and WRITE.

Overlapping Operands
When the sending and receiving fields of a data manipulation statement share a part of
their storage (that is, when the operands overlap), the result of the execution of such a
statement is unpredictable.

Part 6. Procedure Division 267

Statement Operations

Input-Output Statements
COBOL input-output statements transfer data to and from files stored on external
media, and also control low-volume data that is obtained from or sent to an input/output
device.

In COBOL, the unit of file data made available to the program is a record, and you
need only be concerned with such records. Provision is automatically made for such
operations as the movement of data into buffers and/or internal storage, validity
checking, error correction (where feasible), blocking and deblocking, and volume
switching procedures.

The description of the file in the Environment Division and Data Division governs which
input-output statements are allowed in the Procedure Division. Permissible statements
for each type of file organization are shown in Table 45 on page 360 and Table 46 on
page 361.

Discussions in the following section use the terms volume and reel. The term volume
refers to all non-unit-record input-output devices. The term reel applies only to tape
devices. Treatment of direct access devices in the sequential access mode is logically
equivalent to the treatment of tape devices.

Common Processing Facilities
There are several common processing facilities that apply to more than one input-
output statement. The common processing facilities provided are:

e Status key

Invalid key condition
INTO/FROM identifier phrase
¢ File position indicator

Status Key

If the FILE STATUS clause is specified in the FILE-CONTROL entry, a value is placed
in the specified status key (the 2-character data item named in the FILE STATUS
clause) during execution of any request on that file; the value indicates the status of
that request. The value is placed in the status key before execution of any
EXCEPTION/ERROR declarative or INVALID KEY/AT END phrase associated with the
request.

There are two status key data-names. One is described by data-name-1 in the FILE
STATUS clause of the FILE-CONTROL entry. This is a two character data item with
the first character known as status key 1 and the second character known as status key
2. The combinations of possible values and their meanings are shown in Table 36 on
page 2609.

The other status key is described by data-name-8 in the FILE STATUS clause of the
FILE-CONTROL entry. Data-name-8 does not apply to QSAM files (0S/390 and VM
only) or to line sequential files (Workstation only). For more information on
data-name-8, see “FILE STATUS Clause” on page 120.

268 COBOL Language Reference

Statement Operations

Table 36 (Page 1 of 4). Status Key Values and Meanings

High-
Order
Digit

Meaning

Low-
Order
Digit

Meaning

0

Successful
Completion

0

No further information

2

This file status value only applies to indexed files with alternate keys that
allow duplicates.

The input-output statement was successfully executed, but a duplicate key
was detected. For a READ statement the key value for the current key of
reference was equal to the value of the same key in the next record within
the current key of reference. For a REWRITE or WRITE statement, the
record just written created a duplicate key value for at least one alternate
record key for which duplicates are allowed.

A READ statement was successfully executed, but the length of the record
being processed did not conform to the fixed file attributes for that file.

An OPEN statement is successfully executed but the referenced optional file
is not present at the time the OPEN statement is executed. The file has
been created if the open mode is I-O or EXTEND. This does not apply to
0S/390 and VM VSAM sequential files.

For a CLOSE statement with the NO REWIND, REEL/UNIT, or FOR
REMOVAL phrase or for an OPEN statement with the NO REWIND phrase,
the referenced file was on a non-reel/unit medium.

At end condi-
tion

A sequential READ statement was attempted and no next logical record
existed in the file because the end of the file had been reached, or the first
READ was attempted on an optional input file that was not present.

A sequential READ statement was attempted for a relative file and the
number of significant digits in the relative record number was larger than the
size of the relative key data item described for the file.

Invalid key
condition

A sequence error exists for a sequentially accessed indexed file. The prime
record key value has been changed by the program between the successful
execution of a READ statement and the execution of the next REWRITE
statement for that file, or the ascending requirements for successive record
key values were violated.

Under OS/2 for Btrieve indexed files, file status 21 is not applicable. You
can create records sequentially in any key order.

An attempt was made to write a record that would create a duplicate key in
a relative file; or an attempt was made to write or rewrite a record that would
create a duplicate prime record key or a duplicate alternate record key
without the DUPLICATES phrase in an indexed file.

An attempt was made to randomly access a record that does not exist in the
file, or a START or random READ statement was attempted on an optional
input file that was not present.

An attempt was made to write beyond the externally defined boundaries of a
relative or indexed file. Or, a sequential WRITE statement was attempted
for a relative file and the number of significant digits in the relative record
number was larger than the size of the relative key data item described for
the file.

Part 6. Procedure Division 269

Statement Operations

Table 36 (Page 2 of 4). Status Key Values and Meanings

High- Meaning Low- Meaning
Order Order
Digit Digit
3 Permanent 0 No further information
error condi- - o
tion 4 A permanent error exists because of a boundary violation; an attempt was
made to write beyond the externally-defined boundaries of a sequential file.
5 An OPEN statement with the INPUT, I-O, or EXTEND phrase was attempted
on a non-optional file that was not present.
7 An OPEN statement was attempted on a file that would not support the
open mode specified in the OPEN statement. Possible violations are:
1. The EXTEND or OUTPUT phrase was specified but the file would not
support write operations.
2. The I-O phrase was specified but the file would not support the input
and output operations permitted.
3. The INPUT phrase was specified but the file would not support read
operations.
8 An OPEN statement was attempted on a file previously closed with lock.
9 The OPEN statement was unsuccessful because a conflict was detected

between the fixed file attributes and the attributes specified for that file in the
program. These attributes include the organization of the file (sequential,
relative, or indexed), the prime record key, the alternate record keys, the
code set, the maximum record size, the record type (fixed or variable), and
the blocking factor.

Under AlX, OS/2, and Windows, file status 39 is not supported for line
sequential files or Btrieve files.

270 COBOL Language Reference

Statement Operations

Table 36 (Page 3 of 4). Status Key Values and Meanings

High- Meaning Low- Meaning

Order Order

Digit Digit

4 Logic error 1 An OPEN statement was attempted for a file in the open mode.
condition 2 A CLOSE statement was attempted for a file not in the open mode.

3 For a mass storage file in the sequential access mode, the last input-output
statement executed for the associated file prior to the execution of a
REWRITE statement was not a successfully executed READ statement.
For relative and indexed files in the sequential access mode, the last input-
output statement executed for the file prior to the execution of a DELETE or
REWRITE statement was not a successfully executed READ statement.

4 A boundary violation exists because an attempt was made to rewrite a
record to a file and the record was not the same size as the record being
replaced, or an attempt was made to write or rewrite a record that was
larger than the largest or smaller than the smallest record allowed by the
RECORD IS VARYING clause of the associated file-name.

6 A sequential READ statement was attempted on a file open in the input or
1-O mode and no valid next record had been established because:

1. The preceding READ statement was unsuccessful but did not cause an
at end condition
2. The preceding READ statement caused an at end condition.

7 The execution of a READ statement was attempted on a file not open in the
input or I-O mode.

8 The execution of a WRITE statement was attempted on a file not open in
the I-O, output, or extend mode.

9 The execution of a DELETE or REWRITE statement was attempted on a file

not open in the 1-O mode.

Part 6. Procedure Division 271

Statement Operations

Table 36 (Page 4 of 4). Status Key Values and Meanings

High- Meaning Low- Meaning
Order Order
Digit Digit
9 Implementor- 0 No further information.
g;ifér:d con- 1 For VSAM only on OS/390 and VM: Password failure.
Under AlX, OS/2, and Windows: Authorization failure.
2 Logic error.
3 For all files, except QSAM: Resource not available.
4 For VSAM under OS/390 and VM with CMPR2 compiler-option only: No file
position indicator for sequential request.
Under AlIX, OS/2, and Windows: Concurrent open error.
5 For all files, except QSAM: Invalid or incomplete file information.
6 For VSAM file under OS/390 and VM: An OPEN statement with the
OUTPUT or EXTEND phrase was attempted for an optional file, but no DD
statement was specified for the file.
For QSAM file under OS/390 and VM: An OPEN statement with the
OUTPUT or EXTEND phrase was attempted for an optional file, but no DD
statement was specified for the file and the CBLQDA(OFF) run-time option
was specified.
Under AlIX, OS/2, and Windows: File system not available.
7 For VSAM only under OS/390 and VM: OPEN statement execution suc-
cessful: File integrity verified.
Under AlIX, OS/2, and Windows: Errors related to remote file access.
8 Under AlX, OS/2, and Windows: Open failed due to locked file.
9 Under AIX, OS/2, and Windows: Record access failed due to locked record.

Invalid Key Condition

The invalid key condition can occur during execution of a START, READ, WRITE,
REWRITE, or DELETE statement. (For details of the causes for the condition, see the
appropriate statement in “Part 4. Environment Division” on page 85.) When an invalid
key condition occurs, the input-output statement that caused the condition is unsuc-

cessful.

When the invalid key condition is recognized, actions are taken in the following order:

1. If the FILE STATUS clause is specified in the FILE-CONTROL entry, a value is
placed into the status key to indicate an invalid key condition. (See Table 36 on

page 269.)

2. If the INVALID KEY phrase is specified in the statement causing the condition,
control is transferred to the INVALID KEY imperative-statement. Any
EXCEPTION/ERROR declarative procedure specified for this file is not executed.

272 COBOL Language Reference

Statement Operations

Execution then continues according to the rules for each statement specified in the
imperative-statement.

3. If the INVALID KEY phrase is not specified in the input-output statement for a file,
an EXCEPTION/ERROR procedure must be specified, and that procedure is exe-
cuted. The NOT INVALID KEY phrase, if specified, is ignored.

Both the INVALID KEY phrase and the EXCEPTION/ERROR procedure can be
omitted.

If the invalid key condition does not exist after execution of the input-output operation,
the INVALID KEY phrase is ignored, if specified, and the following actions are taken:

1. If an exception condition which is not an invalid key condition exists, control is
transferred according to the rules of the USE statement following the execution of
any USE AFTER EXCEPTION procedure.

2. If no exception condition exists, control is transferred to the end of the input-output
statement or the imperative statement specified in the NOT INVALID KEY phrase,
if it is specified.

INTO/FROM Identifier Phrase

This phrase is valid for READ, RETURN, RELEASE, REWRITE, and WRITE state-
ments. The identifier specified must be the name of an entry in the Working-Storage
Section or the Linkage Section, or of a record description for another previously opened
file. Record-namef/file-name and identifier must not refer to the same storage area.

—— Format
READ -file-name-1
RETURN] |—RECORDJ |—INTO—z’dentifier-lJ

RELEASE: record-name-1 C]
REWRITE} FROM—identifier-1
WRITE:

\ 4
A

¢ The INTO phrase can be specified in a READ or RETURN statement.

The result of the execution of a READ or RETURN statement with the INTO
phrase is equivalent to the application of the following rules in the order specified:

— The execution of the same READ or RETURN statement without the INTO
phrase.

— The current record is moved from the record area to the area specified by
identifier-1 according to the rules for the MOVE statement without the CORRE-
SPONDING phrase. The size of the current record is determined by rules
specified in the RECORD clause. If the file description entry contains a
RECORD IS VARYING clause, the implied move is a group move. The
implied MOVE statement does not occur if the execution of the READ or
RETURN statement was unsuccessful. Any subscripting or reference-
modification associated with identifier-1 is evaluated after the record has been
read or returned and immediately before it is moved to the data item. The

Part 6. Procedure Division 273

Statement Operations

record is available in both the record area and the data item referenced by
identifier-1.

e The FROM phrase can be specified in a RELEASE, REWRITE, or WRITE state-
ment.

The result of the execution of a RELEASE, REWRITE, or WRITE statement with
the FROM phrase is equivalent to the execution of the following statements in the
order specified:

MOVE identifier-1 TO record-name-1
The same RELEASE, REWRITE, or WRITE statement without the FROM phrase.

After the execution of the RELEASE, REWRITE or WRITE statement is complete,
the information in the area referenced by identifier-1 is available, even though the
information in the area referenced by record-name-1 is not available, except speci-
fied by the SAME RECORD AREA clause.

File Position Indicator

The file position indicator is a conceptual entity used in this document to facilitate exact
specification of the next record (or alternatively under AlX, OS/2, and Windows, the
previous record) to be accessed within a given file during certain sequences of input-
output operations. The setting of the file position indicator is affected only by the
OPEN, CLOSE, READ and START statements. The concept of a file position indicator
has no meaning for a file opened in the output or extend mode.

Statements, sentences, and paragraphs in the Procedure Division are executed

sequentially, except when a procedure branching statement such as EXIT, GO TO,
PERFORM, GOBACK, or STOP is used.

274 COBOL Language Reference

ACCEPT Statement

Procedure Division Statements

ACCEPT Statement

Data Transfer

The ACCEPT statement transfers data into the specified identifier. There is no editing
or error checking of the incoming data.

—— Format 1—Data Transfer
»»—ACCEPT—identifier-1

|—FROM—Emnemon ic-name-1
environment-name

Format 1 transfers data from an input/output device into identifier-1. When the FROM
phrase is omitted, the system input device is assumed.

Format 1 is useful for exceptional situations in a program when operator intervention (to
supply a given message, code, or exception indicator) is required. The operator must,
of course, be supplied with the appropriate messages with which to reply.

Under AIX, OS/2, and Windows, the input file must be a byte stream file
(for example, a file consisting of text data with records delimited by a record termi-
nator). You can create a byte stream file in your COBOL program using line sequential
file I-O or with the DISPLAY statement. (Most text editors can be used to create a byte
stream file as well.)

The input file cannot be a VSAM, Btrieve, SFS, or STL file (including sequential, rela-
tive, or indexed files).

If the source of the ACCEPT statement is a file and identifier-1 is filled without using
the full record delimited by the record terminator, the remainder of the input record is
used in the next ACCEPT statement for the file. The record delimiter characters are
removed from the input data before the input records are moved into the ACCEPT
receiving area.

If the source of the ACCEPT statement is a terminal, the data entered at the terminal,
followed by the enter key, is treated as the input data. If the input data is shorter than
identifier-1, the area is padded with spaces.

identifier-1
Can be any group item, or an elementary alphabetic, alphanumeric, alphanumeric-
edited, numeric-edited or external decimal item.

It can also be a DBCS data item or an external floating-point item.

© Copyright IBM Corp. 1991, 1998 275

ACCEPT Statement

mnemonic-name
Must be associated in the SPECIAL-NAMES paragraph with an input/output device:
either a system input device or a console. For more information on acceptable
values for mnemonic-name, see “SPECIAL-NAMES Paragraph” on page 89.

e System input device

Record length of 80 characters is assumed even if a logical record length
of other than 80 characters is specified.

The system input device is read until identifier-1 is filled or EOF is
encountered. If the length of identifier-1 is not an even multiple of the
system input device record length, the final record will be truncated as
required. If EOF is encountered after data has been moved, and before
identifier-1 has been filled, identifier-1 is padded with blanks. If EOF is
encountered before any data has been moved to identifier-1, padding will
not take place and identifier-1 contents will remain unchanged. Each
input record is concatenated with the previous input record.

If the input record is of the fixed-length format, the entire input record is
used. No editing is performed to remove trailing or leading blanks.

Under OS/390 and VM, if the input record is of the variable-
length format, the actual record length is used to determine the amount of
data received. With variable format records, the Record Definition Word
(RDW) is removed from the beginning of the input record. Only the actual
input data is transferred to identifier-1.

e Console
Under OS/390 and VM:

1. A system-generated message code is automatically displayed, followed by
the literal AWAITING REPLY.

The maximum length of an input message is 114 characters.
2. Execution is suspended.

3. After the message code (the same code as in item 1) is entered from the
console and recognized by the system, ACCEPT statement execution is
resumed. The message is moved to identifier-1 and left-justified, regard-
less of its PICTURE clause.

The ACCEPT statement is terminated after any of the following occurs:

— If no data is received from the console. For example, if the operator
hits the ENTER key

— The identifier is filled with data
— Fewer than 114 characters of data are entered.

If 114 bytes of data are entered and the identifier is still not filled with
data, then more requests for data are issued to the console.

If more than 114 characters of data are entered, only the first 114 charac-
ters will be recognized by the system.

276 COBOL Language Reference

ACCEPT Statement

If the identifier is longer than the incoming message, the rightmost charac-
ters are padded with spaces.

If the incoming message is longer than the identifier, the character posi-
tions beyond the length of the identifier are truncated.

Under AIX, OS/2, and Windows: ACCEPT or DISPLAY with an
environment name is directed to the destination based on the value of the environ-
ment variable corresponding to the COBOL environment name (SYSIN or
CONSOLE).

If the environment variable corresponding to the COBOL environment name is not
set, ACCEPT from SYSIN, SYSIPT, or CONSOLE is from the system logical input
device (stdin) and DISPLAY on SYSOUT, SYSLIST, or SYSLST is to the system
logical output device (stdout). DISPLAY to SYSPUNCH or SYSPCH is supported
only if the environment variable for SYSPUNCH is set to a valid display target.

Workstation

environment-name
A valid environment-name can be specified. See Table 8 on page 91 for a list of
valid environment-names.

AR Under AlX, 0OS/2, and Windows, ACCEPT (or DISPLAY) with an
environment name is directed to the destination based on the assignment of the
system target for the environment name via the environment variable assignment.

If the environment variable is not set, the first three are directed to the system logic
input device, the system logic output device, and the user terminal, respectively as
determined by COBOL for the platform. (For example, CONSOLE would be stdin
as the default.) DISPLAY to SYSPUNCH/SYSPCH fails unless you set the corre-
sponding environment variable to indicate a valid target. The target file is deter-
mined by checking the COBOL environment-name (CONSOLE, SYSIN, SYSIPT,
SYSOUT, SYSLIST, SYSLST, SYSPUNCH, and SYSPCH). If an environment var-
iable is defined corresponding to the COBOL environment variable, the value of the
environment variable is used as the system file identifier. For more information on
environment-variables, see the IBM COBOL Programming Guide for your platform.

Workstation

Note: If the device is the same as that used for READ statements, results are unpre-
dictable.

System Information Transfer
System information contained in the specified conceptual data items DATE, DATE
YYYYMMDD, DAY, DAY YYYYDDD, DAY-OF-WEEK, or TIME, can be transferred into
the identifier. The transfer must follow the rules for the MOVE statement without the
CORRESPONDING phrase. See “MOVE Statement” on page 349.

Part 6. Procedure Division 277

ACCEPT Statement

—— Format 2—System Information Transfer
»»—ACCEPT—ident i fier-2—FROM——DATE

A\
A

|—-YYYYMMDD-—|

T o] |
YYYYDDD

DAY-OF-WEEK:
TIME

identifier-2
Can be a group, elementary alphanumeric, alphanumeric-edited, numeric-edited,
external decimal, internal decimal, binary, internal floating-point, or external
floating-point item.

Format 2 accesses the current date in two formats—the day of the week or the time of
day as carried by the system, which can be useful in identifying when a particular run of
an object program was executed. You can also use Format 2 to supply the date in
headings and footings.

Note: The current date and time is also accessible via the date/time intrinsic function
CURRENT-DATE, which also supports 4-digit year values and provide additional infor-
mation (see “Intrinsic Functions” on page 445).

DATE, DATE YYYYMMDD, DAY, DAY YYYYDDD, DAY-OF-WEEK, and TIME
The conceptual data items DATE, DATE YYYYMMDD, DAY, DAY YYYYDDD,
DAY-OF-WEEK, and TIME implicitly have USAGE DISPLAY. Because these are con-
ceptual data items, they cannot be described in the COBOL program.

DATE
Has the implicit PICTURE 9(6). If the DATEPROC compiler option is in effect, then
the returned value has implicit DATE FORMAT YYXXXX, and identifier-2 must be
defined with this date format.

The sequence of data elements (from left to right) is:

2 digits for the year
2 digits for the month
2 digits for the day

Thus, 27 April 1995 is expressed as: 950427

DATE YYYYMMDD
Has the implicit PICTURE 9(8). If the DATEPROC compiler option is in effect, then
the returned value has implicit DATE FORMAT YYYYXXXX, and identifier-2 must
be defined with this date format.

The sequence of data elements (from left to right) is:

4 digits for the year
2 digits for the month
2 digits for the day

Thus, 27 April 1995 is expressed as: 19950427

278 COBOL Language Reference

ACCEPT Statement

DAY
Has the implicit PICTURE 9(5). If the DATEPROC compiler option is in effect, then
the returned value has implicit DATE FORMAT YYXXX, and identifier-2 must be
defined with this date format.

The sequence of data elements (from left to right) is:

2 digits for the year
3 digits for the day

Thus, 27 April 1995 is expressed as: 95117

DAY YYYYDDD
Has the implicit PICTURE 9(7). If the DATEPROC compiler option is in effect, then
the returned value has implicit DATE FORMAT YYYYXXX, and identifier-2 must be
defined with this date format.

The sequence of data elements (from left to right) is:

4 digits for the year
3 digits for the day

Thus, 27 April 1995 is expressed as: 1995117

DAY-OF-WEEK
Has the implicit PICTURE 9(1).

The single data element represents the day of the week according to the following

values:

1 represents Monday 5 represents Friday
2 represents Tuesday 6 represents Saturday
3 represents Wednesday 7 represents Sunday

4 represents Thursday
Thus, Wednesday is expressed as: 3
TIME
Has the implicit PICTURE 9(8).
The sequence of data elements (from left to right) is:

2 digits for hour of day

2 digits for minute of hour

2 digits for second of minute

2 digits for hundredths of second

Thus, 2:41 PM is expressed as: 14410000

Part 6. Procedure Division 279

ADD Statement

ADD Statement

The ADD statement sums two or more numeric operands and stores the result.

—— Format 1

»—ADDJ—Eidentifiei,—‘—TO—Lidentifier—Z B] |
literal-1 ROUNDED
L-m——SIZE ERROR—imper'atz’ve—stm.‘ement-]J
ON

L ; ; 1 L]
NOT—L—_I—SIZE ERROR—imperative-statement-2 END-ADD
ON

v

v

\ 4

All identifiers or literals preceding the key word TO are added together, and this sum is
added to and stored in identifier-2. This process is repeated for each successive occur-
rence of identifier-2, in the left-to-right order in which identifier-2 is specified.

—— Format 2
»—ADDJ—Eidentifiei,—l—L—J—[identifier-Z >
literal-1 TO literal-Z4

>—GIVING—Lidentifier—3 B] |
ROUNDED

\4

L-ﬁ——SIZE ERROR—imperative-s 1.‘atement-1J
ON

>

v

L ; ; 1 L i
NOT—L—_I—SIZE ERROR—imperative-statement-2 END-ADD
ON

The values of the operands preceding the word GIVING are added together, and the
sum is stored as the new value of each data item referenced by identifier-3.

— Format 3

>>—ADD—~CORRESPONDING——ident i fier-1—TO—identifier-2 >
CORR———— L rounen-!

\—meIZE ERROR—imperative-s taztementf-lJ
ON

L ; ; 1 L]
NOT—L—_I—SIZE ERROR—imperative-statement-2: END-ADD:
ON

\

\ 4
A

Elementary data items within identifier-1 are added to and stored in the corresponding
elementary items within identifier-2.

280 COBOL Language Reference

ADD Statement

For all Formats:

identifier

In Format 1, must name an elementary numeric item.

In Format 2, must name an elementary numeric item, except when following the
word GIVING. Each identifier following the word GIVING must nhame an elemen-
tary numeric or numeric-edited item.

In Format 3, must name a group item.

The following restrictions apply to date fields:

In Format 1, identifier-2 may specify one or more date fields; identifier-1 must
not specify a date field.

In Format 2, either identifier-1 or identifier-2 (but not both) may specify at most
one date field. If identifier-1 or identifier-2 specifies a date field, then every
instance of identifier-3 must specify a date field that is compatible with the date
field specified by identifier-1 or identifier-2. That is, they must have the same
date format, except for the year part, which may be windowed or expanded.

If neither identifier-1 nor identifier-2 specifies a date field, then identifier-3 may
specify one or more date fields without any restriction on the date formats.

In Format 3, only corresponding elementary items within identifier-2 may be
date fields. There is no restriction on the format of these date fields.

There are two steps to determining the result of an ADD statement that involves
one or more date fields:

1. Addition: determine the result of the addition operation, as described under

literal

“Addition Involving Date Fields” on page 234.

Storage: determine how the result is stored in the receiving field. (In Formats
1 and 3, the receiving field is identifier-2; in Format 3, the receiving field is the
GIVING identifier-3.) For details, see “Storing Arithmetic Results That Involve
Date Fields” on page 235.

Must be a numeric literal.

Floating-point data items and literals can be used anywhere a numeric data item or
literal can be specified.

The composite of operands must not contain more than 18 digits. The compiler
ensures that enough places are carried so that no significant digits are lost during exe-

cution.

The composite of operands can be more than 18 digits. For information on arithmetic
intermediate results, see the IBM COBOL Programming Guide for your platform.

e In Format 1, the composite of operands is determined by using all of the operands
in a given statement.

Part 6. Procedure Division 281

ADD Statement

¢ In Format 2, the composite of operands is determined by using all of the operands
in a given statement excluding the data items that follow the word GIVING.

e In Format 3, the composite of operands is determined separately for each pair of
corresponding data items.

ROUNDED Phrase
For Formats 1, 2, and 3, see “ROUNDED Phrase” on page 264.

SIZE ERROR Phrases
For Formats 1, 2, and 3, see “SIZE ERROR Phrases” on page 264.

CORRESPONDING Phrase (Format 3)
See “CORRESPONDING Phrase” on page 262.

END-ADD Phrase

This explicit scope terminator serves to delimit the scope of the ADD statement.
END-ADD permits a conditional ADD statement to be nested in another conditional
statement. END-ADD can also be used with an imperative ADD statement.

For more information, see “Delimited Scope Statements” on page 261.

282 COBOL Language Reference

ALTER Statement

ALTER Statement
The ALTER statement changes the transfer point specified in a GO TO statement.
The ALTER statement encourages the use of unstructured programming practices; the

EVALUATE statement provides the same function as the ALTER statement and helps
to ensure that your program will be well-structured.

»—ALTER—Lprocedure—name—l—TG C u procedure—name—ZJ—><
PROCEED TO:

The ALTER statement modifies the GO TO statement in the paragraph named by
procedure-name-1. Subsequent executions of the modified GO TO statement(s)
transfer control to procedure-name-2.

procedure-name-1
Must name a Procedure Division paragraph that contains only one sentence: a
GO TO statement without the DEPENDING ON phrase.

procedure-name-2
Must name a Procedure Division section or paragraph.

Before the ALTER statement is executed, when control reaches the paragraph specified
in procedure-name-1, the GO TO statement transfers control to the paragraph specified
in the GO TO statement. After execution of the ALTER statement, however, the next
time control reaches the paragraph specified in procedure-name-1, the GO TO state-
ment transfers control to the paragraph specified in procedure-name-2.

The ALTER statement acts as a program switch, allowing, for example, one sequence
of execution during initialization and another sequence during the bulk of file proc-
essing.

Altered GO TO statements in programs with the INITIAL attribute are returned to their
initial states each time the program is entered.

Do not use the ALTER statement in programs that have the RECURSIVE attribute, in
methods, or in AIX, OS/2, or Windows programs compiled with the THREAD option.

Part 6. Procedure Division 283

ALTER Statement

Segmentation Considerations
A GO TO statement in a section whose priority is greater than or equal to 50 must not
be referred to by an ALTER statement in a section with a different priority. All other
uses of the ALTER statement are valid and are performed, even if the GO TO to which
the ALTER refers is in a fixed overlayable segment.

Altered GO TO statements in independent segments are returned to their initial states
when control is transferred to the independent segment that contains the ALTERED GO
TO from another independent segment with a different priority.

This transfer of control can take place because of:

e The effect of previous statements
e An explicit transfer of control with a PERFORM or GO TO statement
e A sort or merge statement with the INPUT or OUTPUT phrase specified.

284 COBOL Language Reference

CALL Statement

CALL Statement

The CALL statement transfers control from one object program to another within the run
unit.

The program containing the CALL statement is the calling program; the program identi-
fied in the CALL statement is the called subprogram. Called programs can contain
CALL statements; however, a called program must not execute a CALL statement that
directly or indirectly calls the calling program.

Programs defined with the RECURSIVE attribute can execute a CALL statement that
directly or indirectly CALLs itself.

Do not specify the name of a class or a method in the CALL statement.

—— Format

»»—CALL identifier-1
literal—]ﬂ
procedure-ptr-1 l

USIM{‘

: identifier-2
LL—J—REFERENCEJ LADDRESS OFJ
BY: file—name—l—(l)—
OMITTED:
v dentifier 3—1
CONTENT:- identifier-3
LBYJ i:ADDRESS OF
LENGTH OF
literal-2
OMITTED

VALUE: ' identifier-4
LBYJ ADDRESS OF:
LENGTH OF

literal-3

I—RETURNING—identifier‘—5J

\—L—JfEXCEPTION—imperat i ve—si’atement-lJ |—NOT—L—_|—EXCEPTION—imperat ive-s tatement—zJ

ON ON

—L——]—OVERFLOW—im erative-statement-3
ON g

|»END-CALLJ

Note:
1 File-name-1 is supported on OS/390 and VM only.

identifier-1, literal-1
Literal-1 must be a nonnumeric literal. Identifier-1 must be an alphanumeric data
item such that its value can be a program name.

The rules of formation for program names are dependent on the PGMNAME com-
piler option. For details, see the discussion of program names in “PROGRAM-ID
Paragraph” on page 77 and also the description of the PGMNAME compiler
option in the IBM COBOL Programming Guide for your platform.

Identifier-1 can be an alphabetic or zoned decimal data item. Identifier-1 cannot be
a windowed date field.

Part 6. Procedure Division 285

CALL Statement

procedure-pointer-1
Must be defined with USAGE IS PROCEDURE-POINTER, and must be set to a
valid program entry point; otherwise, the results of the CALL statement are unde-
fined.

After a program has been canceled by COBOL, released by PL/I or C, or deleted
by assembler, any procedure-pointers that had been set to that program's entry
point are no longer valid.

When the called subprogram is to be entered at the beginning of the Procedure Divi-
sion, literal-1 or the contents of identifier-1 must specify the program-name of the called
subprogram.

When the called subprogram is entered through an ENTRY statement, literal-1 or the
contents of identifier-1 must be the same as the name specified in the called subpro-
gram's ENTRY statement.

For information on how the compiler resolves CALLs to program names found in mul-
tiple programs, see “Conventions for Program-Names” on page 66.

USING Phrase

The USING phrase specifies arguments that are passed to the target program.

Include the USING phrase in the CALL statement only if there is a USING phrase in the
Procedure Division header or the ENTRY statement through which the called program
is invoked. The number of operands in each USING phrase must be identical.

For more information on the USING phrase see “The Procedure Division Header” on
page 225.

The sequence of appearance of the identifiers in the USING phrase of the CALL state-
ment and in the corresponding USING phrase in the called subprogram's Procedure
Division header determines the correspondence between the identifiers used by the
calling and called programs. This correspondence is positional.

The sequence of appearance of the identifiers in the USING phrase of the CALL state-
ment and in the corresponding USING phrase in the called program's ENTRY state-
ment determines the correspondence between the identifiers used by the calling and
called programs.

The values of the parameters referenced in the USING phrase of the CALL statement
are made available to the called subprogram at the time the CALL statement is exe-
cuted. The description of the data item in the called program must describe the same
number of character positions as the description of the corresponding data item in the
calling program.

The BY CONTENT, BY REFERENCE and BY VALUE phrases apply to parameters that
follow them until another BY CONTENT, BY REFERENCE, or BY VALUE phrase is
encountered. BY REFERENCE is assumed if you do not specify a BY CONTENT, BY
REFERENCE, or BY VALUE phrase prior to the first parameter.

286 COBOL Language Reference

CALL Statement

BY REFERENCE Phrase
If the BY REFERENCE phrase is either specified or implied for a parameter, the corre-
sponding data item in the calling program occupies the same storage area as the data
item in the called program.

identifier-2
Can be a data item of any level in the DATA DIVISION. Identifier-2 cannot be a
function identifier or a windowed date field.

Note: If defined in the Linkage Section or File Section, you must have already
provided addressability for identifier-2 prior to invocation of the CALL statement.
You can do this by coding either one of the following: SET ADDRESS OF
identifier-2 TO pointer or PROCEDURE/ENTRY USING.

file-name-1 (OS/390 and VM Only)
Under OS/390 and VM, a file-name for a QSAM file. See IBM COBOL
for 0S/390 & VM Programming Guide for details on using file-name with the CALL

statement.

ADDRESS OF Special Register
For information on the ADDRESS OF special register, see “ADDRESS OF” on
page 11.

OMITTED
Indicates that no argument is passed.

BY CONTENT Phrase

If the BY CONTENT phrase is specified or implied for a parameter, the called program
cannot change the value of this parameter as referenced in the CALL statement's
USING phrase, though the called program can change the value of the data item refer-
enced by the corresponding data-name in the called program's Procedure Division
header. Changes to the parameter in the called program do not affect the corre-
sponding argument in the calling program.

identifier-3
Can be a data item of any level in the DATA DIVISION. Identifier-3 cannot be a
function identifier or a windowed date field.

Note: If defined in the Linkage Section or File Section, you must have already
provided addressability for identifier-3 prior to invocation of the CALL statement.
You can do this by coding either one of the following: SET ADDRESS OF
identifier-3 TO pointer or PROCEDURE/ENTRY USING.

literal-2
Can be:

e A nonnumeric literal
e A figurative constant (except ALL literal or NULL/NULLS)
e A DBCS literal

Part 6. Procedure Division 287

CALL Statement

LENGTH OF Special Register
For information on the LENGTH OF special register, see “LENGTH OF” on
page 12.

ADDRESS OF Special Register
For information on the ADDRESS OF special register, see “ADDRESS OF” on
page 11.

OMITTED
Indicates that no argument is passed.

For nonnumeric literals, the called subprogram should describe the parameter as PIC
X(n) USAGE DISPLAY, where "n" is the number of characters in the literal.

For DBCS literals, the called subprogram should describe the parameter as PIC G(n)
USAGE DISPLAY-1, or PIC N(n) with implicit or explicit USAGE DISPLAY-1, where "n" is
the length of the literal.

BY VALUE Phrase

The BY VALUE phrase applies to all arguments that follow until overridden by another
BY REFERENCE or BY CONTENT phrase.

If the BY VALUE phrase is specified or implied for an argument, the value of the argu-
ment is passed, not a reference to the sending data item. The called program can
modify the formal parameter corresponding to the BY VALUE argument, but any such
changes do not affect the argument since the called program has access to a tempo-
rary copy of the sending data item.

While BY VALUE arguments are primarily intended for communication with non-COBOL
programs (such as C), they can also be used for COBOL-to-COBOL invocations. In
this case, BY VALUE must be specified or implied for both the argument in the CALL
USING phrase and the corresponding formal parameter in the Procedure Division
USING phrase.

identifier-4
Must be an elementary data item in the DATA DIVISION. It must be one of the
following:

e Binary (USAGE BINARY, COMP, COMP-4, or COMP-5)
¢ Floating point (USAGE COMP-1 or COMP-2)

 Pointer (USAGE POINTER)

e Procedure-pointer (USAGE PROCEDURE-POINTER)

e Object reference (USAGE OBJECT REFERENCE)

¢ Single-byte alphanumeric (such as PIC X or PIC A)

The following can also be passed BY VALUE:

¢ Reference modified item with length one
e SHIFT-IN and SHIFT-OUT special registers
¢ LINAGE-COUNTER special register when it is usage binary

288 COBOL Language Reference

CALL Statement

ADDRESS OF Special Register

An ADDRESS OF special register passed BY VALUE is treated as a pointer. For
information on the ADDRESS OF special register, see “ADDRESS OF” on
page 11.

LENGTH OF Special Register

A LENGTH OF special register passed BY VALUE is treated as a PIC 9(9) binary.
For information on the LENGTH OF special register, see “LENGTH OF” on
page 12.

literal-3

Must be one of the following:

¢ Numeric literal
e ZERO
e 1l-character nonnumeric literal
e Symbolic character
¢ Single byte figurative constant
— SPACE
- QUOTE
— HIGH-VALUE
— LOW-VALUE

ZERQO is treated as a numeric value; a fullword binary zero is passed.

If literal-3 is a fixed point numeric literal, it must have a precision of 9 or less digits.
In this case, a fullword binary representation of the literal value is passed.

If literal-3 is a floating point numeric literal, an 8-byte internal floating point
(COMP-2) representation of the value is passed.

Literal-3 must not be a DBCS literal.

RETURNING Phrase
identifier-5

The RETURNING data item, which must be defined in the DATA DIVISION. The
RETURNING data item cannot be a windowed date field. The return value of the
CALLed program is implicitly stored into identifier-5.

You can specify the RETURNING phrase for calls to functions written in COBOL, C, or
in other programming languages that use C linkage conventions. If you specify the
RETURNING phrase on a CALL to a COBOL subprogram:

The CALLed subprogram must specify the RETURNING phrase on its Procedure
Division header.

Identifier-5 and the corresponding Procedure Division RETURNING identifier in the
target program must have the same PICTURE, USAGE, SIGN, SYNCHRONIZE,
JUSTIFIED, and BLANK WHEN ZERO clauses (except that currency signs can
differ and periods and commas can be interchanged due to the DECIMAL POINT
IS COMMA clause).

Part 6. Procedure Division 289

CALL Statement

When the target returns, its return value is assigned to identifier-5, using either the
rules for SET statement, if identifier-6 is USAGE IS INDEX, USAGE IS POINTER,
USAGE IS PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE; other-
wise, the rules for the MOVE statement are used.

If an EXCEPTION or OVERFLOW occurs, identifier-5 is not changed. Identifier-5 must
not be reference-modified.

The RETURN-CODE special register is not set by execution of CALL statements that
include the RETURNING phrase.

ON EXCEPTION Phrase
An exception condition occurs when the called subprogram cannot be made available.
At that time, one of the following two actions will occur:

1. If the ON EXCEPTION phrase is specified, control is transferred to
imperative-statement-1. Execution then continues according to the rules for each
statement specified in imperative-statement-1. If a procedure branching or condi-
tional statement that causes explicit transfer of control is executed, control is trans-
ferred in accordance with the rules for that statement; otherwise, upon completion
of the execution of imperative-statement-1, control is transferred to the end of the
CALL statement and the NOT ON EXCEPTION phrase, if specified, is ignored.

2. If the ON EXCEPTION phrase is not specified in the CALL statement, the NOT
ON EXCEPTION phrase, if specified, is ignored.

NOT ON EXCEPTION Phrase
If an exception condition does not occur (that is, the called subprogram can be made
available), control is transferred to the called program. After control is returned from
the called program, control is transferred to:

e Imperative-statement-2, if the NOT ON EXCEPTION phrase is specified.

e The end of the CALL statement in any other case (if the ON EXCEPTION phrase
is specified, it is ignored).

If control is transferred to imperative-statement-2, execution continues according to the
rules for each statement specified in imperative-statement-2. If a procedure branching
or conditional statement that causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement; otherwise, upon completion
of the execution of imperative-statement-2, control is transferred to the end of the CALL
statement.

ON OVERFLOW Phrase
The ON OVERFLOW phrase has the same effect as the ON EXCEPTION phrase.

290 COBOL Language Reference

CALL Statement

END-CALL Phrase
This explicit scope terminator serves to delimit the scope of the CALL statement.
END-CALL permits a conditional CALL statement to be nested in another conditional
statement. END-CALL can also be used with an imperative CALL statement.

For more information, see “Delimited Scope Statements” on page 261.

Part 6. Procedure Division 291

CANCEL Statement

CANCEL Statement

The CANCEL statement ensures that the next time the referenced subprogram is called
it will be entered in its initial state.

A\
A

»—CANCELJ—[identifier—l |
liter'al—]—I

identifier-1, literal-1
Literal-1 must be a nonnumeric literal. Identifier-1 must be an alphanumeric data
item such that its value can be a program name. The rules of formation for
program names are dependent on the PGMNAME compiler option. For details,
see the discussion of program names in “PROGRAM-ID Paragraph” on page 77
and also the description of the PGMNAME compiler option in the IBM COBOL Pro-
gramming Guide for your platform.

Identifier-1 can be alphabetic or zoned decimal data item. It cannot be a windowed
date field.

Each literal or contents of the identifier specified in the CANCEL statement must be
the same as the literal or contents of the identifier specified in an associated CALL
statement.

The program-name referenced in the CANCEL statement can be affected by the
PGMNAME compiler option. For details, see the IBM COBOL Programming Guide
for your platform.

Do not specify the name of a class or a method in the CANCEL statement.

After a CANCEL statement for a called subprogram has been executed, that subpro-
gram no longer has a logical connection to the program. The contents of data items in
external data records described by the subprogram are not changed when that subpro-
gram is canceled. If a CALL statement is executed later by any program in the run unit
naming the same subprogram, that subprogram will be entered in its initial state.

When a CANCEL statement is executed, all programs contained within the program
referenced by the CANCEL statement are also canceled. The result is the same as if a
valid CANCEL were executed for each contained program in the reverse order in which
the programs appear in the separately compiled program.

A CANCEL statement closes all open files that are associated with an internal file con-
nector in the program named in the explicit CANCEL statement. Any USE procedures
associated with any of these files are not executed.

You can cancel a called subprogram by referencing it as the operand of a CANCEL
statement, by terminating the run unit of which the subprogram is a member, or by
executing an EXIT PROGRAM statement or GOBACK statement in the called subpro-
gram if that subprogram possesses the INITIAL attribute.

292 COBOL Language Reference

CANCEL Statement

No action is taken when a CANCEL statement is executed, naming a program that
either:

1.

e Under OS/390 and VM, has not been dynamically called in this run unit by
another COBOL for MVS & VM, COBOL for 0S/390 & VM, VS COBOL I, or
OS/VS COBOL program.

e Under AlX, OS/2, and Windows, has not been called in this run unit by another
IBM COBOL program.

2. Has been called and subsequently canceled.

Called subprograms can contain CANCEL statements. However, a called program
must not execute a CANCEL statement that directly or indirectly cancels the calling
program itself, or any other program higher than itself in the calling hierarchy. In such
a case, the run unit is terminated.

A program named in a CANCEL statement must not refer to any program that has been
called and has not yet executed an EXIT PROGRAM or a GOBACK statement.

A program can, however, cancel a program that it did not call, providing that, in the
calling hierarchy, it is higher than or equal to the program it is canceling. For example:

A calls B and B calls C (When A receives control,
it can cancel C.)

A calls B and A calls C (When C receives control,
it can cancel B.)

Part 6. Procedure Division 293

CLOSE Statement

CLOSE Statement

The CLOSE statement terminates the processing of volumes and files.

—— Format 1—Sequential

»—CLOSE—Lfi le-name-1 |

REEL—L
LN
UNIT REMOVAL
[FORj

—WITH NO (RlEWIND
NO REWIND
|—WITHJ LLOCKg

A\
A

Note:

1 Under 0S/390, the REEL, UNIT, and NO REWIND phrases are not valid for
VSAM files. Under AIX, OS/2, and Windows, the UNIT, REEL, and NO
REWIND phases are treated as a comment. Although, the file status will be
set to 07, indicating a successful completion of a CLOSE for a non-reel/unit
medium.

— Format 2—Indexed and Relative Files

»—CLOSE—Lfi le-name-1]
TR
WITH

A\
A

— Format 3—Line Sequential Files (Workstation Only)

»-CLOSE—Lfi le-name-1 o |
REEL
| Lonpr—!
UNIT ﬁREMOVAL
FOR

—WITH NO EEWIND
NO REWIND
|—WITHJ |—LOCKQ

A\
A

Note:

1 Under AIX, OS/2, and Windows, the UNIT, REEL, and NO REWIND phases
are treated as a comment. Although, the file status will be set to 07, indi-
cating a successful completion of a CLOSE for a non-reel/unit medium.

file-name-1
Designates the file upon which the CLOSE statement is to operate. If more than
one file-name is specified, the files need not have the same organization or
access. File-name-1 must not be a sort or merge file.

REEL/UNIT
Under OS/390 and VM, you can specify these phrases only for QSAM multivolume
or single volume files. The terms REEL and UNIT are interchangeable.

Under AIX, OS/2, and Windows, REEL and UNIT are treated as comments.

294 COBOL Language Reference

CLOSE Statement

WITH NO REWIND and FOR REMOVAL
Under OS/390 and VM, these phrases apply only to QSAM tape files. If they are
specified for storage devices to which they do not apply, they are ignored.

Under AIX, OS/2, and Windows, WITH NO REWIND and FOR REMOVAL are
treated as comments.

A CLOSE statement can be executed only for a file in an open mode. After successful
execution of a CLOSE statement (without the REEL/UNIT phrase if using format 1):

¢ The record area associated with the file-name is no longer available. Unsuccessful
execution of a CLOSE statement leaves availability of the record data undefined.

¢ An OPEN statement for the file must be executed before any other input/output
statement.

¢ Under AIX, OS/2, and Windows any record locks and file locks held by the file
connector on the closed file are released.

If the FILE STATUS clause is specified in the FILE-CONTROL entry, the associated
status key is updated when the CLOSE statement is executed.

If the file is in an open status and the execution of a CLOSE statement is unsuccessful,
the EXCEPTION/ERROR procedure (if specified) for this file is executed.

Effect of CLOSE Statement on File Types
If the SELECT OPTIONAL clause is specified in the FILE-CONTROL entry for a file,
and the file is not present at run time, standard end-of-file processing is not performed.
For QSAM files, the file position indicator and current volume pointer are unchanged.

Files are divided into the following types:

Non-Reel/Unit
A file whose input or output medium is such that rewinding, reels, and units
have no meaning. All VSAM, Btrieve, and STL files are non-reel/unit file
types. QSAM files can be non-reel/unit file types.

Sequential Single Volume
A sequential file that is contained entirely on one volume. More than one
file can be contained on this volume. All VSAM, Btrieve, and STL files are
single volume. QSAM files can be single volume.

Sequential Multivolume
A sequential file that is contained on more than one volume. QSAM files
are the only files that can be multivolume. The concept of volume has no
meaning for VSAM, Btrieve, or STL files.

The permissible combinations of CLOSE statement phrases are included in:

e Table 37 on page 296 for sequential files
e Table 38 on page 296 for indexed and relative files
e Table 39 on page 296 for line sequential files

Part 6. Procedure Division 295

CLOSE Statement

The meaning of each key letter is shown in Table 40 on page 296.

Table 37. Sequential Files and CLOSE Statement Phrases

Non- Sequential

Reel/ Single- Sequential
CLOSE Statement Phrases Unit Volume Multi-Volume
CLOSE C C, G AC,G
CLOSE REEL/UNIT F F, G F, G
CLOSE REEL/UNIT WITH F B, F B, F
NO REWIND
CLOSE REEL/UNIT FOR REMOVAL D D D
CLOSE WITH NO REWIND C,H B, C A B, C
CLOSE WITH LOCK C,E C,E G A C E G

Table 38. Indexed and Relative File Types and CLOSE Statement Phrases

CLOSE Statement Phrases Action
CLOSE C
CLOSE WITH LOCK C,E

Table 39. Line Sequential File Types and CLOSE Statement Phrases

CLOSE Statement Phrases Action
CLOSE C
CLOSE WITH LOCK C.E

Table 40 (Page 1 of 2). Meanings of Key Letters for Sequential File Types

Key Actions Taken

A Previous Volumes Unaffected

Input and Input-Output Files —Standard volume-switch processing is performed for all
previous volumes (except those controlled by a previous CLOSE REEL/UNIT state-
ment). Any subsequent volumes are not processed.

Output Files —Standard volume-switch processing is performed for all previous
volumes (except those controlled by a previous CLOSE REEL/UNIT statement).

B No Rewinding of Current Reel —the current volume is left in its current position.

296 COBOL Language Reference

CLOSE Statement

Table 40 (Page 2 of 2). Meanings of Key Letters for Sequential File Types

Key

Actions Taken

C

Close File

Input and Input-Output Files —If the file is at its end, and label records are specified,
the standard ending label procedure is performed. Standard system closing procedures
are then performed.

If the file is at its end, and label records are not specified, label processing does not
take place, but standard system closing procedures are performed.

If the file is not at its end, standard system closing procedures are performed, but there
is no ending label processing.

Output Files —If label records are specified, standard ending label procedures are per-
formed. Standard system closing procedures are then performed.

If label records are not specified, ending label procedures are not performed, but
standard system closing procedures are performed.

Volume Removal —Treated as a comment.

File Lock —The compiler ensures that this file cannot be opened again during this exe-
cution of the object program.

Close Volume

Input and Input-Output Files —If the current reel/unit is the last and/or only reel/unit
for the file or if the reel is on a non-reel/unit medium, no volume switching is performed.
If another reel/unit exists for the file, the following operations are performed: a volume
switch, beginning volume label procedure, and the first record on the new volume is
made available for reading. If no data records exist for the current volume, another
volume switch occurs.

Output (Reel/Unit Media) Files —The following operations are performed: the ending
volume label procedure, a volume switch, and the beginning volume label procedure.
The next executed WRITE statement places the next logical record on the next direct
access volume available. A close statement with the REEL phrase does not close the
output file; only an end-of-volume condition occurs.

Output (Non-Reel/Unit Media) Files —Execution of the CLOSE statement is consid-
ered successful. The file remains in the open mode and no action takes place except
that the value of the I-O status associated with the file is updated.

Rewind —The current volume is positioned at its physical beginning.

Optional Phrases Ignored —The CLOSE statement is executed as if none of the
optional phrases were present.

Part 6. Procedure Division 297

COMPUTE Statement

COMPUTE Statement

The COMPUTE statement assigns the value of an arithmetic expression to one or more
data items.

With the COMPUTE statement, arithmetic operations can be combined without the
restrictions on receiving data items imposed by the rules for the ADD, SUBTRACT,
MULTIPLY, and DIVIDE statements.

When arithmetic operations are combined, the COMPUTE statement can be more effi-
cient than the separate arithmetic statements written in a series.

—— Format

»—COMPUTE—Lidentifier—I l__] arithmetic-expression—»
EQUAL

l—ROUNDEDJ

\—E’fSIZE ERROR—imperative-s 1.‘atement-1J
ON

L ; ; 1 L]
NOT—E]—SIZE ERROR—imperative-statement-2 END-COMPUTE
ON

\ 4

\ 4

identifier-1
Must name elementary numeric item(s) or elementary numeric-edited item(s).

Can name an elementary floating-point data item.
The word EQUAL can be used in place of =.

If identifier-1 or the result of the arithmetic expression (or both) are date fields, see
“Storing Arithmetic Results That Involve Date Fields” on page 235 for details on
how the result is stored in identifier-1.

arithmetic-expression
Can be any arithmetic expression, as defined in “Arithmetic Expressions” on
page 231.

When the COMPUTE statement is executed, the value of the arithmetic expression
is calculated, and this value is stored as the new value of each data item refer-
enced by identifier-1.

An arithmetic expression consisting of a single identifier, numeric function, or literal
allows the user to set the value of the data item(s) referenced by identifier-1 equal
to the value of that identifier or literal.

ROUNDED Phrase
For a discussion of the ROUNDED phrase, see “ROUNDED Phrase” on page 264.

298 COBOL Language Reference

COMPUTE Statement

SIZE ERROR Phrases
For a discussion of the SIZE ERROR phrases, see “SIZE ERROR Phrases” on
page 264.

END-COMPUTE Phrase
This explicit scope terminator serves to delimit the scope of the COMPUTE statement.
END-COMPUTE permits a conditional COMPUTE statement to be nested in another
conditional statement. END-COMPUTE can also be used with an imperative
COMPUTE statement.

For more information, see “Delimited Scope Statements” on page 261.

Part 6. Procedure Division 299

CONTINUE Statement

CONTINUE Statement

The CONTINUE statement allows you to specify a no operation statement. CONTINUE
indicates that no executable instruction is present.

—— Format
»—CONTINUE

A\
A

300 COBOL Language Reference

DELETE Statement

DELETE Statement

The DELETE statement removes a record from an indexed or relative file. For indexed
files, the key can then be reused for record addition. For relative files, the space is
then available for a new record with the same RELATIVE KEY value.

When the DELETE statement is executed, the associated file must be open in I-O
mode.

—— Format

»»—DELETE—file-name-1 T >
RECORD—J

|—I NVALID—L—_I—imperative-s tatement-lJ
KEY

L ; ; 1 L]
NOT INVALID—L—_I—zmperatlve—statement-z END-DELETE
KEY

file-name-1
Must be defined in an FD entry in the Data Division and must be the name of an
indexed or relative file.

After successful execution of a DELETE statement, the record is removed from the file
and can no longer be accessed.

For OS/2 VSAM files, after the successful execution of a DELETE state-
ment, any record lock held by the file connector on the deleted record is released.
However, if any other file connector holds a lock on the record to be deleted, the
DELETE statement is unsuccessful.

Execution of the DELETE statement does not affect the contents of the record area
associated with file-name-1 or the content of the data item referenced by the data-name
specified in the DEPENDING ON phrase of the RECORD clause associated with
file-name-1 .

If the FILE STATUS clause is specified in the File-Control entry, the associated status
key is updated when the DELETE statement is executed.

The file position indicator is not affected by execution of the DELETE statement.

Sequential Access Mode
For a file in sequential access mode, the last previous input/output statement must be a
successfully executed READ statement. When the DELETE statement is executed, the
system removes the record retrieved by that READ statement.

For a file in sequential access mode, the INVALID KEY and NOT INVALID KEY
phrases must not be specified. However, an EXCEPTION/ERROR procedure can be
specified.

Part 6. Procedure Division 301

DELETE Statement

Random or Dynamic Access Mode

In random or dynamic access mode, DELETE statement execution results depend on
the file organization: indexed or relative.

When the DELETE statement is executed, the system removes the record identified by
the contents of the prime RECORD KEY data item for indexed files, or the RELATIVE
KEY data item for relative files. If the file does not contain such a record, an INVALID
KEY condition exists. (See “INVALID KEY Condition” under “Common Processing
Facilities” on page 268.)

As an IBM extension, the INVALID KEY phrase does not need to be specified for a
DELETE statement that references a file in random or dynamic access and for which
an EXCEPTION/ERROR procedure is not specified.

Transfer of control after the successful execution of a DELETE statement, with the NOT
INVALID KEY phrase specified, is to the imperative statement associated with the
phrase.

END-DELETE Phrase

This explicit scope terminator serves to delimit the scope of the DELETE statement.
END-DELETE permits a conditional DELETE statement to be nested in another condi-
tional statement. END-DELETE can also be used with an imperative DELETE state-
ment.

For more information, see “Delimited Scope Statements” on page 261.

302 COBOL Language Reference

DISPLAY Statement

DISPLAY Statement

The DISPLAY statement transfers the contents of each operand to the output device.
The contents are displayed on the output device in the order, left to right, in which the
operands are listed.

Under AIX, OS/2, and Windows, the target file is determined by checking
the COBOL environment-name (CONSOLE, SYSIN, SYSIPT, SYSOUT, SYSLIST,
SYSLST, SYSPUNCH, and SYSPCH). If an environment variable is defined corre-
sponding to the COBOL environment-name, the value of the environment-variable is
used as the system file identifier. For more information on environment-variables, see
the IBM COBOL Programming Guide for your platform.

For SYSPUNCH and SYSPCH, the DISPLAY statement will fail unless the corre-
sponding environment variable is set to point to a valid target.

»—DISPLAYJ'—[identiﬁer-z |
Ziteml-l4 |—UPON

ﬁNO ADVANCINGJ
WITH

—Emnemonic-narne-l
environment-name-1

A\
A

identifier-1
If it is numeric and is not described as an external decimal, the identifier-1 is con-
verted automatically to external format, as follows:

¢ Binary or internal decimal items are converted to external decimal. Negative
signed values cause a low-order sign overpunch.

e Internal floating-point numbers are converted to external floating-point numbers
for display, such that:

— A COMP-1 item will display as if it had an external floating-point PICTURE
clause of -.9(8)E-99

— A COMP-2 item will display as if it had an external floating-point PICTURE
clause of -.9(17)E-99

No other identifiers require conversion.

Data items defined with USAGE IS POINTER are converted to an external decimal
number that would have a PICTURE clause of PIC 9(10).

Data items defined with USAGE IS PROCEDURE-POINTER or USAGE IS OBJECT
REFERENCE cannot be specified in a DISPLAY statement.

Index names or data items defined with USAGE IS INDEX cannot be specified in a
DISPLAY statement.

Part 6. Procedure Division 303

DISPLAY Statement

Date fields are treated as non-dates when specified in a DISPLAY statement. That is,
the DATE FORMAT is ignored, and the content of the data item is transferred to the
output device as is.

DBCS data items, explicitly or implicitly defined as USAGE DISPLAY-1, are transferred
to the sending field of the output device. Under OS/390 and VM, for proper results, the
output device must have the capability to recognize DBCS shift-out and shift-in control
characters.

Both DBCS and non-DBCS operands can be specified in a single DISPLAY verb.

literal-1
Can be any figurative constant. When a figurative constant is specified, only a
single occurrence of that figurative constant is displayed.

Each numeric literal must be an unsigned integer.

Signed numeric literals and non-integer numeric literals are allowed.
Floating-point literals are allowed.

DBCS literals are allowed.

The ALL figurative constant can be used with DBCS literals in a DISPLAY verb.

UPON
mnemonic-name or environment-name must be associated in the
SPECIAL-NAMES paragraph with an output device.

A default logical record size is assumed for each device, as follows:

The system logical output device = 120 characters
The system punch device = 80 characters
The console = 100 characters

A maximum logical record size is assumed for each device, as follows:

The system logical output device = 255 characters
The system punch device = 255 characters
The console = 100 characters

Note: On the system punch device, the last eight characters are used for
PROGRAM-ID name.

When the UPON phrase is omitted, the system's logical output device is assumed.
The list of valid environment-names in a DISPLAY statement is contained in
Table 8 on page 91.

WITH NO ADVANCING
When specified, the positioning of the output device will not be changed in any way
following the display of the last operand. If the output device is capable of posi-
tioning to a specific character position, it will remain positioned at the character
position immediately following the last character of the last operand displayed. If
the output device is not capable of positioning to a specific character position, only
the vertical position, if applicable, is affected. This can cause overprinting.

304 COBOL Language Reference

DISPLAY Statement

If the WITH NO ADVANCING phrase is not specified, then after the last operand
has been transferred to the output device, the positioning of the output device will
be reset to the leftmost position of the next line of the device.

The DISPLAY statement transfers the data in the sending field to the output device.
The size of the sending field is the total character count of all operands listed. If the
output device is capable of receiving data of the same size as the data item being
transferred, then the data item is transferred. If the output device is not capable of
receiving data of the same size as the data item being transferred, then one of the
following applies:

¢ |f the total character count is less than the device maximum character count, the
remaining rightmost characters are padded with spaces.

¢ |f the total character count exceeds the maximum, as many records are written as
are needed to display all operands. Any operand being printed or displayed when
the end of a record is reached is continued in the next record.

If a DBCS operand must be split across multiple records, it will be split only on a
double-byte boundary.

Under OS/390 and VM, the shift code compensation is required under this
case. That is, when a DBCS operand is split across multiple records, the shift-in char-
acter needs to be inserted at the end of the current record, and the shift-out character
needs to be inserted at the beginning of the next record. A space is padded after the
shift-in character, if necessary. These additional inserted shift codes and spaces are
included in the count while the compiler is calculating the number of records required.

After the last operand has been transferred to the output device, the device is reset to
the leftmost position of the next line of the device.

If a DBCS data item or literal is specified in a DISPLAY verb, the size of the sending
field is the total character count of all operands listed, with each DBCS character
counted twice, plus the necessary shift codes for DBCS.

Notes:

1. The DISPLAY statement causes the printer to space before printing.

2. The DISPLAY statement can be used to identify data records that have caused
one of the following conditions:

a. A size error

b. An invalid key

c. An overflow condition

d. A status key returned as a value other than zero

Such records can be printed, with an identifying message, on some other medium
than that used for valid output. Thus, all records for one execution that need
special handling are separately printed.

Part 6. Procedure Division 305

DIVIDE Statement

DIVIDE Statement

The DIVIDE statement divides one numeric data item into or by other(s) and sets the
values of data items equal to the quotient and remainder.

—— Format 1

>>—DIVIDE—|:'d tifier-1 INTO—*—'d tifier-2 | >
;ii,;r;]lcf?r——,_ identifter |—ROUNDEDJ

L-m——SIZE ERROR—imperative-s tm.‘ement-]J
ON

L ; ; 1 L]
NOT—L—_I—SIZE ERROR—imperative-statement-2 END-DIVIDE
ON

v

\ 4

\4
A

In Format 1, the value of identifier-1 or literal-1 is divided into the value of identifier-2,
and the quotient is then stored in identifier-2. For each successive occurrence of
identifier-2, the division takes place in the left-to-right order in which identifier-2 is speci-
fied.

— Format 2

»—DIVIDE—Eidentz’ ier-1 INTO—Eidentz’ ier-2 >
literajlc-l——,_ literajlc-Z4

\4

>—GIVING—Lidentifier—3 B] |
ROUNDED

\—L—‘,fSIZE ERROR—imperative-s 1.‘atement-1J
ON

L i ; 1 L]
NOT—L—_I—SIZE ERROR—imperative-statement-2 END-DIVIDE
ON

In Format 2, the value of identifier-1 or literal-1 is divided into the value of identifier-2 or
literal-2. The value of the quotient is stored in each data item referenced by identifier-3.

— Format 3

>>—DIVIDE—|:identi ier-1 BY—[identi ier-2 >
literajlc-l——,_ Zitera]ZC-Z—]

>—GIVING—Lidentifier—3 B . |
ROUNDED

\—E’fSIZE ERROR—imperative-s 1.‘atemenif-1J
ON

L ; ; 1 L]
NOT—E]—SIZE ERROR—imperative-statement-2 END-DIVIDE
ON

v

\

\ 4

306 COBOL Language Reference

DIVIDE Statement

In Format 3, the value of identifier-1 or literal-1 is divided by the value of identifier-2 or
literal-2. The value of the quotient is stored in each data item referenced by identifier-3.

—— Format 4
»—DIVIDE—Eidentifier—l INTO—Eidentifier—Z >
Ziteral—]——,_ Zz't‘eral—?4
>—GIVING—identifier—3—ﬁ——REMAINDER—identifz’er—4 >

ROUNDED

\—i‘-SIZE ERROR—imperative-statemen t-]—J
ON

L ; ; 1 L N
NOT—L—_I—SIZE ERROR—imperative-statement-2 END-DIVIDE
ON

>

v

In Format 4, the value of identifier-1 or literal-1 is divided into identifier-2 or literal-2.
The value of the quotient is stored in identifier-3, and the value of the remainder is
stored in identifier-4.

— Format 5
»—DIVIDE—[identifier-l BY—Eidentifier—Z >
literal—l——,_ literal—ZA

»—GIVING—ident ifier—3—L—_|—REMAINDER—identifier—4
ROUNDED

L-il——SIZE ERROR—imperative-statemen t—]J
ON

L ; ; 1 L]
NOT—L—_I—SIZE ERROR—imperative-statement-2 END-DIVIDE
ON

\4

v

In Format 5, the value of identifier-1 or literal-1 is divided by identifier-2 or literal-2. The
value of the quotient is stored in identifier-3, and the value of the remainder is stored in
identifier-4.

For all Formats:

identifier-1, identifier-2
Must name an elementary numeric item. Identifier-1 and identifier-2 cannot be
date fields.

identifier-3, identifier-4
Must name an elementary numeric or numeric-edited item.
If identifier-3 or identifier-4 is a date field, then see “Storing Arithmetic Results That

Involve Date Fields” on page 235 for details on how the quotient or remainder is
stored in identifier-3.

Part 6. Procedure Division 307

DIVIDE Statement

literal-1, literal-2
Must be a numeric literal.

In Formats 1, 2, and 3, floating-point data items and literals can be used anywhere that
a numeric data item or literal can be specified.

In Formats 4 and 5, floating-point data items or literals cannot be used.

ROUNDED Phrase
For Formats 1, 2, and 3, see “"ROUNDED Phrase” on page 264.

For Formats 4 and 5, the quotient used to calculate the remainder is in an intermediate
field. The value of the intermediate field is truncated rather than rounded.

REMAINDER Phrase
The result of subtracting the product of the quotient and the divisor from the dividend is
stored in identifier-4. If identifier-3, the quotient, is a numeric-edited item, the quotient
used to calculate the remainder is an intermediate field that contains the unedited quo-
tient.

The REMAINDER phrase is invalid if the receiver or any of the operands is a floating-
point item.

Any subscripts for identifier-4 in the REMAINDER phrase are evaluated after the result
of the divide operation is stored in identifier-3 of the GIVING phrase.

SIZE ERROR Phrases
For Formats 1, 2, and 3, see “SIZE ERROR Phrases” on page 264.

For Formats 4 and 5, if a size error occurs in the quotient, no remainder calculation is
meaningful. Therefore, the contents of the quotient field (identifier-3) and the remainder
field (identifier-4) are unchanged.

If size error occurs in the remainder, the contents of the remainder field (identifier-4) are
unchanged.

In either of these cases, you must analyze the results to determine which situation has
actually occurred.

For information on the NOT ON SIZE ERROR phrase, see page 266.

END-DIVIDE Phrase
This explicit scope terminator serves to delimit the scope of the DIVIDE statement.
END-DIVIDE permits a conditional DIVIDE statement to an imperative statement so that
it can be nested in another conditional statement. END-DIVIDE can also be used with
an imperative DIVIDE statement.

For more information, see “Delimited Scope Statements” on page 261.

308 COBOL Language Reference

ENTRY Statement

ENTRY Statement

The ENTRY statement establishes an alternate entry point into a COBOL called sub-
program.

The ENTRY statement cannot be used in:

e Programs that specify a return value using the Procedure Division RETURNING
phrase. For details, see the discussion of the RETURNING phrase under “The
Procedure Division Header” on page 225.

¢ Nested program. See “Nested Programs” on page 66 for a description of nested
programs.

When a CALL statement naming the alternate entry point is executed in a calling
program, control is transferred to the next executable statement following the ENTRY
statement.

— Format
»»——ENTRY—Literal-1

LUSI"'G l £identifier-1]—\—

REFERENCE—
Ly

VALUE
Lgy!

v

A\
A

literal
Must be nonnumeric and conform to the rules for the formation of a program-name
in the outermost program (see “PROGRAM-ID Paragraph” on page 77).

Must not match the program-id or any other ENTRY literal in this program.
Must not be a figurative constant.

Execution of the called program begins at the first executable statement following the
ENTRY statement whose literal corresponds to the CALL statement literal or identifier.

The entry point name on the ENTRY statement can be affected by the PGMNAME
compiler option. For details, see the IBM COBOL Programming Guide for your plat-
form.

USING Phrase

Do not specify the ENTRY statement in a program that contains a Procedure Division
...RETURNING phrase.

For a discussion of the USING phrase, see “The Procedure Division Header” on
page 225.

Part 6. Procedure Division 309

EVALUATE Statement

EVALUATE Statement

The EVALUATE statement provides a shorthand notation for a series of nested IF
statements. It can evaluate multiple conditions. That is, the IF statements can be
made up of compound conditions. The subsequent action of the object program
depends on the results of these evaluations.

—— Format

»»>—EVALUATE identifier-1
literal-1
expression-1— ALSO identifier-2—

v

TRUE—— literal-2:
FALSE—— expression-2—
TRUE
FALSE
>—l—LWHEN—| phrase 1 } | imperative-statement-1

e
ALSO—] phrase 2 }—\—l

|—WHEN OTHER—imperative-statemen 1.‘—2—I |—END- EVALUATE—I

\ 4
A

phrase 1:
| ANY |
—condition-1
—TRUE
—FALSE

identifier-3
NOT literal-3 THROUGH identifier-4
arithmetic-expression-1 THRU literal-4
arithmetic-expression-2:

phrase 2:
| ANY |
—condition-2
—TRUE
—FALSE:

identifier-5
NOT literal-5 THROUGH identifier-6
arithmetic-expression-3 THRU literal-6
arithmetic-expression-4

Operands before the WHEN phrase
Are interpreted in one of two ways, depending on how they are specified:

¢ Individually, they are called selection subjects
e Collectively, they are called a set of selection subjects.

Operands in the WHEN phrase
Are interpreted in one of two ways, depending on how they are specified:

e Individually, they are called selection objects
e Collectively, they are called a set of selection objects.

ALSO

Separates selection subjects within a set of selection subjects; separates selection
objects within a set of selection objects.

310 COBOL Language Reference

EVALUATE Statement

THROUGH and THRU
Are equivalent.

Two operands connected by a THRU phrase must be of the same class. The two
operands thus connected constitute a single selection object.

The number of selection objects within each set of selection objects must be equal to
the number of selection subjects.

Each selection object within a set of selection objects must correspond to the selection
subject having the same ordinal position within the set of selection subjects, according
to the following rules:

¢ |dentifiers, literals, or arithmetic expressions appearing within a selection object
must be valid operands for comparison to the corresponding operand in the set of
selection subjects. For comparisons involving date fields, see “Date Fields” on
page 242.

¢ Condition-1, condition-2, or the word TRUE or FALSE appearing as a selection
object must correspond to a conditional expression or the word TRUE or FALSE in
the set of selection subjects.

¢ The word ANY can correspond to a selection subject of any type.

e Where identifiers are permitted, they can reference date field, DBCS, floating-point,
USAGE POINTER, USAGE PROCEDURE-POINTER, or USAGE IS OBJECT REF-
ERENCE data items.

e Where nonnumeric literals are permitted, DBCS literals are permitted.

e Where numeric literals are permitted, floating-point literals are permitted.

END-EVALUATE Phrase
This explicit scope terminator serves to delimit the scope of the EVALUATE statement.
END-EVALUATE permits a conditional EVALUATE statement to be nested in another
conditional statement.

For more information, see “Delimited Scope Statements” on page 261.

Determining Values
The execution of the EVALUATE statement operates as if each selection subject and
selection object were evaluated and assigned a numeric or nonnumeric value, a range
of numeric or nonnumeric values, or a truth value. These values are determined as
follows:

¢ Any selection subject specified by identifier-1, identifier-2, ... and any selection
object specified by identifier-3 and/or identifier-5 without the NOT or THRU phrase,
are assigned the value and class of the data item that they reference.

¢ Any selection subject specified by literal-1, literal-2, ... and any selection object
specified by literal-3 and/or literal-5 without the NOT or THRU phrase, are assigned
the value and class of the specified literal. If literal-3 and/or literal-5 is the figura-
tive constant ZERO, it is assigned the class of the corresponding selection subject.

Part 6. Procedure Division 311

EVALUATE Statement

¢ Any selection subject in which expression-1, expression-2, ... is specified as an
arithmetic expression, and any selection object without the NOT or THRU phrase
in which arithmetic-expression-1 and/or arithmetic-expression-3 is specified, are
assigned numeric values according to the rules for evaluating an arithmetic
expression. (See “Arithmetic Expressions” on page 231.)

e Any selection subject in which expression-1, expression-2, ... is specified as a con-
ditional expression, and any selection object in which condition-1 and/or
condition-2 is specified, are assigned a truth value according to the rules for evalu-
ating conditional expressions. (See “Conditional Expressions” on page 237.)

e Any selection subject or any selection object specified by the words TRUE or
FALSE is assigned a truth value. The truth value "true" is assigned to those items
specified with the word TRUE, and the truth value "false" is assigned to those
items specified with the word FALSE.

¢ Any selection object specified by the word ANY is not further evaluated.

¢ If the THRU phrase is specified for a selection object without the NOT phrase, the
range of values is all values that, when compared to the selection subject, are
greater than or equal to the first operand and less than or equal to the second
operand, according to the rules for comparison. If the first operand is greater than
the second operand, there are no values in the range.

e If the NOT phrase is specified for a selection object, the values assigned to that
item are all values not equal to the value, or range of values, that would have been
assigned to the item had the NOT phrase been omitted.

Comparing Selection Subjects and Objects

312

The execution of the EVALUATE statement then proceeds as if the values assigned to
the selection subjects and selection objects were compared to determine whether any
WHEN phrase satisfies the set of selection subjects. This comparison proceeds as
follows:

1. Each selection object within the set of selection objects for the first WHEN phrase
is compared to the selection subject having the same ordinal position within the set
of selection subjects. One of the following conditions must be satisfied if the com-
parison is to be satisfied:

a. If the items being compared are assigned numeric or nonnumeric values, or a
range of numeric or nonnumeric values, the comparison is satisfied if the
value, or one value in the range of values, assigned to the selection object is
equal to the value assigned to the selection subject, according to the rules for
comparison.

b. If the items being compared are assigned truth values, the comparison is satis-
fied if the items are assigned identical truth values.

c. If the selection object being compared is specified by the word ANY, the com-
parison is always satisfied, regardless of the value of the selection subject.

2. If the above comparison is satisfied for every selection object within the set of
selection objects being compared, the WHEN phrase containing that set of
selection objects is selected as the one satisfying the set of selection subjects.

COBOL Language Reference

3.

EVALUATE Statement

If the above comparison is not satisfied for every selection object within the set of
selection objects being compared, that set of selection objects does not satisfy the
set of selection subjects.

This procedure is repeated for subsequent sets of selection objects in the order of
their appearance in the source program, until either a WHEN phrase satisfying the
set of selection subjects is selected or until all sets of selection objects are
exhausted.

Executing the EVALUATE Statement
After the comparison operation is completed, execution of the EVALUATE statement
proceeds as follows:

If a WHEN phrase is selected, execution continues with the first
imperative-statement-1 following the selected WHEN phrase. Note that multiple
WHEN statements are allowed for a single imperative-statement-1.

If no WHEN phrase is selected and a WHEN OTHER phrase is specified, exe-
cution continues with imperative-statement-2.

If no WHEN phrase is selected and no WHEN OTHER phrase is specified, exe-
cution continues with the next executable statement following the scope delimiter.

The scope of execution of the EVALUATE statement is terminated when execution
reaches the end of the scope of the selected WHEN phrase or WHEN OTHER
phrase, or when no WHEN phrase is selected and no WHEN OTHER phrase is
specified.

Part 6. Procedure Division 313

EXIT Statement

EXIT Statement

The EXIT statement provides a common end point for a series of procedures.

—— Format

»»—paragraph-name .—EXIT.

A\
A

The EXIT statement enables you to assign a procedure-name to a given point in a
program.

As an IBM extension, the EXIT statement does not need to appear in a sentence by

itself. Any statements following the EXIT statement are executed; the EXIT statement
is treated as the CONTINUE statement.

314 COBOL Language Reference

EXIT METHOD Statement

EXIT METHOD Statement
The EXIT METHOD statement specifies the end of an invoked method.

—— Format
»—EXIT METHOD.

\4
A

You can specify EXIT METHOD only in the Procedure Division of a method. EXIT
METHOD causes the executing method to terminate, and control returns to the invoking
statement. If the containing method specifies the Procedure Division RETURNING
phrase, the value in the data item referred to by the RETURNING phrase becomes the
result of the method invocation.

If you need method-specific data to be in the last-used state on each invocation,
declare it in method Working-Storage. If you need method-specific data to be in the
initial state on each invocation, declare it in method Local-Storage.

If control reaches an EXIT METHOD statement in a method definition, control returns to
the point in the invoking program or method immediately following the INVOKE state-
ment. The state of the invoking program or method is identical to that which existed at
the time it executed the INVOKE statement.

The contents of data items and the contents of data files shared between the invoking
program or method and the invoked method could have changed. The state of the
invoked method is not altered except that the end of the ranges of all PERFORM state-
ment executed by the method are considered to have been reached.

The EXIT METHOD statement does not have to be the last statement in a sequence of
imperative statements, but the statements following the EXIT METHOD will not be exe-
cuted.

When there is no next executable statement in an invoked method, an implicit EXIT
METHOD statement is executed.

Part 6. Procedure Division 315

EXIT PROGRAM Statement

EXIT PROGRAM Statement

The EXIT PROGRAM statement specifies the end of a called program and returns
control to the calling program.

You can specify EXIT PROGRAM only in the Procedure Division of a program. It must
not be used in a declarative procedure in which the GLOBAL phrase is specified.

—— Format
»—EXIT PROGRAM.

\4
A

If control reaches an EXIT PROGRAM statement in a program that does not possess
the INITIAL attribute while operating under the control of a CALL statement (that is, the
CALL statement is active), control returns to the point in the calling program imme-
diately following the CALL statement. The program state of the calling program is iden-
tical to that which existed at the time it executed the CALL statement. The contents of
data items and the contents of data files shared between the calling and called program
could have been changed. The program state of the called program is not altered
except that the ends of the ranges of all PERFORM statements executed by that called
program are considered to have been reached.

The execution of an EXIT PROGRAM statement in a called program that possesses the
INITIAL attribute is equivalent also to executing a CANCEL statement referencing that
program.

If control reaches an EXIT PROGRAM statement, and no CALL statement is active,
control passes through the exit point to the next executable statement.

If a subprogram specifies the Procedure Division RETURNING phrase, the value in the
data item referred to by the RETURNING phrase becomes the result of the subprogram
invocation.

As an IBM extension, the EXIT PROGRAM statement does not have to be the last
statement in a sequence of imperative statements, but the statements following the
EXIT PROGRAM will not be executed if a CALL statement is active.

When there is no next executable statement in a called program, an implicit EXIT
PROGRAM statement is executed.

316 COBOL Language Reference

GOBACK Statement

GOBACK Statement

The GOBACK statement functions like the EXIT PROGRAM statement when it is coded
as part of a called program (or the EXIT METHOD statement when it is coded as part
of an invoked method) and like the STOP RUN statement when coded in a main
program.

The GOBACK statement specifies the logical end of a called program or invoked
method.

—— Format
»»—GOBACK

\4
A

A GOBACK statement should appear as the only statement or as the last of a series of
imperative statements in a sentence because any statements following the GOBACK
are not executed. It must not be used in a declarative procedure in which the GLOBAL
phrase is specified.

If control reaches a GOBACK statement while a CALL statement is active, control
returns to the point in the calling program immediately following the CALL statement, as
in the EXIT PROGRAM statement.

If control reaches a GOBACK statement while an INVOKE statement is active, control
returns to the point in the invoking program or method immediately following the
INVOKE statement, as in the EXIT METHOD statement.

In addition, the execution of a GOBACK statement in a called program that possesses
the INITIAL attribute is equivalent to executing a CANCEL statement referencing that
program.

The table below shows the action taken for the GOBACK statement in both a main
program and a subprogram.

Termination
Statement Main Program Subprogram
GOBACK Return to calling program. (Can be Return to calling program.

the system and thus causes the
application to end.)

Part 6. Procedure Division 317

GO TO Statement

GO TO Statement

The GO TO statement transfers control from one part of the Procedure Division to
another. The types of GO TO statements are:

¢ Unconditional
¢ Conditional
e Altered

Unconditional GO TO
The unconditional GO TO statement transfers control to the first statement in the para-
graph or section named in procedure-name, unless the GO TO statement has been
modified by an ALTER statement. (See “ALTER Statement” on page 283.)

— Format 1—Unconditional

»—Go—m—procedure—name-l
TO

A\
A

procedure-name-1
Must name a procedure or a section in the same Procedure Division as the GO TO
statement.

As an IBM extension, the unconditional GO TO statement does not have to be the last
statement in a sequence of imperative statements. However, any statements following
the GO TO are not executed.

When a paragraph is referred to by an ALTER statement, the paragraph must consist
of a paragraph-name followed by an unconditional or altered GO TO statement.

Conditional GO TO
The conditional GO TO statement transfers control to one of a series of procedures,
depending on the value of the identifier.

— Format 2—Conditional

»—GOﬁ—Lprocedure-name—]J—DEPENDING—L—_I—ident ifier-l——»«
TO ON

procedure-name-1
Must be a procedure or a section in the same Procedure Division as the GO TO
statement. The number of procedure-names must not exceed 255.

identifier-1
Must be a numeric elementary data item which is an integer. Identifier-1 cannot be
a windowed date field.

If 1, control is transferred to the first statement in the procedure named by the first
occurrence of procedure-name-1.

318 COBOL Language Reference

GO TO Statement

If 2, control is transferred to the first statement in the procedure named by the
second occurrence of procedure-name-1, and so forth.

If the value of identifier is anything other than a value within the range of 1 through
n (where n is the number of procedure-names specified in this GO TO statement),
no control transfer occurs. Instead, control passes to the next statement in the
normal sequence of execution.

Altered GO TO

The altered GO TO statement transfers control to the first statement of the paragraph
named in the ALTER statement.

You cannot specify the altered GO TO statement in the following:
e A program or method that has the RECURSIVE attribute.
e A program compiled with the THREAD compiler option (Workstation only)

An ALTER statement referring to the paragraph containing an altered GO TO statement
must be executed before the GO TO statement is executed. Otherwise, as an IBM
extension, the GO TO statement acts like a CONTINUE statement.

—— Format 3—Altered
»»—paragraph-name .—G0
Crod

\4
A

When an ALTER statement refers to a paragraph, the paragraph can consist only of the
paragraph-name followed by an unconditional or altered GO TO statement.

MORE-Labels GO TO
Under AIX, OS/2, and Windows, GO TO MORE-LABELS is treated as a
comment.

The GO TO MORE-LABELS statement can only be specified in a LABEL declarative.

Format 4—MORE-LABELS
»—GO—L—_,—MORE-LABELS
TO

\
A

For more details, see the IBM COBOL for 0S/390 & VM Programming Guide.

Part 6. Procedure Division 319

IF Statement

IF Statement

The IF statement evaluates a condition and provides for alternative actions in the object
program, depending on the evaluation.

—— Format

»»—IF—condition-1 statement-1
THEN NEXT SENTENCE
t Lenp-1r-]
ELSE statement-2
NEXT SENTENCE

Note:
1 END-IF can be specified with NEXT SENTENCE as an IBM extension.

v

A

condition

Can be any simple or complex condition, as described in “Conditional Expressions”
on page 237.

statement-1, statement-2
Can be any one of the following:

e An imperative statement
e A conditional statement
e An imperative statement followed by a conditional statement

NEXT SENTENCE

If the NEXT SENTENCE phrase is specified, then the END-IF phrase must not be
specified.

END-IF can be specified with NEXT SENTENCE. However, if the NEXT SEN-
TENCE phrase is executed, control will not pass to the next statement following the
END-IF but instead will pass to the statement after the closest following period.

END-IF Phrase
This explicit scope terminator serves to delimit the scope of the IF statement. END-IF
permits a conditional IF statement to be nested in another conditional statement. For

more information on explicit scope terminators, see “Delimited Scope Statements” on
page 261.

The scope of an IF statement can be terminated by any of the following:

e An END-IF phrase at the same level of nesting
e A separator period

e If nested, by an ELSE phrase associated with an IF statement at a higher level of
nesting

320 COBOL Language Reference

Transferring Control
If the condition tested is true, one of the following actions takes place:

If statement-1 is specified, it is executed. If statement-1 contains a procedure
branching or conditional statement, control is transferred, according to the rules for
that statement. If statement-1 does not contain a procedure-branching statement,
the ELSE phrase, if specified, is ignored, and control passes to the next executable
statement after the corresponding END-IF or separator period.

If NEXT SENTENCE is specified, control passes to an implicit CONTINUE state-
ment immediately preceding the next separator period.

If the condition tested is false, one of the following actions takes place:

If ELSE statement-2 is specified, it is executed. If statement-2 contains a
procedure-branching or conditional statement, control is transferred, according to
the rules for that statement. If statement-2 does not contain a procedure-branching
or conditional statement, control is passed to the next executable statement after
the corresponding END-IF or separator period.

If ELSE NEXT SENTENCE is specified, control passes to an implicit CONTINUE
STATEMENT immediately preceding the next separator period.

If neither ELSE statement-2 nor ELSE NEXT STATEMENT is specified, control
passes to the next executable statement after the corresponding END-IF or sepa-
rator period.

Note: When the ELSE phrase is omitted, all statements following the condition and
preceding the corresponding END-IF or the separator period for the sentence are con-
sidered to be part of statement-1.

Nested IF Statements

When an IF statement appears as statement-1 or statement-2, or as part of statement-1
or statement-2, it is nested .

Nested IF statements (when IF statements contain IF statements) are considered to be
matched IF, ELSE, and END-IF combinations proceeding from left to right. Thus, any
ELSE encountered is matched with the nearest preceding IF that either has not been
already matched with an ELSE, or has not been implicitly or explicitly terminated. Any
END-IF encountered is matched with the nearest preceding IF that has not been implic-
itly or explicitly terminated.

Part 6. Procedure Division 321

INITIALIZE Statement

INITIALIZE Statement

The INITIALIZE statement sets selected categories of data fields to predetermined
values. It is functionally equivalent to one or more MOVE statements.

When the REPLACING phrase is not used:

e SPACE is the implied sending field for alphabetic, alphanumeric, alphanumeric-
edited, and DBCS items.

e ZERO is the implied sending field for numeric and numeric-edited items.

— Format

>>——INITIALIZE——£:identifier—1

L—REPLACING ALPHABETIC: BY identifief:f::[—-l—J
ALPHANUMERIC |-—DATA—-| __I:Ziteral-l
NUMERIC
ALPHANUMERIC-EDITED—
NUMERIC-EDITED
DBCS:
EGCS

identifier-1
Receiving area(s).

identifier-2, literal-1
Sending area(s).

A subscripted item can be specified for identifier-1. A complete table can be initialized
only by specifying identifier-1 as a group that contains the complete table.

The data description entry for identifier-1 or any items subordinate to identifier-1 cannot
contain the DEPENDING ON phrase of the OCCURS clause. The data description
entry for identifier-1 can contain the DEPENDING phrase of the OCCURS clause.

Note: You cannot use the INITIALIZE statement to initialize a variably located item or
group that follows a DEPENDING ON phrase of the OCCURS clause within the same
01 level.

A floating-point data item or literal can be used anywhere a numeric identifier or literal
is specified.

A DBCS data item or literal can be used anywhere an identifier or literal is specified.

The data description entry for identifier-1 must not contain a RENAMES clause. An
index data item cannot be an operand of INITIALIZE.

Special registers can be specified for identifier-1 and identifier-2 only if they are valid
receiving fields or sending fields, respectively, for the implied MOVE statement(s).

322 COBOL Language Reference

INITIALIZE Statement

REPLACING Phrase
When the REPLACING phrase is used:

The category of identifier-2 or literal-1 must be compatible with the category indi-
cated in the corresponding REPLACING phrase, according to the rules for MOVE.
A floating-point data item or floating-point literal will be treated as if it is in the
NUMERIC category.

The same category cannot be repeated in a REPLACING phrase.

The key word following the word REPLACING corresponds to a category of data
shown in “Classes and Categories of Data” on page 138.

DBCS
EGCS

Refers to the characters allowed for DBCS literals.

INITIALIZE Statement Rules

1. Whether identifier-1 references an elementary or group item, all operations are per-

formed as if a series of MOVE statements had been written, each of which had an
elementary item as a receiving field.

If the REPLACING phrase is specified:

o |If identifier-1 references a group item, any elementary item within the data item
referenced by identifier-1 is initialized only if it belongs to the category speci-
fied in the REPLACING phrase.

o |[f identifier-1 references an elementary item, that item is initialized only if it
belongs to the category specified in the REPLACING phrase.

This initialization takes place as if the data item referenced by identifier-2 or
literal-1 acts as the sending operand in an implicit MOVE statement to the identi-
fied item.

All such elementary receiving fields, including all occurrences of table items within
the group, are affected, with the following exceptions:

¢ Index data items
e Object references

e Data items defined with USAGE IS POINTER or USAGE IS
PROCEDURE-POINTER

e Elementary FILLER data items

* |tems that are subordinate to identifier-1 and contain a REDEFINES clause, or
any items subordinate to such an item. (However, identifier-1 can contain a
REDEFINES clause or be subordinate to a redefining item.)

2. The areas referenced by identifier-1 are initialized in the order (left to right) of the

appearance of identifier-1 in the statement. Within a group receiving field, affected
elementary items are initialized in the order of their definition within the group.

Part 6. Procedure Division 323

INITIALIZE Statement

3. If identifier-1 occupies the same storage area as identifier-2, the result of the exe-
cution of this statement is undefined, even if these operands are defined by the
same data description entry.

324 COBOL Language Reference

INSPECT Statement

INSPECT Statement

The INSPECT statement specifies that characters, or groups of characters, in a data
item are to be counted (tallied) or replaced or both.

e It counts the occurrence of a specific character (alphabetic, numeric, or special
character) in a data item. (Formats 1 and 3)

¢ |t fills all or portions of a data item with specified characters, such as spaces or
zeros. (Formats 2 and 3)

¢ |t converts all occurrences of specific characters in a data item to user-supplied
replacement characters. (Format 4)

—— Format 1
»»—INSPECT—identifier-1—TALLYING

v

A\
A

»—Y-identifier-2—FOR CHARACTERS ' | ‘
|—{ phrase 1 |J
phrase 1:

ALLT-L—I:identifier—.? ‘ | |
LEADING Ziter‘al—]—J L—-{ phrase 1 I—J
| R

BEFORE identifier-4
I 1
AFTERJ |—INITIALJ |—Ziter‘aZ—ZJ

—— Format 2
»»—INSPECT—identifier-1—REPLACING >

A\
A

CHARACTERS BY—quintiJl‘igr—.? ' |_{ N . IJ |
iteral- phrase

ALL identifier-3 BY—[identifier—E ' |
LEADING} |:Ziter'al—l——,—_ Ziteral—.?q |—{ phrase 1 }J

FIRST
phrase 1:

| BEFORE identifier-4
[1
Larrer— Laneriad Liiteraz-2—

Part 6. Procedure Division 325

INSPECT Statement

—— Format 3
»»—INSPECT—identifier-1—TALLYING >
»—Y—identifier-2—FOR CHARACTERS ' | ' >
|—{ phrase 1 }J
ALL—J——L[identifier—.? ‘ l l
LEADING literal-1 |——-{ phrase 1 }—J
»—REPLACING

A\
A

> CHARACTERS BY—[gqinti{igrﬁ ‘ |_{ ; . }J |
iteral- phrase

ALL identifier-3 BY—Eidentifier—‘j v | '
LEADING} [Ziteral—lj literal—3—, l—{ phrase 1 }——I

FIRST
phrase 1:

' BEFORE identifier-4
[1
arter— Loneriad Liiterar-o—

— Format 4

»—INSPECT—identifier-l—CONVERTING—[identifiei,—TO—[identifier-7
literal-4 literal-5

\
A

>J—EBEFORE identifier-4 |
AFTER—I l—INITIALJ |—lii.‘eral-ZJ

None of the identifiers in an INSPECT statement can be windowed date fields.

identifier-1
Is the inspected item and can be any of the following:

e An alphanumeric data item
e A numeric data item with USAGE DISPLAY
e An external floating point item

Effect of DBCS

All identifiers and literals (except identifier-2) must be DBCS items, either DBCS literals
or DBCS data items, if any are DBCS items. Identifier-2 cannot be a DBCS item.
DBCS characters, not bytes of data, are tallied in identifier-2.

TALLYING Phrase (Formats 1 and 3)

This phrase counts the occurrence of a specific character (alphabetic, numeric, or
special character) in a data item.

identifier-2
Is the count field , and must be an elementary integer item defined without the
symbol P in its PICTURE character-string.

326 COBOL Language Reference

INSPECT Statement

Identifier-2 cannot be:

e A DBCS item
¢ An external floating point item

You must initialize identifier-2 before execution of the INSPECT statement begins.

identifier-3 or literal-1
Is the tallying field (the item whose occurrences will be tallied).

Identifier-3 can be any of the following:

¢ Elementary alphanumeric data item
¢ Numeric data item with USAGE DISPLAY
e External floating point item

Literal-1 must be nonnumeric, and can be any figurative constant that does not
begin with the word ALL. (If literal-1 is a figurative constant, it is considered to be a
1-character nonnumeric literal.)

CHARACTERS
When CHARACTERS is specified and neither the BEFORE nor AFTER phrase is
specified, the count field (identifier-2) is increased by 1 for each character
(including the space character) in the inspected item (identifier-1). Thus, execution
of the INSPECT TALLYING statement increases the value in the count field by the
number of characters in the inspected item.

ALL
When ALL is specified and neither the BEFORE nor AFTER phrase is specified,
the count field (identifier-2) is increased by 1 for each non-overlapping occurrence
of the tallying comparand in the inspected item (identifier-1), beginning at the left-
most character position and continuing to the rightmost.

LEADING
When LEADING is specified and neither the BEFORE nor AFTER phrase is speci-
fied, the count field (identifier-2) is increased by 1 for each contiguous non-
overlapping occurrence of the tallying comparand in the inspected item
(identifier-1), provided that the leftmost such occurrence is at the point where com-
parison began in the first comparison cycle for which the tallying comparand is eli-
gible to participate.

FIRST (Format 3 Only)
When FIRST is specified and neither the BEFORE nor AFTER phrase is specified,

the substitution field replaces the leftmost occurrence of the subject field in the
inspected item (identifier-1).

Part 6. Procedure Division 327

INSPECT Statement

REPLACING Phrase (Formats 2 and 3)
This phrase fills all or portions of a data item with specified characters, such as spaces
or zeros.

identifier-3 or literal-1
Is the subject field (the item whose occurrences are replaced).

Identifier-3 can be:

¢ An elementary alphanumeric data item
e A numeric data item with USAGE DISPLAY
e An external floating point item

Literal-1 must be nonnumeric, and can be any figurative constant that does not
begin with the word ALL. If literal-1 is a figurative constant, it is considered to be a
1-character nonnumeric literal.

identifier-5 or literal-3
Is the substitution field (the item that replaces the subject field).

Identifier-5 can be:

¢ An elementary alphanumeric data item
¢ A numeric data item with USAGE DISPLAY
¢ An external floating point item

Literal-3 must be nonnumeric, and can be any figurative constant that does not
begin with the word ALL.

If literal-3 is a figurative constant, it is considered to be the same length as the
subject field.

The subject field and the substitution field must be the same length.

CHARACTERS BY
When the CHARACTERS BY phrase is used, the substitution field must be 1 char-
acter in length.

When CHARACTERS BY is specified and neither the BEFORE nor AFTER phrase
is specified, the substitution field replaces each character in the inspected item
(identifier-1), beginning at the leftmost character and continuing to the rightmost.

ALL
When ALL is specified and neither the BEFORE nor AFTER phrase is specified,
the substitution field replaces each non-overlapping occurrence of the subject field
in the inspected item (identifier-1), beginning at the leftmost character position and
continuing to the rightmost.

LEADING
When LEADING is specified and neither the BEFORE nor AFTER phrase is speci-
fied, the substitution field replaces each contiguous non-overlapping occurrence of
the subject field in the inspected item (identifier-1), provided that the leftmost such
occurrence is at the point where comparison began in the first comparison cycle for
which this substitution field is eligible to participate.

328 COBOL Language Reference

INSPECT Statement

FIRST
When FIRST is specified and neither the BEFORE nor AFTER phrase is specified,
the substitution field replaces the leftmost occurrence of the subject field in the
inspected item (identifier-1).

When both the TALLYING and REPLACING phrases are specified (Format 3), the
INSPECT statement is executed as if an INSPECT TALLYING statement (Format 1)
were specified, immediately followed by an INSPECT REPLACING statement (Format
2).

Replacement Rules
The following replacement rules apply:

¢ When the subject field is a figurative constant, the single-character substitution field
(which must be 1 character in length) replaces each character in the inspected item
equivalent to the figurative constant.

¢ When the substitution field is a figurative constant, the substitution field replaces
each non-overlapping occurrence of the subject field in the inspected item.

¢ When the subject and substitution fields are character-strings, the character-string
specified in the substitution field replaces each non-overlapping occurrence of the
subject field in the inspected item.

¢ After replacement has occurred in a given character position in the inspected item,
no further replacement for that character position is made in this execution of the
INSPECT statement.

BEFORE and AFTER Phrases (All Formats)

This phrase narrows the set of items being tallied or replaced.
No more than one BEFORE phrase and one AFTER phrase can be specified for any

one ALL, LEADING, CHARACTERS, FIRST or CONVERTING phrase.

identifier-4 or literal-2
Is the delimiter .

Identifier-4 can be:

¢ An elementary alphanumeric data item
¢ A numeric data item with USAGE DISPLAY
e An external floating point item

Literal-2 must be nonnumeric, and can be any figurative constant that does not
begin with the word ALL. If literal-2 is a figurative constant, it is considered to be 1
character in length.

Delimiters are not counted or replaced. However, the counting and/or replacing of
the inspected item is bounded by the presence of the identifiers and literals.

Part 6. Procedure Division 329

INSPECT Statement

INITIAL
The first occurrence of a specified item.

The BEFORE and AFTER phrases change how counting and replacing are done:

¢ When BEFORE is specified, counting and/or replacing of the inspected item
(identifier-1) begins at the leftmost character and continues until the first occur-
rence of the delimiter is encountered. If no delimiter is present in the inspected
item, counting and/or replacing continues toward the rightmost character.

¢ When AFTER is specified, counting and/or replacing of the inspected item
(identifier-1) begins with the first character to the right of the delimiter and con-
tinues toward the rightmost character in the inspected item. If no delimiter is
present in the inspected item, no counting or replacement takes place.

CONVERTING Phrase (Format 4)

This phrase converts all occurrences of specific characters in a data item to user-
supplied replacement characters. It can express a string of replacement values.

identifier-6 or literal-4
Is the sending location

Identifier-6 can be:

e An elementary alphanumeric data item
e A numeric data item with USAGE DISPLAY
e An external floating point item

Literal-4 must be nonnumeric, and can be any figurative constant that does not
begin with the word ALL. If literal-4 is a figurative constant, it refers to an implicit 1
character data item.

identifier-7 or literal-5
Is the receiving location

The receiving location (identifier-7 or literal-5) must be the same size as the
sending location (identifier-6 or literal-4).

Identifier-7 can be:

¢ An elementary alphanumeric data item
e A numeric data item with USAGE DISPLAY
e An external floating point item.

Literal-5 must be nonnumeric and can be any figurative constant that does not
begin with the word ALL. When a figurative constant is used, the size should be
equal to the size of literal-4 or identifier-6.

The same character must not appear more than once in either literal-4 or
identifier-6.

A Format 4 INSPECT statement is interpreted and executed as if a Format 2 INSPECT
statement had been written with a series of ALL phrases (one for each character of
literal-4), specifying the same identifier-1. The effect is as if each single character of

330 COBOL Language Reference

INSPECT Statement

literal-4 were referenced as literal-1, and the corresponding single character of literal-5
referenced as literal-3. Correspondence between the characters of literal-4 and the
characters of literal-5 is by ordinal position within the data item.

If identifier-4, identifier-6, or identifier-7 occupies the same storage area as identifier-1,
the result of the execution of this statement is undefined, even if they are defined by
the same data description entry.

Data Types for Identifiers and Literals

Data Flow

Table 41. Treatment of the Content of Data Items

When referenced by any identifier except

identifier-2, the content of each... Is treated...

alphanumeric or alphabetic item as a character-string

alphanumeric-edited, numeric-edited, or as if redefined as alphanumeric, with the

unsigned numeric (external decimal) item INSPECT statement referring to the alphanu-
meric item

signed numeric (external decimal) item as if moved to an unsigned external decimal

item of the same length and then redefined as
alphanumeric, with the INSPECT statement
referring to the alphanumeric item.

If the sign is a separate character, the byte
containing the sign is not examined and, there-
fore, not replaced.

external floating point item as if redefined as alphanumeric, with the
INSPECT statement referring to the alphanu-
meric item

Except when the BEFORE or AFTER phrase is specified, inspection begins at the left-
most character position of the inspected item (identifier-1) and proceeds character-by-
character to the rightmost position.

The comparands of the following phrases are compared in the left-to-right order in
which they are specified in the INSPECT statement:

e TALLYING (literal-1 or identifier-3, ...)

e REPLACING (literal-3 or identifier-5, ...)

If any identifier is subscripted, reference modified, or is a function-identifier, the sub-
script, reference-modifier, or function is evaluated only once as the first operation in the
execution of the INSPECT statement.

For examples of TALLYING and REPLACING, see the IBM COBOL Programming
Guide for your platform.

Part 6. Procedure Division 331

INSPECT Statement

Comparison Cycle
The comparison cycle consists of the following actions:

1. The first comparand is compared with an equal number of leftmost contiguous
characters in the inspected item. The comparand matches the inspected charac-
ters only if both are equal, character-for-character.

If the CHARACTERS phrase is specified, an implied 1-character comparand is
used. The implied character is always considered to match the inspected char-
acter in the inspected item.

2. If no match occurs for the first comparand and there are more comparands, the
comparison is repeated for each successive comparand until either a match is
found or all comparands have been acted upon.

3. Depending on whether a match is found, these actions are taken:

e If a match is found, tallying or replacing takes place, as described in the TAL-
LYING and REPLACING phrase descriptions.

If there are more characters in the inspected item, the first character following
the rightmost matching character is now considered to be in the leftmost char-
acter position. The process described in actions 1 and 2 is then repeated.

e If no match is found and there are more characters in the inspected item, the
first character following the leftmost inspected character is now considered to
be in the leftmost character position. The process described in actions 1 and
2 is then repeated.

4. Actions 1 through 3 are repeated until the rightmost character in the inspected item
either has been matched or has been considered as being in the leftmost character
position.

When the BEFORE or AFTER phrase is specified, the comparison cycle is modified, as
described in “BEFORE and AFTER Phrases (All Formats)” on page 329.

Example of the INSPECT Statement

Figure 10 on page 333 is an example of INSPECT statement results.

332 COBOL Language Reference

INSPECT Statement

INSPECT ID-1 TALLYING ID-2 FOR ALL "*="

ID-1 before

*

execution

Execution for
TALLYING phrase:

1st
comparison

2nd

comparison

3rd
comparison

4th
comparison

Execution for
REPLACING phrase:
5th

comparison *

REPLACING ALL "=x" BY ZEROS.

TALLYING
comparand:

[o]e

ID-2 before
execution

(initialized by
programmer)
1D-2
contains:

(true)
(faise)
(true)

ID-1 changed

(true) to—‘

6th

comparison

7th
comparison

8th
comparison

I1D-1
(false) unchanged

1D-1
(false) unchanged

ID-1 changed
(true) to

At the end of inspection:

ID-1

contains: ‘ 0 ‘ 0

*

0]

(<}

ID-2
contains:

Figure 10. Example of INSPECT Statement Execution Results

Part 6. Procedure Division

333

INVOKE Statement

INVOKE Statement

The INVOKE statement invokes a method defined in a class or a metaclass. Methods
can contain INVOKE statements, and a method can execute an INVOKE statement that
directly or indirectly invokes itself. Therefore, all methods are implicitly recursive (unlike
COBOL programs, which support recursion only if the RECURSIVE attribute is specified
in the PROGRAM-ID paragraph.)

The process for resolving the method name specified on the INVOKE statement to a
method implementation is as specified by the IBM SOM. The method resolution is not
case sensitive.

—— Format
»»>—INVOKE——identifier-1 LZiteraZ—]] >
—class-name-]——— identifier-2
—SELF

SUPER—
l—class-name-z 0FJ

V \—usw J'

{ . -
NG identifier-3
I—L—A’fREFERENCEJ LLADDRESS OFJ
BY OMITTED

v identifierd—

CONTENT identifier-4
|—BY—J tADDRESS OF
LENGTH OF
literal-2
OMITTED

v

|

LENGTH OF

{ . .
VALUE identifier-5
|—BYJ L ADDRESS OF;

literal-3

A\

v

I—RETURN I NG—z’dentifier-6—l |—[jfEXCEPTION—z’mperat ive-s tatement—]—,
ON

\ 4

\4
A

L ; ; L]
NOT—m—EXCEPTION—zmperatz ve-statement-2 END-INVOKE
ON

identifier-1
Must be defined as USAGE OBJECT REFERENCE. The contents of identifier-1
specify the object on which a method is invoked.

The results of the INVOKE statement are undefined if:

¢ identifier-1 does not contain a valid reference to an object or
¢ identifier-1 contains NULL

class-name-1

If class-name-1 is specified, the method is invoked on the class object of
class-name-1.

You must specify class-name-1 in the REPOSITORY paragraph of the Configura-
tion Section of the class or program that contains the INVOKE statement.

334 COBOL Language Reference

INVOKE Statement

SELF
An implicit reference to the object upon which the currently executing method was
invoked. When SELF is specified, the INVOKE statement must appear within the
Procedure Division of a method.

SUPER
A reference to the object that was used in the invocation of the currently executing
method. The resolution of the method to be invoked will ignore any methods
declared in the class definition of the currently executing method and methods
defined in any class derived from that class, thus the method invoked will be one
that is inherited from an ancestor class. To invoke a method that is inherited from
a specific class, you can qualify SUPER with a class name (class-name-2).

class-name-2
The class to which the inherited method belongs.

You must specify class-name-2 if the reference to SUPER is in a method definition
of a class that uses multiple inheritance. Specify class-name-2 in the REPOSI-
TORY paragraph of the Configuration Section of the class or program that contains
the INVOKE statement. Class-name-2 must be a direct or indirect parent class.

literal-1
The name of the method to be invoked. The referenced object must support the
method identified by literal-1.

Literal-1 must be a nonnumeric literal.
identifier-2

A nonnumeric data item whose value is a method name. The referenced object
must support the method identified by identifier-2.

If identifier-2 is specified, identifier-1 must be defined as USAGE OBJECT REFER-
ENCE without any optional phrases.

Identifier-2 cannot be a windowed date field.

USING Phrase

The USING phrase specifies arguments that are passed to the target method. For
details on the USING phrase, see “The Procedure Division Header” on page 225.

For conformance requirements for the USING phrase, see “Conformance Requirements
for USING Phrase” on page 338.

BY REFERENCE Phrase
If the BY REFERENCE phrase is either specified or implied for a parameter, the corre-
sponding data item in the invoking method occupies the same storage area as the data
item in the invoked method.

identifier-3
Can be a data item of any level in the DATA DIVISION. Identifier-3 cannot be a
function-identifier or a windowed date field.

Part 6. Procedure Division 335

INVOKE Statement

If defined in the Linkage Section, you must have already provided addressability for
identifier-3 prior to execution of the INVOKE statement. You can do this by coding
either one of the following: SET ADDRESS OF identifier-3 TO pointer or
PROCEDURE/ENTRY USING.

ADDRESS OF Special Register
See “ADDRESS OF” on page 11.

OMITTED
Indicates that no argument is passed.

BY CONTENT Phrase
If BY CONTENT specified or implied for a parameter, the invoked method cannot
change the value of this parameter as referenced in the INVOKE statement's USING
phrase. Although, the invoked method can change the value of the data item refer-
enced by the corresponding data-name in the invoked method's Procedure Division
header. Changes to the parameter in the invoked method do not affect the corre-
sponding argument in the invoking program.

identifier-4
Can be a data item of any level in the Data Division. Identifier-4 cannot be a
function-identifier or a windowed date field.

If defined in the Linkage Section, you must have already provided addressability for
identifier-4 prior to execution of the INVOKE statement. You can do this by coding
either one of the following: SET ADDRESS OF identifier-4 TO pointer or
PROCEDURE/ENTRY USING.

literal-2
Can be:

¢ A nonnumeric literal
e A figurative constant (except ALL literal or NULL/NULLS)
e A DBCS literal

ADDRESS OF Special Register
See “ADDRESS OF” on page 11.

LENGTH OF Special Register
See “LENGTH OF” on page 12.

OMITTED
Indicates that no argument is passed.

BY VALUE Phrase
The BY VALUE phrase applies to all arguments that follow until overridden by another
BY REFERENCE or BY CONTENT phrase.

If the BY VALUE phrase is specified or implied for an argument, the value of the argu-
ment is passed, not a reference to the sending data item. The invoked method can

336 COBOL Language Reference

INVOKE Statement

modify the formal parameter corresponding to the BY VALUE argument, but any
changes do not affect the argument since the invoked method has access to a tempo-
rary copy of the sending data item.

While BY VALUE arguments are primarily intended for communication with non-COBOL
programs (such as C), they can also be used for COBOL-to-COBOL invocations. In
this case, BY VALUE must be specified or implied for both the argument in the INVOKE
USING phrase and the corresponding formal parameter in the Procedure Division
USING phrase.

identifier-5
Must be an elementary data item in the DATA DIVISION. Identifier-5 must be one
of the following:

e Binary (USAGE BINARY, COMP, COMP-4, or COMP-5)
¢ Floating point (USAGE COMP-1 or COMP-2)

Pointer (USAGE POINTER)

e Procedure-pointer (USAGE PROCEDURE-POINTER)

e Object reference (USAGE OBJECT REFERENCE)

e Single-byte alphanumeric (PIC X or PIC A)

The following can also be passed BY VALUE:

¢ Reference modified item with length one
e SHIFT-IN and SHIFT-OUT special registers
e LINAGE-COUNTER special register when it is usage binary

ADDRESS OF Special Register
An ADDRESS OF special register passed BY VALUE is treated as a pointer. For
information on the ADDRESS OF special register, see “ADDRESS OF” on
page 11.

LENGTH OF Special Register
A LENGTH OF special register passed BY VALUE is treated as a PIC 9(9) binary.
For information on the LENGTH OF special register, see “LENGTH OF” on
page 12.

literal-3
Must be one of the following:

e Numeric literal
¢ ZERO
e 1-character nonnumeric literal
e Symbolic character
¢ Single byte figurative constant
— SPACE
- QUOTE
— HIGH-VALUE
— LOW-VALUE

ZERO is treated as a numeric value; a fullword binary zero is passed.

Part 6. Procedure Division 337

INVOKE Statement

If literal-3 is a fixed point numeric literal, it must have a precision of 9 or less digits.
In this case, a fullword binary representation of the literal value is passed.

If literal-3 is a floating point numeric literal, an 8-byte internal floating point
(COMP-2) representation of the value is passed.

Literal-3 must not be a DBCS literal.

Conformance Requirements for USING Phrase
The arguments specified on the USING phrase and the formal parameters specified on
the method PROCEDURE-DIVISION USING must satisfy the following:

An invoked COBOL method must have the same number of formal parameters on
its procedure division USING phrase as there are arguments on the INVOKE
USING phrase. The presence or absence of USING...BY VALUE must be con-
sistent on the INVOKE statement and the Procedure Division header of the target
method.

If a formal parameter is a COBOL elementary data item not described with USAGE
IS OBJECT REFERENCE, then the corresponding argument must have the same
PICTURE, USAGE, SIGN, SYNCHRONIZED, JUSTIFIED, and BLANK WHEN
ZERO clauses. Note that periods and commas can be interchanged if specifying
the DECIMAL POINT IS COMMA clause and currency signs can differ.

If a formal parameter is a COBOL elementary data item described with USAGE IS
OBJECT REFERENCE then:

— If the argument is passed BY REFERENCE, then the argument and the
parameter must be defined with identical USAGE clauses.

— If the argument is passed BY VALUE or BY CONTENT, and the parameter
specified on the method Procedure Division USING phrase is a universal
object reference, then the argument can be any object reference.

— If the argument is passed BY VALUE or BY CONTENT, and the parameter
specified on the method Procedure Division USING phrase is an object refer-
ence typed to a specific class, then the argument must be an object reference
typed to the same or a derived class.

RETURNING Phrase
You can specify the RETURNING phrase for invoking methods written in COBOL, C, or
in other programming languages that use C linkage conventions.

identifier-6

The RETURNING data item. ldentifier-6:

¢ Must be defined in the DATA DIVISION

¢ Must not be reference-modified

e Cannot be a windowed date field

¢ Is not changed if an EXCEPTION occurs

¢ Contains the return value of the invoked method

338 COBOL Language Reference

INVOKE Statement

If identifier-6 is specified and the target method is written in COBOL, then the
target method must have a RETURNING phrase on its Procedure Division state-
ment. When the target returns, its return value is assigned to identifier-6, using the
rules for the SET statement if identifier-6 is USAGE IS INDEX, USAGE IS
POINTER, USAGE IS PROCEDURE-POINTER, or USAGE IS OBJECT REFER-
ENCE; otherwise, the rules for the MOVE statement are used.

Note: Identifier-6 is an output-only parameter. The initial state of identifier-6 has
an unpredictable value when the method is entered. You must initialize the Proce-
dure Division RETURNING data-name (data-name-2) in the method before you
manipulate the value of identifier-6. The value that is passed back to the invoking
program is the final value of identifier-6 when the method returns.

The RETURN-CODE special register is not set by execution of INVOKE statements.

Conformance Requirements for RETURNING Phrase: The identifiers specified on
an INVOKE RETURNING phrase and the corresponding method Procedure Division
RETURNING phrase must satisfy the following:

¢ The presence or absence of the RETURNING phrase must be consistent on the
INVOKE statement and the Procedure Division header of the target method.

¢ If one of the identifiers is a COBOL elementary data item not described with
USAGE IS OBJECT REFERENCE, then the corresponding identifier must have the
same PICTURE, USAGE, SIGN, SYNCHRONIZED, JUSTIFIED, and BLANK
WHEN ZERO clauses. Note that periods and commas can be interchanged if
specifying the DECIMAL POINT IS COMMA clause and currency signs can differ.

¢ |f the INVOKE RETURNING identifier is a universal object reference, then the
method Procedure Division RETURNING identifier must be an object reference
(either a universal object reference or an object reference typed to a specific
class).

¢ |f the INVOKE RETURNING identifier is an object reference typed to a specific
class, then the method Procedure Division RETURNING identifier must be an
object reference typed to the same class or a derived class.

ON EXCEPTION Phrase

An exception condition occurs when invoked methods are not supported by the method
identified by literal-1 or identifier-2. When an exception condition occurs, one of the
following two actions occur:

1. If the ON EXCEPTION phrase is specified, control is transferred to
imperative-statement-1.

2. If the ON EXCEPTION phrase is not specified, then a condition is raised at run
time.
Exceptions can occur if conformance requirements are not met. Conformance require-
ments include:
e For the USING phrase, see “Conformance Requirements for USING Phrase” on
page 338

Part 6. Procedure Division 339

INVOKE Statement

¢ For the RETURNING phrase, see “Conformance Requirements for RETURNING
Phrase”

e For the purpose of conformance checking, a fixed-length group data item is consid-
ered to be equivalent to an elementary alphanumeric data item of the same length.

A variable-length group conforms only to other variable-length groups that have the
same maximum length.

For an example, see “INVOKE Parameter Type Conformance—Example” on page 341.

NOT ON EXCEPTION Phrase

If an exception condition does not occur (that is, the invoked method is supported by
the specified object), control is transferred to the invoked method. After control is
returned from the invoked method, control is then transferred:

1. To imperative-statement-2, if the NOT ON EXCEPTION phrase is specified.

2. To the end of the INVOKE statement if the NOT ON EXCEPTION phrase is not
specified.

END-INVOKE Phrase
This explicit scope terminator serves to delimit the scope of the INVOKE statement.
END-INVOKE permits a conditional INVOKE statement to be nested in another condi-
tional statement.

Note: The RETURN-CODE special register is not set by execution of INVOKE state-
ments.

340 COBOL Language Reference

INVOKE Parameter Type Conformance—Example

INVOKE Statement

WORKING-STORAGE SECTION.

01 anA USAGE OBJECT REFERENCE A.
01 aB USAGE OBJECT REFERENCE B.
01 aC USAGE OBJECT REFERENCE C.

PROCEDURE DIVISION
INVOKE anX "METHOD-1" USING BY REFERENCE anA.
BY VALUE aB.
RETURNING aC.
CLASS-ID. X.

METHOD-ID. METHOD-1.

LINKAGE SECTION.

01 aP USAGE OBJECT REFERENCE P.
01 aQ USAGE OBJECT REFERENCE Q.
01 anR USAGE OBJECT REFERENCE R.

PROCEDURE DIVISION USING BY REFERENCE aP
BY VALUE aQ
RETURNING anR.

In the above examples:

e Class P and class A must be the same class.

e Class Q must be the same class or a parent of B.
¢ Class R must be the same class or a subclass of C.

Part 6. Procedure Division

341

MERGE Statement

MERGE Statement

The MERGE statement combines two or more identically sequenced files (that is, files
that have already been sorted according to an identical set of ascending/descending
keys) on one or more keys and makes records available in merged order to an output
procedure or output file.

A MERGE statement can appear anywhere in the Procedure Division except in a
Declarative Section.

— Format
»»—MERGE—file-name-1 ASCENDING: v data-name-1 ‘ >
LovJ Loescenoing Lkev
> [a USING—file—name—Z—W—»
SEQUENCE alphabet-name-1
l—COLLATINGJ |—ISJ

A\
A

OUTPUT PROCEDURE—m—procedure—name-l
IS THRO%—pr’ocedure—name-2J
THRU

GIVING—Efi le-name-4

file-name-1
The name given in the SD entry that describes the records to be merged.

No file-name can be repeated in the MERGE statement.

No pair of file-names in a MERGE statement can be specified in the same SAME
AREA, SAME SORT AREA, or SAME SORT-MERGE AREA clause.

As an IBM extension, any file-names in a MERGE statement can be specified in
the same SAME RECORD AREA clause.

When the MERGE statement is executed, all records contained in file-name-2,
file-name-3,..., are accepted by the merge program and then merged according to the
key(s) specified.

ASCENDING/DESCENDING KEY Phrase

This phrase specifies that records are to be processed in an ascending or descending
sequence (depending on the phrase specified), based on the specified merge keys.

data-name-1
Specifies a KEY data item on which the merge will be based. Each such data-
name must identify a data item in a record associated with file-name-1. The data-
names following the word KEY are listed from left to right in the MERGE statement
in order of decreasing significance without regard to how they are divided into KEY
phrases. The left-most data-name is the major key, the next data-name is the next
most significant key, and so forth.

342 COBOL Language Reference

MERGE Statement

The following rules apply:

A specific key data item must be physically located in the same position and
have the same data format in each input file. However, it need not have the
same data-name.

If file-name-1 has more than one record description, then the KEY data items
need be described in only one of the record descriptions.

If file-name-1 contains variable-length records, all of the KEY data-items must
be contained within the first n character positions of the record, where n
equals the minimum records size specified for file-name-1.

KEY data items must not contain an OCCURS clause or be subordinate to an
item that contains an OCCURS clause.

KEY data items can be qualified.

KEY data items cannot be group items that contain variable occurrence data
items.

KEY data items can be floating-point items.
KEY data items cannot be variably-located.

Under AIX, OS/2, and Windows, KEY data items cannot be
windowed date fields.

Under OS/390 and VM, KEY data item can be windowed date
fields, under these conditions:

— The input files specified in the USING phrase may be sequential, relative,
or indexed, but must not have any RECORD KEY, ALTERNATE
RECORD KEY, or RELATIVE KEY in the same position as a windowed
date merge key. The file system does not support windowed date fields
as keys, so any ordering imposed by the file system could conflict with the
windowed date field support for the merge operation. In fact, if the merge
is to succeed, then input files must have already been sorted into the
same order as that specified by the MERGE statement, including any win-
dowed date ordering.

— The GIVING phrase must not specify an indexed file, because the (binary)
ordering assumed or imposed by the file system conflicts with the win-
dowed date ordering provided in the output of the merge. Attempting to
write the windowed date merge output to such an indexed file will either
fail or re-impose binary ordering, depending on how the file is accessed
(the ACCESS MODE in the file-control entry).

— If an alphanumeric windowed date field is specified as a KEY for a
MERGE statement, the collating sequence in effect for the merge opera-
tion must be EBCDIC. Thus the COLLATING SEQUENCE phrase of the
MERGE statement or, if this phrase is not specified, then any PROGRAM
COLLATING SEQUENCE clause in the OBJECT-COMPUTER paragraph,
must not specify a collating sequence other than EBCDIC or NATIVE.

Part 6. Procedure Division 343

MERGE Statement

If the MERGE statement meets these conditions, then the merge operation
takes advantage of SORT Year 2000 features, assuming that the execution
environment includes a sort product that supports century windowing.

The direction of the merge operation depends on the specification of the
ASCENDING or DESCENDING key words as follows:

¢ When ASCENDING is specified, the sequence is from the lowest key value to
the highest key value.

¢ When DESCENDING is specified, the sequence is from the highest key value
to the lowest.

e |If the KEY data item is alphabetic, alphanumeric, alphanumeric-edited, or
numeric-edited, the sequence of key values depends on the collating
sequence used (see “COLLATING SEQUENCE Phrase” below).

. Under OS/390 and VM, if the KEY is a DBCS item, the sequence
of the KEY values are based on the binary collating sequence of the
hexadecimal values of the DBCS characters.

o AR Under AlX, OS/2, and Windows, if the KEY is a DBCS item, then
the sequence of the KEY values is based on a collation sequence according to
the COLLSEQ compiler option:

— If the COLLSEQ(NATIVE) compiler option is in effect, then the collating
sequence is determined by the locale. For information on the locale, see
Appendix F, “Locale Considerations (Workstation Only)” on page 564.

— Otherwise, the collating sequence is determined by the binary values of
the DBCS characters.

e If the KEY is an external floating-point item, the key is treated as alphanu-
meric. The sequence in which the records are merged depends on the col-
lating sequence used.

e |f the KEY is an internal floating-point item, the sequence of key values will be
in numeric order.

The key comparisons are performed according to the rules for comparison of oper-
ands in a relation condition (see “Relation Condition” on page 241).

COLLATING SEQUENCE Phrase

This phrase specifies the collating sequence to be used in nonnumeric comparisons for
the KEY data items in this merge operation.

Under AIX, OS/2, and Windows, the COLLATING SEQUENCE phrase is
only valid when an ASCII code page is in effect.

alphabet-name-1
Must be specified in the ALPHABET clause of the SPECIAL-NAMES paragraph.
Any one of the alphabet-name clause phrases can be specified, with the following
results:

344 COBOL Language Reference

MERGE Statement

STANDARD-1
Under OS/390 and VM, the ASCII collating sequence is used for
all nonnumeric comparisons. (The ASCII collating sequence is in Appendix B,
“EBCDIC and